Show simple item record

dc.creatoramelec, viloria
dc.creatorPineda, Omar
dc.creatorVarela Izquierdo, Noel
dc.creatorDiaz Martínez, Jorge Luis
dc.date.accessioned2021-03-18T14:51:26Z
dc.date.available2021-03-18T14:51:26Z
dc.date.issued2020-07-19
dc.identifier.issn18650929
dc.identifier.urihttps://hdl.handle.net/11323/8042
dc.descriptionRetractedspa
dc.description.abstractThe study analyzes the bandwidth available in a segment of route in the VANET network, since this value directly affects sporadic cloud computing. For this purpose, the bandwidth was tested on a highly complex urban scenario, where a number of mobile nodes were used with random conditions both in mobility and in resources of transmission. The results of the tests show that the stability of the bandwidth available in each region is proportional to the number of real mobile nodes in the region. However, a considerable bandwidth is also reached with a smaller number of mobile nodes, but there is no stability in the region, thus causing the network to collapse. The VANET network simulation tool was NS-3, since it is currently one of the most commonly used free software that allows configure the simulation parameters in a vehicular environment. The urban simulation scenario is the historic center of the City of Bogotá, Colombia, which was created with SUMO for obtaining the mobility tracesspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceCommunications in Computer and Information Sciencespa
dc.subjectMachine learningspa
dc.subjectProactive controlspa
dc.subjectTrafficspa
dc.subjectSmart citiesspa
dc.subjectAutonomous computing VANETspa
dc.titleDesign of a network with VANET sporadic cloud computing applied to traffic accident preventionspa
dc.typePreprintspa
dcterms.references1. Mittal, A., Ostojic, M., Mahmassani, H.S.: Active traffic signal control for mixed vehicular traffic in connected environments: self-identifying platoon strategy (No. 19-05931) (2019)spa
dcterms.references2. Cheikhrouhou, O., Koubaa, A., Zarrad, A.: A cloud based disaster management system. J. Sens. Actuator Netw. 9(1), 6 (2020)spa
dcterms.references3. Alam, K.M., El Saddik, A.: C2PS: a digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access 5, 2050–2062 (2017)spa
dcterms.references4. Lum, C., Koper, C.S., Wu, X., Johnson, W., Stoltz, M.: Examining the empirical realities of proactive policing through systematic observations and computer-aided dispatch data. Police Q. (2020). https://doi.org/10.1177/1098611119896081spa
dcterms.references5. Ferenchak, N.N., Marshall, W.E.: Equity analysis of proactively-vs. reactively-identified traffic safety issues. Transp. Res. Rec. 2673(7), 596–606 (2019)spa
dcterms.references6. Tucker, C., Nelson, H.T., Sarbora, R.S.: U.S. Patent No. 10,534,337. Washington, DC: U.S. Patent and Trademark Office (2020)spa
dcterms.references7. Azari, A., Papapetrou, P., Denic, S., Peters, G.: User traffic prediction for proactive resource management: learning-powered approaches. arXiv preprint arXiv:1906.00951 (2019)spa
dcterms.references8. Gillani, R., Nasir, A.: Proactive control of hybrid electric vehicles for maximum fuel efficiency. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 396–401. IEEE (2019)spa
dcterms.references9. Rai, A., Kannan, R.J.: Co-simulation based finite state machine for telematic and data compression microservices in IoT. Wirel. Pers. Commun. 105(3), 1069–1082 (2019)spa
dcterms.references10. Batkovic, I., Zanon, M., Ali, M., Falcone, P.: Real-time constrained trajectory planning and vehicle control for proactive autonomous driving with road users. In: 2019 18th European Control Conference (ECC), pp. 256–262. IEEE (2019)spa
dcterms.references11. Zhao, W.: Performance optimization for state machine replication based on application semantics: a review. J. Syst. Softw. 112, 96–109 (2016)spa
dcterms.references12. Bortnikov, V., Cahana, Z., Ifergan-Shachor, S., Shnayderman, I.: U.S. Patent No. 10,083,217. Washington, DC: U.S. Patent and Trademark Office (2018)spa
dcterms.references13. Viloria, A., Robayo, P.V.: Virtual network level of application composed IP networks connected with systems-(NETS peer-to-peer). Indian J. Sci. Technol. 9, 46 (2016)spa
dcterms.references14. Hu, Y., Chen, C., He, T., He, J., Guan, X., Yang, B.: Proactive power management scheme for hybrid electric storage system in EVs: an MPC method. IEEE Trans. Intell. Transp. Syst. (2019)spa
dcterms.references15. Al Shehri, A., et al.: U.S. Patent No. 10,533,937. Washington, DC: U.S. Patent and Trademark Office (2020)spa
dcterms.references16. Formosa, N., Quddus, M., Ison, S., Abdel-Aty, M., Yuan, J.: Predicting real-time traffic conflicts using deep learning. Accid. Anal. Prev. 136, 105429 (2020)spa
dcterms.references17. Zahid, M., Chen, Y., Jamal, A., Memon, M.Q.: Short term traffic state prediction via hyperparameter optimization based classifiers. Sensors 20(3), 685 (2020)spa
dcterms.references18. Lu, Z., Xia, J., Wang, M., Nie, Q., Ou, J.: Short-term traffic flow forecasting via multi-regime modeling and ensemble learning. Appl. Sci. 10(1), 356 (2020)spa
dcterms.references19. Paranjothi, A., Khan, M.S., Patan, R., Parizi, R.M., Atiquzzaman, M.: VANETomo: a congestion identification and control scheme in connected vehicles using network tomography. Comput. Commun. 151, 275–289 (2020)spa
dcterms.references20. Ramanathan, R., et al.: U.S. Patent No. 10,268,467. Washington, DC: U.S. Patent and Trademark Office (2019)spa
dcterms.references21. Ma, C., Zhou, J., Xu, X.D., Xu, J.: Evolution regularity mining and gating control method of urban recurrent traffic congestion: a literature review. J. Adv. Transp. (2020)spa
dcterms.references22. Jha, S., et al.: Derecho: fast state machine replication for cloud services. ACM Trans. Comput. Syst. (TOCS) 36(2), 1–49 (2019)spa
dcterms.references23. Liu, J., Khattak, A.: Informed decision-making by integrating historical on-road driving performance data in high-resolution maps for connected and automated vehicles. J. Intell. Transp. Syst. 24(1), 11–23 (2020)spa
dcterms.references24. Martinov, G.M., Ljubimov, A.B., Martinova, L.I.: From classic CNC systems to cloud-based technology and back. Robot. Comput.-Integr. Manuf. 63, 101927 (2020)spa
dcterms.references25. Chen, X., Wang, H., Ma, Y., Zheng, X., Guo, L.: Self-adaptive resource allocation for cloud-based software services based on iterative QoS prediction model. Future Gener. Comput. Syst. 105, 287–296 (2020)spa
dcterms.references26. Viloria, A., Acuña, G.C., Franco, D.J.A., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)spa
dcterms.references27. Perez, R., Vásquez, C., Viloria, A.: An intelligent strategy for faults location in distribution networks with distributed generation. J. Intell. Fuzzy Syst. 36(2), 1627–1637 (2019)spa
dcterms.references28. Chaubey, N.: Security analysis of vehicular ad hoc networks (VANETs): a comprehensive study. Int. J. Secur. Appl. 10, 261–274 (2016)spa
dcterms.references29. Chaubey, N.K., Yadav, D.: A taxonomy of Sybil attacks in vehicular ad-hoc network (VANET). In: Rao, R., Jain, V., Kaiwartya, O., Singh, N. (eds.) IoT and Cloud Computing Advancements in Vehicular Ad-Hoc Networks, pp. 174–190. IGI Global, Hershey (2020). https://doi.org/10.4018/978-1-7998-2570-8.ch009spa
dc.source.urlhttps://link.springer.com/chapter/10.1007/978-981-15-6648-6_17spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/978-981-15-6648-6_17
dc.type.hasversioninfo:eu-repo/semantics/draftspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal