Show simple item record

dc.creatorSilva, Jesús
dc.creatorVarela Izquierdo, Noel
dc.creatorPineda, Omar
dc.description.abstractAs cities continue to grow in size and population, the design of public transport networks becomes complicated, given the wide diversity in the origins and destinations of users [1], as well as the saturation of vehicle infrastructure in large cities despite their attempts to adapt it according to population distribution. This indicates that, in order to reduce users’ travel time, it is necessary to implement alternative road solutions to the use of cars, increasing investment in public transportation [2, 3] by conducting a comprehensive analysis of the state of transportation. This situation has made appear the solutions and development oriented to transportation based on Internet of Things (IoT) which allows, in a first stage, monitoring of public transport systems, in order to optimize the deployment of transport units and thus reduce the time of transfer of users through the cities [4]. These solution proposals are focused on information collected from user resources (data collected through smart phones) to create a common database [5]. The present study proposes the development of an intelligent monitoring and management system for public transportation networks using a hybrid communication architecture based on wireless node networks using IPv6 and cellular networks (LTE, LTE-M).spa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.sourceCommunications in Computer and Information Sciencespa
dc.subjectMachine learningspa
dc.subjectProactive controlspa
dc.subjectSmart citiesspa
dc.subjectPublic transport networksspa
dc.titleManagement system for optimizing public transport networks: GPS recordspa
dcterms.references1. Handte, M., Foell, S., Wagner, S., Kortuem, G., Marron, P.J.: An Internet-of-Things enabled connected navigation system for urban bus riders. IEEE Internet Things J. 3, 735–744 (2016).
dcterms.references2. Cats, O., Vermeulen, A., Warnier, M., van Lint, H.: Modelling growth principles of metropolitan public transport networks. J. Transp. Geogr. 82, 102567 (2020)spa
dcterms.references3. Tomej, K., Liburd, J.J.: Sustainable accessibility in rural destinations: a public transport network approach. J. Sustain. Tour. 28(2), 222–239 (2020)spa
dcterms.references4. Lohokare, J., Dani, R., Sontakke, S., Adhao, R.: Scalable tracking system for public buses using IoT technologies. In: 2017 International Conference on Emerging Trends & Innovation, ICT, ICEI 2017, pp. 104–109 (2017)spa
dcterms.references5. Raj, J.T., Sankar, J.: IoT based smart school bus monitoring and notification system. In: 5th IEEE Region 10 Humanitarian Technology Conference 2017, R10-HTC 2017, pp. 89–92 (2018).spa
dcterms.references6. Spyropoulou, I.: Impact of public transport strikes on the road network: the case of Athens. Transp. Res. Part A: Policy Pract. 132, 651–665 (2020)spa
dcterms.references7. de Regt, R., von Ferber, C., Holovatch, Y., Lebovka, M.: Public transportation in Great Britain viewed as a complex network. Transportmetrica A: Transp. Sci. 15(2), 722–748 (2019)spa
dcterms.references8. Lusikka, T., Kinnunen, T.K., Kostiainen, J.: Public transport innovation platform boosting intelligent transport system value chains. Util. Policy 62, 100998 (2020)spa
dcterms.references9. Munizaga, M.A., Palma, C.: Estimation of a disaggregate multimodal public transport origin-destination matrix from passive smartcard data from Santiago, Chile. Transp. Res. Part C: Emerg. Technol. 24, 9–18 (2012)spa
dcterms.references10. Perez, R., Vásquez, C., Viloria, A.: An intelligent strategy for faults location in distribution networks with distributed generation. J. Intell. Fuzzy Syst. 36(2), 1627–1637 (2019)spa
dcterms.references11. Liu, Y., Cheng, T.: Understanding public transit patterns with open geodemographics to facilitate public transport planning. Transportmetrica A: Transp. Sci. 16(1), 76–103 (2020)spa
dcterms.references12. Petersen, N.C., Rodrigues, F., Pereira, F.C.: Multi-output bus travel time prediction with convolutional LSTM neural network. Expert Syst. Appl. 120, 426–435 (2019)spa
dcterms.references13. Viloria, A., Robayo, P.V.: Virtual network level of application composed IP networks connected with systems-(NETS peer-to-peer). Indian J. Sci. Technol. 9, 46 (2016)spa
dcterms.references14. Viloria, A., Acuña, G.C., Franco, D.J.A., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)spa
dcterms.references15. Tomasiello, D.B., Giannotti, M., Arbex, R., Davis, C.: Multi-temporal transport network models for accessibility studies. Trans. GIS 23(2), 203–223 (2019)spa
dcterms.references16. Muro, F.J.M.: Planificación y optimización de redes ópticas en el Internet del futuro (Doctoral dissertation, Universidad Politécnica de Cartagena) (2019)spa
dcterms.references17. Saif, M.A., Zefreh, M.M., Torok, A.: Public transport accessibility: a literature review. Period. Polytech. Transp. Eng. 47(1), 36–43 (2019)spa
dcterms.references18. Gatta, V., Marcucci, E., Nigro, M., Serafini, S.: Sustainable urban freight transport adopting public transport-based crowdshipping for B2C deliveries. Eur. Transp. Res. Rev. 11(1), 13 (2019)spa
dcterms.references19. Cervantes, M.E.S., García, L.D.J.M.: El uso de modelos de redes y modelos de transporte para la optimización y reducción de tiempos y costos de transporte en la Comercializadora Gonac S. A de CV/The use of network models and transport models for the optimization and reduction of transport times and costs in the Comercializadora Gonac S. A de CV. RICEA Revista Iberoamericana de Contaduría, Economía y Administración 8(15), 29–53 (2019)spa
dcterms.references20. Allulli, L., Italiano, G.F., Santaroni, F.: Exploiting GPS data in public transport journey planners. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 295–306. Springer, Cham (2014).
dcterms.references21. Shen, L., Stopher, P.R.: Review of GPS travel survey and GPS data-processing methods. Transp. Rev. 34(3), 316–334 (2014)spa
dcterms.references22. Schüssler, N., Axhausen, K.W.: Identifying trips and activities and their characteristics from GPS raw data without further information. Arbeitsberichte Verkehrs-und Raumplanung 502, 1–29 (2008)spa
dcterms.references23. Edwards, D., Griffin, T.: Understanding tourists’ spatial behaviour: GPS tracking as an aid to sustainable destination management. J. Sustain. Tour. 21(4), 580–595 (2013)spa
dcterms.references24. Schuessler, N., Axhausen, K.W.: Map-matching of GPS traces on high-resolution navigation networks using the multiple hypothesis technique (MHT). Arbeitsberichte Verkehrsund Raumplanung 568, 1–22 (2009)spa
dcterms.references25. Wang, Y., Ram, S., Currim, F., Dantas, E., Sabóia, L.A.: A big data approach for smart transportation management on bus network. In: 2016 IEEE International Smart Cities Conference (ISC2), pp. 1–6. IEEE (2016)spa
dcterms.references26. Gonzalez, P., et al.: Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones. In: 15th World Congress on Intelligent Transportation Systems, pp. 16–20 (2008)spa
dcterms.references27. Ma, X., Yu, H., Wang, Y., Wang, Y.: Large-scale transportation network congestion evolution prediction using deep learning theory. PLoS ONE 10(3), e0119044 (2015)spa
dcterms.references28. Chaix, B., et al.: Active transportation and public transportation use to achieve physical activity recommendations? A combined GPS, accelerometer, and mobility survey study. Int. J. Behav. Nutr. Phys. Act. 11(1), 124 (2014)spa
dcterms.references29. Strutu, M., Stamatescu, G., Popescu, D.: A mobile sensor network based road surface monitoring system. In: 2013 17th International Conference on System Theory, Control and Computing (ICSTCC), pp. 630–634. IEEE (2013)spa
dcterms.references30. Dabiri, S., Heaslip, K.: Inferring transportation modes from GPS trajectories using a convolutional neural network. Transp. Res. Part C: Emerg. Technol. 86, 360–371 (2018)spa
dcterms.references31. Harrison, F., Burgoine, T., Corder, K., van Sluijs, E.M., Jones, A.: How well do modelled routes to school record the environments children are exposed to?: a cross-sectional comparison of GIS-modelled and GPS-measured routes to school. Int. J. Health Geogr. 13(1), 5 (2014)spa
dcterms.references32. Anderson, M.K., Rasmussen, T.K.: Matching observed public route choice data to a GIS network. In: Selected Proceedings from the Annual Transport Conference at Aalborg University, vol. 5, no. 1 (2010)spa
dcterms.references33. Badland, H.M., Duncan, M.J., Oliver, M., Duncan, J.S., Mavoa, S.: Examining commute routes: applications of GIS and GPS technology. Environ. Health Prev. Med. 15(5), 327 (2010)spa
dcterms.references33. Badland, H.M., Duncan, M.J., Oliver, M., Duncan, J.S., Mavoa, S.: Examining commute routes: applications of GIS and GPS technology. Environ. Health Prev. Med. 15(5), 327 (2010)spa
dcterms.references34. Stopher, P., FitzGerald, C., Xu, M.: Assessing the accuracy of the Sydney household travel survey with GPS. Transportation 34(6), 723–741 (2007)spa
dcterms.references35. Gallet, M., Massier, T., Hamacher, T.: Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks. Appl. Energy 230, 344–356 (2018)spa
dcterms.references36. Holleczek, T., Yu, L., Lee, J.K., Senn, O., Ratti, C., Jaillet, P.: Detecting weak public transport connections from cellphone and public transport data. In: Proceedings of the 2014 International Conference on Big Data Science and Computing, pp. 1–8 (2014)spa
dcterms.references37. Wang, H., Calabrese, F., Di Lorenzo, G., Ratti, C.: Transportation mode inference from anonymized and aggregated mobile phone call detail records. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 318–323. IEEE (2010)spa
dcterms.references38. Chaix, B., et al.: GPS tracking in neighborhood and health studies: a step forward for environmental exposure assessment, a step backward for causal inference? Health Place 21, 46–51 (2013)spa
dcterms.references39. Buys, L., Snow, S., van Megen, K., Miller, E.: Transportation behaviours of older adults: an investigation into car dependency in urban Australia. Australas. J. Ageing 31(3), 181–186 (2012)spa
dcterms.references40. Gonzalez, P.A., et al.: Automating mode detection for travel behaviour analysis by using global positioning systems-enabled mobile phones and neural networks. IET Intell. Transp. Syst. 4(1), 37–49 (2010)spa
dcterms.references41. Arellana, J., de Dios Ortúzar, J., Rizzi, L.I., Zuñiga, F.: Obtaining public transport level-of-service measures using in-vehicle GPS data and freely available GIS web-based tools. In: Mobile Technologies for Activity-Travel Data Collection and Analysis, pp. 258–275. IGI Global (2014)spa
dcterms.references42. Ladha, A., Bhattacharya, P., Chaubey, N., Bodkhe, U.: IIGPTS: IoT-based framework for intelligent green public transportation system. In: Singh, P.K., Pawłowski, W., Tanwar, S., Kumar, N., Rodrigues, J.J.P.C., Obaidat, M.S. (eds.) Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019). LNNS, vol. 121, pp. 183–195. Springer, Singapore (2020).

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal