Show simple item record

dc.contributor.authorMartinello, Kátiaspa
dc.contributor.authorHower, Jamesspa
dc.contributor.authorPinto, Dianaspa
dc.contributor.authorSchnorr, Carlos Eduardospa
dc.contributor.authorDotto, Guilherme Luizspa
dc.contributor.authorSilva Oliveira, Marcos Leandrospa
dc.contributor.authorRamos, Claudete
dc.description.abstractThe ceramics industry, resulting from developments of modern compounds, is a segment of great influence in worldwide sustainability. Artisanal ceramic factories based on wood combustion have significant risks for the creation and discharge of atmosphere nanoparticles (NPs) and ultra-fine particles (UFPs). At present, there is insufficient recognition on the influence of engineered-NPs on the atmosphere and health. Real improvements are indispensable to diminish contact with NPs. The present study demonstrates the main NPs and UFPS present in an area of intense artisanal wood-combustion ceramic manufacturing. Particulate matter was sampled for morphological, chemical, and geochemical studies by sophisticated electron microbeam microscopy, X-Ray Diffraction, and Raman spectroscopy. From NPs configuration (<10 nm) we identify nucleation. Several amorphous NPs (>10 nm) were produced around the studied artisanal ceramic factories. This study presents an indication of the recent information on population and work-related contact to NPs in the artisanal ceramic factories and their influence on
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.sourceGeoscience Frontiersspa
dc.subjectCeramic manufacturingspa
dc.subjectAdvanced characterizationspa
dc.subjectMultiple impactsspa
dc.titleArtisanal ceramic factories using wood combustion: a nanoparticles and human health studyspa
dc.typeArtículo de revistaspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.relation.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Pereira, F.N., Oliveira, M.L., Taffarel, S.R., Sehn, J.R., Ramos, C.G., Silva, L.F., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543, 161–
dc.relation.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–
dc.relation.referencesAkinyemi, S.A., Gitari, W.M., Thobakgale, R., Petrik, L.F., Nyakuma, B.B., Hower, J.C., Ward, C.R., Oliveira, M.L.S., Silva, L.F.O., 2020. Geochemical fractionation of hazardous elements in fresh and drilled weathered South African coal fly ashes. Environ. Geochem. Hlth. 42, 2771–
dc.relation.referencesBartington, S.E., Bakolis, I., Devakumar, D., Kurmi, O.P., Gulliver, J., Chaube, G., Manandhar, D.S., Saville, N.M., Costello, A., Osrin, D., Hansell, A.L., Ayres, J.G., 2017. Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur. Nepal. Environ. Pollut. 220, 38–
dc.relation.referencesBessa, M.J., Brandão, F., Viana, M., Gomes, J.F., Monfort, E., Cassee, F.R., Fraga, S., Teixeira, J.P., 2020. Nanoparticle exposure and hazard in the ceramic industry: an overview of potential sources, toxicity and health effects. Environ. Res. 184,
dc.relation.referencesCerqueira, B., Vega, F.A., Serra, C., Silva, L.F.O., Andrade, M.L., 2011. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of cu2þ and cu2þ/pb2þ on a bt horizon surfaces. J. Hazard. Mater. 195, 422–
dc.relation.referencesCerqueira, B., Vega, F.A., Silva, L.F.O., Andrade, L., 2012. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Sci. Total Environ. 421, 220–
dc.relation.referencesCiveira, M.S., Ramos, C.G., Oliveira, M.L.S., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F., 2016a. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145, 142–
dc.relation.referencesCiveira, M., Oliveira, M., Hower, J., Agudelo-Castañeda, D., Taffarel, S., Ramos, C., Kautzmann, R., Silva, L.F., 2016b. Modification, adsorption, and geochemistry processes on altered minerals and amorphous phases on the nanometer scale: examples from copper mining refuse, Touro, Spain. Environ. Sci. Pollut. Res. Int. 23, 6535–
dc.relation.referencesConticini, E., Frediani, B., Caro, D., 2020. Can atmospheric pollution be considered a cofactor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 261,
dc.relation.referencesCortés, A., Silva, L.F.O., Ferrari, V., Taffarel, S.R., Feijoo, G., Moreira, M.T., 2020. Environmental assessment of viticulture waste valorisation through composting as a biofertilisation strategy for cereal and fruit crops. Environ. Pollut. 264,
dc.relation.referencesCutruneo, C.M., Oliveira, M.L., Ward, C.R., Hower, J.C., de Brum, I.A., Sampaio, C.H., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F., 2014. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: demonstration of electron beam applications. Int. J. Coal Geol. 130, 33–
dc.relation.referencesDalmora, A.C., Ramos, C.G., Querol, X., Kautzmann, R.M., Oliveira, M.L.S., Taffarel, S.R., Moreno, T., Silva, L.F., 2016. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere 144, 2013–
dc.relation.referencesDalmora, A.C., Ramos, C.G., Oliveira, M.L.S., Oliveira, L.F.S., Schneider, I.A.H., Kautzmann, R.M., 2020. Application of andesite rock as a clean source of fertilizer for eucalyptus crop: evidence of sustainability. J. Clean. Prod. 256,
dc.relation.referencesDantas, G., Siciliano, B., França, B.B., da Silva, C.M., Arbilla, G., 2020. The impact of COVID19 partial lockdown on the air quality of the city of Rio de Janeiro. Brazil. Sci. Total Environ. 729,
dc.relation.referencesde Vallejuelo, S.F.O., Gredilla, A., da Boit, K., Teixeira, E.C., Sampaio, C.H., Madariaga, J.M., Silva, L.F., 2017. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: environmental impact and risk assessment. Chemosphere 169, 725–
dc.relation.referencesDias, C.L., Oliveira, M.L.S., Hower, J.C., Taffarel, S.R., Kautzmann, R.M., Silva, L.F.O., 2014. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. Int. J. Coal Geol. 122, 50–
dc.relation.referencesDotto, G.L., de Souza, V.C., de Moura, J.M., de Moura, C.M., de Almeida Pinto, L.A., 2011. Influence of drying techniques on the characteristics of chitosan and the quality of biopolymer films. Dry. Technol. 29, 1784–
dc.relation.referencesDotto, G.L., Cadaval, T.R.S., Pinto, L.A.A., 2012. Use of Spirulina platensis micro and nanoparticles for the removal synthetic dyes from aqueous solutions by biosorption. Process Biochem. 47, 1335–
dc.relation.referencesDotto, G.L., Cunha, J.M., Calgaro, C.O., Tanabe, E.H., Bertuol, D.A., 2015a. Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption. J. Hazard. Mater. 295, 29–
dc.relation.referencesDotto, G.L., Sharma, S.K., Pinto, L.A., 2015b. Biosorption of organic dyes: Research opportunities and challenges. In: Sharma, S.K. (Ed.), Green Chemistry for Dyes Removal from Wastewater. John Wiley&Sons, p.
dc.relation.referencesDotto, G.L., Rodrigues, F.K., Tanabe, E.H., Fröhlich, R., Bertuol, D.A., Martins, T.R., Foletto, E.L., 2016. Development of chitosan/bentonite hybrid composite to remove hazardous anionic and cationic dyes from colored effluents. J. Environ. Chem. Eng. 4, 3230–
dc.relation.referencesDuarte, A.L., Da Boit, K., Oliveira, M.L.S., Teixeira, E.C., Schneider, I.L., Silva, L.F.O., 2019. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area. Geosci. Front. 10, 927–
dc.relation.referencesDutta, M., Saikia, J., Taffarel, S.R., Waanders, F.B., De Medeiros, D., Cutruneo, C.M., Silva, L.F.O., Saikia, B.K., 2017. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage. Geosci. Front. 8, 1285–
dc.relation.referencesDutta, M., Islam, N., Rabha, S., Narzary, B., Bordoloi, M., Saikia, D., Silva, L.F.O., Saikia, B.K., 2020. Acid mine drainage in an Indian high-sulfur coal mining area: cytotoxicity assay and remediation study. J. Hazard. Mater. 389,
dc.relation.referencesFattorini, D., Regoli, F., 2020. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 264,
dc.relation.referencesFerrari, V., Taffarel, S.R., Espinosa-Fuentes, E., Oliveira, M.L.S., Saikia, B.K., Oliveira, L.F.S., 2019. Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. J. Clean. Prod. 208, 297–
dc.relation.referencesGallego-Cartagena, E., Morillas, H., Maguregui, M., Patiño-Camelo, K., Marcaida, I., Morgado-Gamero, W., Madariaga, J.M., 2020. A comprehensive study of biofilms growing on the built heritage of a Caribbean industrial city in correlation with construction materials. Int. Biodeterior. Biodegradation 147,
dc.relation.referencesGasparotto, J., Chaves, P., Da Boit, K., Da Rosa-Siva, H., Bortolin, R., Silva, L.F., Rabelo, T., Da Silva, J., Da Silva, F., Nordin, A., Soares, K., Borges, M., Gelain, D., Moreira, J., 2018. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotox. Environ. Safe. 165, 44–
dc.relation.referencesGómez, L.P., Ramos, C.G., Oliveira, M.L.S., Silva, L.F.O., 2021. Release kinetics of multinutrients from volcanic rock mining by-products: Evidences for their use as a soil remineralizer. J. Clean. Prod. 279,
dc.relation.referencesGómez-Plata, L., Tutikian, B.F., Pacheco, F., Oliveira, M.S., Murillo, M., Silva, L.F., Bergmann, C.P., 2020. Multianalytical approach of stay-in-place polyvinyl chloride formwork concrete exposed to high temperatures. J. Mater. Res. Technol. 9, 5045–
dc.relation.referencesGredilla, A., Fdez-Ortiz de Vallejuelo, S., Rodriguez-Iruretagoiena, A., Gomez, L., Oliveira, M.L.S., Arana, G., De Diego, A., Madariaga, J.M., Silva, L.F.O., 2019. Evidence of mercury sequestration by carbon nanotubes and nanominerals present in agricultural soils from a coal fired power plant exhaust. J. Hazard. Mater. 378,
dc.relation.referencesHower, J.C., O'Keefe, J.M., Henke, K.R., Wagner, N.J., Copley, G., Blake, D.R., Garrison, T., Oliveira, M.L.S., Kautzmann, R.M., Silva, L.F., 2013. Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: a re-investigation following attempted mitigation of the fire. Int. J. Coal Geol. 116, 63–
dc.relation.referencesKronbauer, M.A., Izquierdo, M., Dai, S., Waanders, F.B., Wagner, N.J., Mastalerz, M., Hower, J.C., Oliveira, M.L.S., Taffarel, S.R., Bizani, D., Silva, L.F.O., 2013. Geochemistry of ultrafine and nano-compounds in coal gasification ashes: a synoptic view. Sci. Total Environ. 456-457, 95–
dc.relation.referencesLeón-Mejía, G., Machado, M.N., Okuro, R.T., Silva, L.F., Telles, C., Dias, J., Niekraszewicz, L., Da Silva, J., Henriques, J.A.P., Zin, W.A., 2018. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci. Total Environ. 625, 589–
dc.relation.referencesLiu, X., Jayaratne, R., Thai, P., Kuhn, T., Zing, I., Christensen, B., Lamont, R., Dunbabin, M., Zhu, S., Gao, J., Wainwright, D., Neale, D., Kan, R., Kirkwood, J., Morawska, L., 2020. Low-cost sensors as an alternative for long-term air quality monitoring. Environ. Res. 185,
dc.relation.referencesLütke, S.F., Oliveira, M.L., Silva, L.F., Cadaval Jr., T.R., Dotto, G.L., 2020. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere 256,
dc.relation.referencesMartinello, K., Oliveira, M., Molossi, F., Ramos, C., Teixeira, E., Kautzmann, R., Silva, L.F., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 470-471, 444–
dc.relation.referencesMedina, C., de Rojas, M.S., Frías, M., Juan, A., 2011. Using ceramic materials in ecoefficient concrete and precast concrete products. In: Sikalidis, C. (Ed.), Advances in CeramicsElectric and Magnetic Ceramics, Bioceramics, Ceramics and Environment.
dc.relation.referencesNIOSH, 2009. Approaches to Safe Nanotechnology; Managing the Health and Safety Concerns Associated with Engineered Nanomaterials. Centers for Disease Control and Prevention & National Institute for Occupational Safety and
dc.relation.referencesNordin, A.P., Da Silva, J., De Souza, C., Niekraszewicz, L.A.B., Dias, J.F., Da Boit, K., Oliveira, M.L.S., Grivicich, I., Garcia, A.L., Silva, L.F., Da Silva, F.R., 2018. In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. J. Hazard. Mater. 346, 263–
dc.relation.referencesNzihou, A., Stanmore, B., 2013. The fate of heavy metals during combustion and gasification of contaminated biomass-a brief review. J. Hazard. Mater. 256–257, 56–
dc.relation.referencesOliveira, M.L.S., Ward, C.R., Sampaio, C.H., Querol, X., Cutruneo, C.M.N.L., Taffarel, S.R., Silva, L.F.O., 2013. Partitioning of mineralogical and inorganic geochemical components of coals from Santa Catarina, Brazil, by industrial beneficiation processes. Int. J. Coal Geol. 116, 75–
dc.relation.referencesOliveira, M.L., Marostega, F., Taffarel, S.R., Saikia, B.K., Waanders, F.B., DaBoit, K., Baruah, B.P., Silva, L.F., 2014. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards. Sci. Total Environ. 468, 1128–
dc.relation.referencesOliveira, M.L., Navarro, O.G., Crissien, T.J., Tutikian, B.F., Da Boit, K., Teixeira, E., Cabello, J., Agudelo-Castañeda, D., Silva, L.F., 2017. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls. Environ. Res. 158, 450–
dc.relation.referencesOliveira, M.L.S., da Boit, K., Pacheco, F., Teixeira, E.C., Schneider, I.L., Crissien, T.J., Pinto, D.C., Oyaga, R.M., Silva, L.F.O., 2018a. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health. Environ. Res. 160, 562–
dc.relation.referencesOliveira, M.L., Da Boit, K., Schneider, I., Teixeira, E., Crissien, T., Silva, L.F., 2018b. Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: mineral surface chemistry and nanoparticle-aggregation control for health studies. J. Clean. Prod. 188, 662–
dc.relation.referencesOliveira, M., Izquierdo, M., Querol, X., Lieberman, R.N., Saikia, B.K., Silva, L.F.O., 2019a. Nanoparticles from construction wastes: a problem to health and the environment. J. Clean. Prod. 219, 236–
dc.relation.referencesOliveira, M.L., Saikia, B.K., da Boit, K., Pinto, D., Tutikian, B.F., Silva, L.F., 2019b. River dynamics and nanopaticles formation: a comprehensive study on the nanoparticle geochemistry of suspended sediments in the Magdalena River, Caribbean Industrial Area. J. Clean. Prod. 213, 819–
dc.relation.referencesOliveira, M.L., Dario, C., Tutikian, B.F., Ehrenbring, H.Z., Almeida, C.C., Silva, L.F., 2019c. Historic building materials from Alhambra: nanoparticles and global climate change effects. J. Clean. Prod. 232, 751–
dc.relation.referencesOliveira, M.L., Tutikian, B.F., Milanes, C., Silva, L.F., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248,
dc.relation.referencesOliveira, M.L., Flores, E.M.M., Dotto, G.L., Neckel, A., Silva, L.F.O., 2021. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): the protagonist of black crusts produced on historic buildings. J. Clean. Prod. 278, 123982.
dc.relation.referencesPeres, E.C., Slaviero, J.C., Cunha, A.M., Dotto, G.L., 2018. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. J. Environ. Chem. Eng. 6, 649–
dc.relation.referencesQuispe, D., Pérez-López, R., Silva, L.F., Nieto, J.M., 2012. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 94, 495–
dc.relation.referencesRamírez, O., de la Campa, A.M.S., Amato, F., Moreno, T., Silva, L.F., Jesús, D., 2019. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 652, 434–
dc.relation.referencesRamírez, O., da Boit, K., Blanco, E., Silva, L.F., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33,
dc.relation.referencesRamos, C.G., de Mello, A.G., Kautzmann, R.M., 2014. A preliminary study of acid volcanic rocks for stonemeal application. Environ. Nanotechnol. Monit. Manag. 1, 30–
dc.relation.referencesRamos, C.G., Querol, X., Oliveira, M.L.S., Pires, K., Kautzmann, R.M., Silva, L.F., 2015. A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. Sci. Total Environ. 512-513, 371–
dc.relation.referencesRamos, C.G., Querol, X., Dalmora, A.C., De Jesus Pires, K.C., Schneider, I.A.H., Oliveira, L.F.S., Kautzmann, R.M., 2017. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. J. Clean. Prod. 142, 2700–
dc.relation.referencesRamos, C.G., de Medeiros, D.D.S., Gomez, L., Oliveira, L.F.S., Schneider, I.A.H., Kautzmann, R.M., 2019. Evaluation of soil Re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops. Nat. Resour. Res. 29, 1583–1600.
dc.relation.referencesRaspanti, G.A., Hashibe, M., Siwakoti, B., Wei, M., Thakur, B.K., Pun, C.B., Al-Temimi, M., Lee, Y.C.A., Sapkota, A., 2016. Household air pollution and lung cancer risk among never-smokers in Nepal. Environ. Res. 147, 141–
dc.relation.referencesRibeiro, J., Flores, D., Ward, C., Silva, L.F.O., 2010. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 408, 6032–
dc.relation.referencesRibeiro, J., Daboit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013a. Extensive FE-SEM/ EDS, HR-TEM/EDS and TOF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 452-453, 98–
dc.relation.referencesRibeiro, J., Taffarel, S.R., Sampaio, C.H., Flores, D., Silva, L.F.O., 2013b. Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal. Int. J. Coal Geol. 109-110, 15–
dc.relation.referencesRodrigues, D.A.S., Moura, J.M., Dotto, G.L., Pinto, L.A.A., 2018. Preparation, characterization and dye adsorption/reuse of chitosan-vanadate films. J. Polym. Environ. 26, 2917–
dc.relation.referencesRodriguez-Iruretagoiena, A., De Vallejuelo, S.F.O., Gredilla, A., Ramos, C.G., Oliveira, M.L.S., Arana, G., De Diego, A., Madariaga, J.M., Silva, L.F., 2015. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 508, 374–
dc.relation.referencesRojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: environmental implications. Urban Clim. 27, 412–
dc.relation.referencesSaikia, B.K., Ward, C.R., Oliveira, M.L., Hower, J.C., Baruah, B.P., Braga, M., Silva, L.F., 2014. Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals. Int. J. Coal Geol. 121, 26–
dc.relation.referencesSaikia, B.K., Saikia, J., Rabha, S., Silva, L.F., Finkelman, R., 2018. Ambient nanoparticles/ nanominerals and hazardous elements from coal combustion activity: implications on energy challenges and health hazards. Geosci. Front. 9, 863–
dc.relation.referencesSalmatonidis, A., Viana, M., Pérez, N., Alastuey, A., Fuente, G., Angurel, L.A., Sanfélix, V., Monfort, E., 2018. Nanoparticle formation and emission during laser ablation of ceramic tiles. J. Aerosol Sci. 126, 152–
dc.relation.referencesSánchez-Peña, N.E., Narváez-Semanate, J.L., Pabón-Patiño, D., Fernández-Mera, J.E., Oliveira, M.L., Da Boit, K., Tutikian, B., Crissien, T., Pinto, D., Serrano, I., Ayala, C., Duarte, A., Ruiz, J., Silva, L.F., 2018. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: experimental evidence. Chemosphere 191, 1048–
dc.relation.referencesSehn, J.L., de Leão, F.B., da Boit, K., Oliveira, M.L., Hidalgo, G.E., Sampaio, C.H., Silva, L.F., 2016. Nanomineralogy in the real world: a perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 147, 439–
dc.relation.referencesSilva, L.F.O., Moreno, T., Querol, X., 2009. An introductory TEM study of Fe-nanominerals within coal fly ash. Sci. Total Environ. 407, 4972–
dc.relation.referencesSilva, L.F., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020a. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239,
dc.relation.referencesSilva, L.F., Crissien, T.J., Milanes, C., Sampaio, C.H., 2020b. A three-dimensional nanoscale study in selected coal mine drainage. Chemosphere 248,
dc.relation.referencesSilva, L.F., Pinto, D., Neckel, A., Oliveira, M.L., Sampaio, C.H., 2020c. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254,
dc.relation.referencesStone, V., Miller, M.R., Clift, M.J.D., Elder, A., Mills, N.L., Møller, P., Schins, R.P.F., Vogel, U., Kreyling, W.G., Jensen, K.A., Kuhlbusch, T.A.J., Schwarze, P.E., Hoet, P., Pietroiusti, A., Vizcaya-Ruiz, A., Baeza-Squiban, A., Teixeira, J.P., Tran, C.L., Cassee, F., 2017. Nanomaterials versus ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ. Health Perspect. 125,
dc.relation.referencesStueckle, T.A., Davidson, D.C., Derk, R., Kornberg, T.G., Battelli, L., Friend, S., Orandle, M., Wagner, A., Dinu, C.Z., Sierros, K.A., Agarwal, S., Gupta, R.K., Rojanasakul, Y., Porter, D.W., Rojanasakul, L.,
dc.relation.referencesShort-term pulmonary toxicity assessment of pre- and post-incinerated organo modified nano clay in mice. ACS Nano 12, 2292–
dc.relation.referencesVicente, E.D., Vicente, A.M., Evtyugina, M., Oduber, F.I., Amato, F., Querol, X., Alves, C., 2020. Impact of wood combustion on indoor air quality. Sci. Total Environ. 705,
dc.relation.referencesWagner, A., White, A.P., Tang, M.C., Agarwal, S., Stueckle, T.A., Rojanasakul, Y., Gupta, R.K., Dinu, C.Z., 2018. Incineration of nanoclay composites leads to byproducts with reduced cellular reactivity. Sci. Rep. 8,
dc.relation.referencesWilcox, J., Wang, B., Rupp, E., Taggart, R., Hsu-Kim, H., Oliveira, M., Cutruneo, C., Taffarel, S., Silva, L.F., Hopps, S., Thomas, G., Hower, J., 2015. Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: environmental processes recorded at the macro and nanometer scale. Energy Fuel 29, 7168–
dc.relation.referencesWylie, B.J., Coull, B., Hamer, D.H., Singh, M.P., Jack, D., Yeboah-Antwi, K., Sabin, L., Singh, N., MacLeod, W.B., 2014. Impact of biomass fuels on pregnancy outcomes in central East India. Environ. Health 13,
dc.relation.referencesYang, Y., Chen, B., Hower, J.C., Schindler, M., Winkler, C., Brandt, J., Di Giulio, R., Liu, M., Fu, Y., Priya, S., Hochella Jr., M.F., 2017. Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal burning. Nat. Commun. 8, 194.
dc.relation.referencesZamberlan, D.C., Halmenschelager, P.T., Silva, L.F.O., da Rocha, J.B.T., 2020. Copper decreases associative learning and memory in Drosophila melanogaster. Sci. Total Environ. 710,

Files in this item


This item appears in the following Collection(s)

  • Artículos científicos [2753]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal