Mostrar registro simples

dc.contributor.authorMartinello, Kátiaspa
dc.contributor.authorHower, Jamesspa
dc.contributor.authorPinto, Dianaspa
dc.contributor.authorSchnorr, Carlos Eduardospa
dc.contributor.authorDotto, Guilherme Luizspa
dc.contributor.authorSilva Oliveira, Marcos Leandrospa
dc.contributor.authorRamos, Claudete G.spa
dc.date.accessioned2021-03-23T13:37:12Z
dc.date.available2021-03-23T13:37:12Z
dc.date.issued2021-01-31
dc.identifier.issn1674-9871spa
dc.identifier.urihttps://hdl.handle.net/11323/8053spa
dc.description.abstractThe ceramics industry, resulting from developments of modern compounds, is a segment of great influence in worldwide sustainability. Artisanal ceramic factories based on wood combustion have significant risks for the creation and discharge of atmosphere nanoparticles (NPs) and ultra-fine particles (UFPs). At present, there is insufficient recognition on the influence of engineered-NPs on the atmosphere and health. Real improvements are indispensable to diminish contact with NPs. The present study demonstrates the main NPs and UFPS present in an area of intense artisanal wood-combustion ceramic manufacturing. Particulate matter was sampled for morphological, chemical, and geochemical studies by sophisticated electron microbeam microscopy, X-Ray Diffraction, and Raman spectroscopy. From NPs configuration (<10 nm) we identify nucleation. Several amorphous NPs (>10 nm) were produced around the studied artisanal ceramic factories. This study presents an indication of the recent information on population and work-related contact to NPs in the artisanal ceramic factories and their influence on health.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceGeoscience Frontiersspa
dc.subjectCeramic manufacturingspa
dc.subjectNanoparticlesspa
dc.subjectAdvanced characterizationspa
dc.subjectMultiple impactsspa
dc.titleArtisanal ceramic factories using wood combustion: a nanoparticles and human health studyspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1674987121000153#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.gsf.2021.101151spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Pereira, F.N., Oliveira, M.L., Taffarel, S.R., Sehn, J.R., Ramos, C.G., Silva, L.F., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543, 161–170.spa
dc.relation.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170.spa
dc.relation.referencesAkinyemi, S.A., Gitari, W.M., Thobakgale, R., Petrik, L.F., Nyakuma, B.B., Hower, J.C., Ward, C.R., Oliveira, M.L.S., Silva, L.F.O., 2020. Geochemical fractionation of hazardous elements in fresh and drilled weathered South African coal fly ashes. Environ. Geochem. Hlth. 42, 2771–2788.spa
dc.relation.referencesBartington, S.E., Bakolis, I., Devakumar, D., Kurmi, O.P., Gulliver, J., Chaube, G., Manandhar, D.S., Saville, N.M., Costello, A., Osrin, D., Hansell, A.L., Ayres, J.G., 2017. Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur. Nepal. Environ. Pollut. 220, 38–45.spa
dc.relation.referencesBessa, M.J., Brandão, F., Viana, M., Gomes, J.F., Monfort, E., Cassee, F.R., Fraga, S., Teixeira, J.P., 2020. Nanoparticle exposure and hazard in the ceramic industry: an overview of potential sources, toxicity and health effects. Environ. Res. 184, 109297.spa
dc.relation.referencesCerqueira, B., Vega, F.A., Serra, C., Silva, L.F.O., Andrade, M.L., 2011. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of cu2þ and cu2þ/pb2þ on a bt horizon surfaces. J. Hazard. Mater. 195, 422–431.spa
dc.relation.referencesCerqueira, B., Vega, F.A., Silva, L.F.O., Andrade, L., 2012. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Sci. Total Environ. 421, 220–229.spa
dc.relation.referencesCiveira, M.S., Ramos, C.G., Oliveira, M.L.S., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F., 2016a. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145, 142–147.spa
dc.relation.referencesCiveira, M., Oliveira, M., Hower, J., Agudelo-Castañeda, D., Taffarel, S., Ramos, C., Kautzmann, R., Silva, L.F., 2016b. Modification, adsorption, and geochemistry processes on altered minerals and amorphous phases on the nanometer scale: examples from copper mining refuse, Touro, Spain. Environ. Sci. Pollut. Res. Int. 23, 6535–6545.spa
dc.relation.referencesConticini, E., Frediani, B., Caro, D., 2020. Can atmospheric pollution be considered a cofactor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 261, 114465.spa
dc.relation.referencesCortés, A., Silva, L.F.O., Ferrari, V., Taffarel, S.R., Feijoo, G., Moreira, M.T., 2020. Environmental assessment of viticulture waste valorisation through composting as a biofertilisation strategy for cereal and fruit crops. Environ. Pollut. 264, 114794.spa
dc.relation.referencesCutruneo, C.M., Oliveira, M.L., Ward, C.R., Hower, J.C., de Brum, I.A., Sampaio, C.H., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F., 2014. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: demonstration of electron beam applications. Int. J. Coal Geol. 130, 33–52.spa
dc.relation.referencesDalmora, A.C., Ramos, C.G., Querol, X., Kautzmann, R.M., Oliveira, M.L.S., Taffarel, S.R., Moreno, T., Silva, L.F., 2016. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere 144, 2013–2017.spa
dc.relation.referencesDalmora, A.C., Ramos, C.G., Oliveira, M.L.S., Oliveira, L.F.S., Schneider, I.A.H., Kautzmann, R.M., 2020. Application of andesite rock as a clean source of fertilizer for eucalyptus crop: evidence of sustainability. J. Clean. Prod. 256, 120432.spa
dc.relation.referencesDantas, G., Siciliano, B., França, B.B., da Silva, C.M., Arbilla, G., 2020. The impact of COVID19 partial lockdown on the air quality of the city of Rio de Janeiro. Brazil. Sci. Total Environ. 729, 139085.spa
dc.relation.referencesde Vallejuelo, S.F.O., Gredilla, A., da Boit, K., Teixeira, E.C., Sampaio, C.H., Madariaga, J.M., Silva, L.F., 2017. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: environmental impact and risk assessment. Chemosphere 169, 725–733.spa
dc.relation.referencesDias, C.L., Oliveira, M.L.S., Hower, J.C., Taffarel, S.R., Kautzmann, R.M., Silva, L.F.O., 2014. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. Int. J. Coal Geol. 122, 50–60.spa
dc.relation.referencesDotto, G.L., de Souza, V.C., de Moura, J.M., de Moura, C.M., de Almeida Pinto, L.A., 2011. Influence of drying techniques on the characteristics of chitosan and the quality of biopolymer films. Dry. Technol. 29, 1784–1791.spa
dc.relation.referencesDotto, G.L., Cadaval, T.R.S., Pinto, L.A.A., 2012. Use of Spirulina platensis micro and nanoparticles for the removal synthetic dyes from aqueous solutions by biosorption. Process Biochem. 47, 1335–1343.spa
dc.relation.referencesDotto, G.L., Cunha, J.M., Calgaro, C.O., Tanabe, E.H., Bertuol, D.A., 2015a. Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption. J. Hazard. Mater. 295, 29–36.spa
dc.relation.referencesDotto, G.L., Sharma, S.K., Pinto, L.A., 2015b. Biosorption of organic dyes: Research opportunities and challenges. In: Sharma, S.K. (Ed.), Green Chemistry for Dyes Removal from Wastewater. John Wiley&Sons, p. 467.spa
dc.relation.referencesDotto, G.L., Rodrigues, F.K., Tanabe, E.H., Fröhlich, R., Bertuol, D.A., Martins, T.R., Foletto, E.L., 2016. Development of chitosan/bentonite hybrid composite to remove hazardous anionic and cationic dyes from colored effluents. J. Environ. Chem. Eng. 4, 3230–3239.spa
dc.relation.referencesDuarte, A.L., Da Boit, K., Oliveira, M.L.S., Teixeira, E.C., Schneider, I.L., Silva, L.F.O., 2019. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area. Geosci. Front. 10, 927–939.spa
dc.relation.referencesDutta, M., Saikia, J., Taffarel, S.R., Waanders, F.B., De Medeiros, D., Cutruneo, C.M., Silva, L.F.O., Saikia, B.K., 2017. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage. Geosci. Front. 8, 1285–1297.spa
dc.relation.referencesDutta, M., Islam, N., Rabha, S., Narzary, B., Bordoloi, M., Saikia, D., Silva, L.F.O., Saikia, B.K., 2020. Acid mine drainage in an Indian high-sulfur coal mining area: cytotoxicity assay and remediation study. J. Hazard. Mater. 389, 121851.spa
dc.relation.referencesFattorini, D., Regoli, F., 2020. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 264, 114732.spa
dc.relation.referencesFerrari, V., Taffarel, S.R., Espinosa-Fuentes, E., Oliveira, M.L.S., Saikia, B.K., Oliveira, L.F.S., 2019. Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. J. Clean. Prod. 208, 297–306.spa
dc.relation.referencesGallego-Cartagena, E., Morillas, H., Maguregui, M., Patiño-Camelo, K., Marcaida, I., Morgado-Gamero, W., Madariaga, J.M., 2020. A comprehensive study of biofilms growing on the built heritage of a Caribbean industrial city in correlation with construction materials. Int. Biodeterior. Biodegradation 147, 104874.spa
dc.relation.referencesGasparotto, J., Chaves, P., Da Boit, K., Da Rosa-Siva, H., Bortolin, R., Silva, L.F., Rabelo, T., Da Silva, J., Da Silva, F., Nordin, A., Soares, K., Borges, M., Gelain, D., Moreira, J., 2018. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotox. Environ. Safe. 165, 44–51.spa
dc.relation.referencesGómez, L.P., Ramos, C.G., Oliveira, M.L.S., Silva, L.F.O., 2021. Release kinetics of multinutrients from volcanic rock mining by-products: Evidences for their use as a soil remineralizer. J. Clean. Prod. 279, 123668.spa
dc.relation.referencesGómez-Plata, L., Tutikian, B.F., Pacheco, F., Oliveira, M.S., Murillo, M., Silva, L.F., Bergmann, C.P., 2020. Multianalytical approach of stay-in-place polyvinyl chloride formwork concrete exposed to high temperatures. J. Mater. Res. Technol. 9, 5045–5055.spa
dc.relation.referencesGredilla, A., Fdez-Ortiz de Vallejuelo, S., Rodriguez-Iruretagoiena, A., Gomez, L., Oliveira, M.L.S., Arana, G., De Diego, A., Madariaga, J.M., Silva, L.F.O., 2019. Evidence of mercury sequestration by carbon nanotubes and nanominerals present in agricultural soils from a coal fired power plant exhaust. J. Hazard. Mater. 378, 120747.spa
dc.relation.referencesHower, J.C., O'Keefe, J.M., Henke, K.R., Wagner, N.J., Copley, G., Blake, D.R., Garrison, T., Oliveira, M.L.S., Kautzmann, R.M., Silva, L.F., 2013. Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: a re-investigation following attempted mitigation of the fire. Int. J. Coal Geol. 116, 63–74.spa
dc.relation.referencesKronbauer, M.A., Izquierdo, M., Dai, S., Waanders, F.B., Wagner, N.J., Mastalerz, M., Hower, J.C., Oliveira, M.L.S., Taffarel, S.R., Bizani, D., Silva, L.F.O., 2013. Geochemistry of ultrafine and nano-compounds in coal gasification ashes: a synoptic view. Sci. Total Environ. 456-457, 95–103.spa
dc.relation.referencesLeón-Mejía, G., Machado, M.N., Okuro, R.T., Silva, L.F., Telles, C., Dias, J., Niekraszewicz, L., Da Silva, J., Henriques, J.A.P., Zin, W.A., 2018. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci. Total Environ. 625, 589–599.spa
dc.relation.referencesLiu, X., Jayaratne, R., Thai, P., Kuhn, T., Zing, I., Christensen, B., Lamont, R., Dunbabin, M., Zhu, S., Gao, J., Wainwright, D., Neale, D., Kan, R., Kirkwood, J., Morawska, L., 2020. Low-cost sensors as an alternative for long-term air quality monitoring. Environ. Res. 185, 109438.spa
dc.relation.referencesLütke, S.F., Oliveira, M.L., Silva, L.F., Cadaval Jr., T.R., Dotto, G.L., 2020. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere 256, 127138.spa
dc.relation.referencesMartinello, K., Oliveira, M., Molossi, F., Ramos, C., Teixeira, E., Kautzmann, R., Silva, L.F., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 470-471, 444–452.spa
dc.relation.referencesMedina, C., de Rojas, M.S., Frías, M., Juan, A., 2011. Using ceramic materials in ecoefficient concrete and precast concrete products. In: Sikalidis, C. (Ed.), Advances in CeramicsElectric and Magnetic Ceramics, Bioceramics, Ceramics and Environment. IntechOpen.spa
dc.relation.referencesNIOSH, 2009. Approaches to Safe Nanotechnology; Managing the Health and Safety Concerns Associated with Engineered Nanomaterials. Centers for Disease Control and Prevention & National Institute for Occupational Safety and Health.spa
dc.relation.referencesNordin, A.P., Da Silva, J., De Souza, C., Niekraszewicz, L.A.B., Dias, J.F., Da Boit, K., Oliveira, M.L.S., Grivicich, I., Garcia, A.L., Silva, L.F., Da Silva, F.R., 2018. In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. J. Hazard. Mater. 346, 263–272.spa
dc.relation.referencesNzihou, A., Stanmore, B., 2013. The fate of heavy metals during combustion and gasification of contaminated biomass-a brief review. J. Hazard. Mater. 256–257, 56–66.spa
dc.relation.referencesOliveira, M.L.S., Ward, C.R., Sampaio, C.H., Querol, X., Cutruneo, C.M.N.L., Taffarel, S.R., Silva, L.F.O., 2013. Partitioning of mineralogical and inorganic geochemical components of coals from Santa Catarina, Brazil, by industrial beneficiation processes. Int. J. Coal Geol. 116, 75–92.spa
dc.relation.referencesOliveira, M.L., Marostega, F., Taffarel, S.R., Saikia, B.K., Waanders, F.B., DaBoit, K., Baruah, B.P., Silva, L.F., 2014. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards. Sci. Total Environ. 468, 1128–1137.spa
dc.relation.referencesOliveira, M.L., Navarro, O.G., Crissien, T.J., Tutikian, B.F., Da Boit, K., Teixeira, E., Cabello, J., Agudelo-Castañeda, D., Silva, L.F., 2017. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls. Environ. Res. 158, 450–455.spa
dc.relation.referencesOliveira, M.L.S., da Boit, K., Pacheco, F., Teixeira, E.C., Schneider, I.L., Crissien, T.J., Pinto, D.C., Oyaga, R.M., Silva, L.F.O., 2018a. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health. Environ. Res. 160, 562–567.spa
dc.relation.referencesOliveira, M.L., Da Boit, K., Schneider, I., Teixeira, E., Crissien, T., Silva, L.F., 2018b. Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: mineral surface chemistry and nanoparticle-aggregation control for health studies. J. Clean. Prod. 188, 662–669.spa
dc.relation.referencesOliveira, M., Izquierdo, M., Querol, X., Lieberman, R.N., Saikia, B.K., Silva, L.F.O., 2019a. Nanoparticles from construction wastes: a problem to health and the environment. J. Clean. Prod. 219, 236–243.spa
dc.relation.referencesOliveira, M.L., Saikia, B.K., da Boit, K., Pinto, D., Tutikian, B.F., Silva, L.F., 2019b. River dynamics and nanopaticles formation: a comprehensive study on the nanoparticle geochemistry of suspended sediments in the Magdalena River, Caribbean Industrial Area. J. Clean. Prod. 213, 819–824.spa
dc.relation.referencesOliveira, M.L., Dario, C., Tutikian, B.F., Ehrenbring, H.Z., Almeida, C.C., Silva, L.F., 2019c. Historic building materials from Alhambra: nanoparticles and global climate change effects. J. Clean. Prod. 232, 751–758.spa
dc.relation.referencesOliveira, M.L., Tutikian, B.F., Milanes, C., Silva, L.F., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248, 119250.spa
dc.relation.referencesOliveira, M.L., Flores, E.M.M., Dotto, G.L., Neckel, A., Silva, L.F.O., 2021. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): the protagonist of black crusts produced on historic buildings. J. Clean. Prod. 278, 123982. https://doi.org/10.1016/j.jclepro.2020.123982.spa
dc.relation.referencesPeres, E.C., Slaviero, J.C., Cunha, A.M., Dotto, G.L., 2018. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. J. Environ. Chem. Eng. 6, 649–659.spa
dc.relation.referencesQuispe, D., Pérez-López, R., Silva, L.F., Nieto, J.M., 2012. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 94, 495–503.spa
dc.relation.referencesRamírez, O., de la Campa, A.M.S., Amato, F., Moreno, T., Silva, L.F., Jesús, D., 2019. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 652, 434–446.spa
dc.relation.referencesRamírez, O., da Boit, K., Blanco, E., Silva, L.F., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655.spa
dc.relation.referencesRamos, C.G., de Mello, A.G., Kautzmann, R.M., 2014. A preliminary study of acid volcanic rocks for stonemeal application. Environ. Nanotechnol. Monit. Manag. 1, 30–35.spa
dc.relation.referencesRamos, C.G., Querol, X., Oliveira, M.L.S., Pires, K., Kautzmann, R.M., Silva, L.F., 2015. A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. Sci. Total Environ. 512-513, 371–380.spa
dc.relation.referencesRamos, C.G., Querol, X., Dalmora, A.C., De Jesus Pires, K.C., Schneider, I.A.H., Oliveira, L.F.S., Kautzmann, R.M., 2017. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. J. Clean. Prod. 142, 2700–2706.spa
dc.relation.referencesRamos, C.G., de Medeiros, D.D.S., Gomez, L., Oliveira, L.F.S., Schneider, I.A.H., Kautzmann, R.M., 2019. Evaluation of soil Re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops. Nat. Resour. Res. 29, 1583–1600. https://doi.org/10.1007/s11053-019-09529-x.spa
dc.relation.referencesRaspanti, G.A., Hashibe, M., Siwakoti, B., Wei, M., Thakur, B.K., Pun, C.B., Al-Temimi, M., Lee, Y.C.A., Sapkota, A., 2016. Household air pollution and lung cancer risk among never-smokers in Nepal. Environ. Res. 147, 141–145.spa
dc.relation.referencesRibeiro, J., Flores, D., Ward, C., Silva, L.F.O., 2010. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 408, 6032–6041.spa
dc.relation.referencesRibeiro, J., Daboit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013a. Extensive FE-SEM/ EDS, HR-TEM/EDS and TOF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 452-453, 98–107.spa
dc.relation.referencesRibeiro, J., Taffarel, S.R., Sampaio, C.H., Flores, D., Silva, L.F.O., 2013b. Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal. Int. J. Coal Geol. 109-110, 15–23.spa
dc.relation.referencesRodrigues, D.A.S., Moura, J.M., Dotto, G.L., Pinto, L.A.A., 2018. Preparation, characterization and dye adsorption/reuse of chitosan-vanadate films. J. Polym. Environ. 26, 2917–2924.spa
dc.relation.referencesRodriguez-Iruretagoiena, A., De Vallejuelo, S.F.O., Gredilla, A., Ramos, C.G., Oliveira, M.L.S., Arana, G., De Diego, A., Madariaga, J.M., Silva, L.F., 2015. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 508, 374–382.spa
dc.relation.referencesRojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: environmental implications. Urban Clim. 27, 412–419.spa
dc.relation.referencesSaikia, B.K., Ward, C.R., Oliveira, M.L., Hower, J.C., Baruah, B.P., Braga, M., Silva, L.F., 2014. Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals. Int. J. Coal Geol. 121, 26–34.spa
dc.relation.referencesSaikia, B.K., Saikia, J., Rabha, S., Silva, L.F., Finkelman, R., 2018. Ambient nanoparticles/ nanominerals and hazardous elements from coal combustion activity: implications on energy challenges and health hazards. Geosci. Front. 9, 863–875.spa
dc.relation.referencesSalmatonidis, A., Viana, M., Pérez, N., Alastuey, A., Fuente, G., Angurel, L.A., Sanfélix, V., Monfort, E., 2018. Nanoparticle formation and emission during laser ablation of ceramic tiles. J. Aerosol Sci. 126, 152–168.spa
dc.relation.referencesSánchez-Peña, N.E., Narváez-Semanate, J.L., Pabón-Patiño, D., Fernández-Mera, J.E., Oliveira, M.L., Da Boit, K., Tutikian, B., Crissien, T., Pinto, D., Serrano, I., Ayala, C., Duarte, A., Ruiz, J., Silva, L.F., 2018. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: experimental evidence. Chemosphere 191, 1048–1055.spa
dc.relation.referencesSehn, J.L., de Leão, F.B., da Boit, K., Oliveira, M.L., Hidalgo, G.E., Sampaio, C.H., Silva, L.F., 2016. Nanomineralogy in the real world: a perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 147, 439–443.spa
dc.relation.referencesSilva, L.F.O., Moreno, T., Querol, X., 2009. An introductory TEM study of Fe-nanominerals within coal fly ash. Sci. Total Environ. 407, 4972–4974.spa
dc.relation.referencesSilva, L.F., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020a. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.spa
dc.relation.referencesSilva, L.F., Crissien, T.J., Milanes, C., Sampaio, C.H., 2020b. A three-dimensional nanoscale study in selected coal mine drainage. Chemosphere 248, 125946.spa
dc.relation.referencesSilva, L.F., Pinto, D., Neckel, A., Oliveira, M.L., Sampaio, C.H., 2020c. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822.spa
dc.relation.referencesStone, V., Miller, M.R., Clift, M.J.D., Elder, A., Mills, N.L., Møller, P., Schins, R.P.F., Vogel, U., Kreyling, W.G., Jensen, K.A., Kuhlbusch, T.A.J., Schwarze, P.E., Hoet, P., Pietroiusti, A., Vizcaya-Ruiz, A., Baeza-Squiban, A., Teixeira, J.P., Tran, C.L., Cassee, F., 2017. Nanomaterials versus ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ. Health Perspect. 125, 106002.spa
dc.relation.referencesStueckle, T.A., Davidson, D.C., Derk, R., Kornberg, T.G., Battelli, L., Friend, S., Orandle, M., Wagner, A., Dinu, C.Z., Sierros, K.A., Agarwal, S., Gupta, R.K., Rojanasakul, Y., Porter, D.W., Rojanasakul, L., 2018.spa
dc.relation.referencesShort-term pulmonary toxicity assessment of pre- and post-incinerated organo modified nano clay in mice. ACS Nano 12, 2292–2310.spa
dc.relation.referencesVicente, E.D., Vicente, A.M., Evtyugina, M., Oduber, F.I., Amato, F., Querol, X., Alves, C., 2020. Impact of wood combustion on indoor air quality. Sci. Total Environ. 705, 135769.spa
dc.relation.referencesWagner, A., White, A.P., Tang, M.C., Agarwal, S., Stueckle, T.A., Rojanasakul, Y., Gupta, R.K., Dinu, C.Z., 2018. Incineration of nanoclay composites leads to byproducts with reduced cellular reactivity. Sci. Rep. 8, 10709.spa
dc.relation.referencesWilcox, J., Wang, B., Rupp, E., Taggart, R., Hsu-Kim, H., Oliveira, M., Cutruneo, C., Taffarel, S., Silva, L.F., Hopps, S., Thomas, G., Hower, J., 2015. Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: environmental processes recorded at the macro and nanometer scale. Energy Fuel 29, 7168–7177.spa
dc.relation.referencesWylie, B.J., Coull, B., Hamer, D.H., Singh, M.P., Jack, D., Yeboah-Antwi, K., Sabin, L., Singh, N., MacLeod, W.B., 2014. Impact of biomass fuels on pregnancy outcomes in central East India. Environ. Health 13, 1.spa
dc.relation.referencesYang, Y., Chen, B., Hower, J.C., Schindler, M., Winkler, C., Brandt, J., Di Giulio, R., Liu, M., Fu, Y., Priya, S., Hochella Jr., M.F., 2017. Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal burning. Nat. Commun. 8, 194. https://doi.org/10.1038/s41467-017-00276-2.spa
dc.relation.referencesZamberlan, D.C., Halmenschelager, P.T., Silva, L.F.O., da Rocha, J.B.T., 2020. Copper decreases associative learning and memory in Drosophila melanogaster. Sci. Total Environ. 710, 135306.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar registro simples

CC0 1.0 Universal
Exceto quando indicado o contrário, a licença deste item é descrito como CC0 1.0 Universal