Mostrar el registro sencillo del ítem

dc.contributor.authorAcuña Bedoya, Jawer Davidspa
dc.contributor.authorComas Cabrales, Jovannis Alexanderspa
dc.contributor.authorAlvarez Pugliese, Christian Eduardospa
dc.contributor.authorMarriaga-Cabrales, Nilsonspa
dc.date.accessioned2021-03-26T15:35:29Z
dc.date.available2021-03-26T15:35:29Z
dc.date.issued2020-05-27
dc.identifier.issn22133437spa
dc.identifier.urihttps://hdl.handle.net/11323/8075spa
dc.description.abstractThe performance of an electrochemical process for the regeneration of granular activated carbon (GAC) was evaluated using boron-doped diamond (BDD) anodes. Three different configurations were tested in the reactor: fluidized bed, packed bed with a divided cell and packed bed with an undivided cell. The GAC used was previously saturated with a synthetic solution of methylene blue (MB). The effects of three operational parameters were evaluated: current density, initial pH and reaction time, and NaCl as the electrolyte. Regeneration efficiencies (REs) of up to 76% ± 2 were achieved with a current density of 6 mA·cm-2 during 24 h of reaction, and a specific electric energy consumption of 1530 kWh ton-1 of GAC was obtained. The best results were obtained using the packed bed reactor with a divided cell and the GAC in the cathodic compartment. The present results were attributed to an improvement in the desorption caused by the local alkaline pH in the cathodic compartment, to the contribution of the electrochemical oxidation by the hydroxyl radical, and, in parallel, to the chemical oxidation of the organic compounds by the oxidizing species formed from the chloride ion. It was also found that the electrochemical regeneration process has a negative effect on the GAC integrity after three cycles of continuous regenerationspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceJournal of Environmental Chemical Engineeringspa
dc.subjectBDDspa
dc.subjectAdsorptionspa
dc.subjectElectrolytic regenerationspa
dc.subjectWastewaterspa
dc.titleEvaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene bluespa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.researchgate.net/publication/341534206_Evaluation_of_electrolytic_reactor_configuration_for_the_regeneration_of_granular_activated_carbon_saturated_with_methylene_bluespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.jece.2020.104074spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] M.O. Omorogie, J.O. Babalola, E.I. Unuabonah, Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: a critical review, Desalin. Water Treat. 57 (2016) 518–544.spa
dc.relation.references[2] L. Wang, N. Balasubramanian, Electrochemical regeneration of granular activated carbon saturated with organic compounds, Chem. Eng. J. 155 (2009) 763–768. doi:10.1016/j.cej.2009.09.020.spa
dc.relation.references[3] X. Liu, G. Yu, W. Han, Granular activated carbon adsorption and microwave regeneration for the treatment of 2 , 4 , 5-trichlorobiphenyl in simulated soil-washing solution, 147 (2007) 746–751. doi:10.1016/j.jhazmat.2007.01.076spa
dc.relation.references[4] X. Quan, X.L. Ã, L. Bo, S. Chen, Y. Zhao, X. Cui, Regeneration of acid orange 7- exhausted granular activated carbons with microwave irradiation, 38 (2004) 4484– 4490. doi:10.1016/j.watres.2004.08.031.spa
dc.relation.references[5] J.-L. Lim, M. Okada, Regeneration of granular activated carbon using ultrasound., Ultrason. Sonochem. 12 (2005) 277–282. doi:10.1016/j.ultsonch.2004.02.003spa
dc.relation.references[6] P.M. Alvarez, F.J. Beltran, V. Gomez-Serrano, J. Jaramillo, E.M. Rodriguez, Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol, Water Res. 38 (2004) 2155–2165. doi:10.1016/j.watres.2004.01.030.spa
dc.relation.references[7] R.M. Narbaitz, A. Karimi‐ Jashni, Electrochemical regeneration of granular activated carbons loaded with phenol and natural organic matter, Environ. Technol. 30 (2009) 27–36. doi:10.1080/09593330802422803spa
dc.relation.references[8] I. Benhamed, L. Barthe, R. Kessas, C. Julcour, H. Delmas, Effect of transition metal impregnation on oxidative regeneration of activated carbon by catalytic wet air oxidation, Appl. Catal. B Environ. 187 (2016) 228–237. doi:10.1016/j.apcatb.2016.01.016.spa
dc.relation.references[9] D. Feng, H. Tan, J.S.J. Van Deventer, Ultrasonic elution of gold from activated Journal Pre-proof 26 carbon, Miner. Eng. 16 (2003) 257–264spa
dc.relation.references[10] K.Y. Foo, B.H. Hameed, Microwave-assisted regeneration of activated carbon, Bioresour. Technol. 119 (2012) 41–47. doi:10.1016/j.biortech.2012.05.061.spa
dc.relation.references[11] Q. Zhang, S. Cheng, H. Xia, L. Zhang, Removal of Congo red and methylene blue using H2O2 modified activated carbon by microwave regeneration: isotherm and kinetic studies, Mater. Res. Express. 6 (2019) 0–22.spa
dc.relation.references[12] Y. Sun, B. Zhang, T. Zheng, P. Wang, Regeneration of activated carbon saturated with chloramphenicol by microwave and ultraviolet irradiation, Chem. Eng. J. 320 (2017) 264–270. doi:10.1016/j.cej.2017.03.007.spa
dc.relation.references[13] M. El Gamal, H.A. Mousa, M.H. El-Naas, R. Zacharia, S. Judd, Bio-regeneration of activated carbon: A comprehensive review, Sep. Purif. Technol. 197 (2018) 345– 359. doi:10.1016/j.seppur.2018.01.015.spa
dc.relation.references[14] Y. Zhang, D. Yang, P. Ning, Y. Li, S. Tian, J. Gu, Regeneration of Phenol-Saturated Activated Carbon by Supercritical Water: Effect of H2O2 and Alkali Metal Catalysts, J. Environ. Eng. (United States). 145 (2019) 1–10. doi:10.1061/(ASCE)EE.1943-7870.0001601spa
dc.relation.references[15] Y. Ito, I. Ushiki, Y. Sato, H. Inomata, Influence of Heat Treatment in Exhaust Treatment Process on Activated Carbon Regeneration using Supercritical Carbon Dioxide, KAGAKU KOGAKU RONBUNSHU. 45 (2019) 133–139. doi:10.1252/kakoronbunshu.45.133.spa
dc.relation.references[16] Q. Li, Y. Qi, C. Gao, Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry, J. Clean. Prod. 86 (2015) 424–431. doi:10.1016/j.jclepro.2014.08.008.spa
dc.relation.references[17] R.M. Narbaitz, A. Karimi-Jashni, Electrochemical reactivation of granular activated Journal Pre-proof 27 carbon: Impact of reactor configuration, Chem. Eng. J. 197 (2012) 414–423. doi:10.1016/j.cej.2012.05.049spa
dc.relation.references[18] M. Zhou, L. Lei, The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor, Chemosphere. 65 (2006) 1197–1203. doi:10.1016/j.chemosphere.2006.03.054.spa
dc.relation.references[19] R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium, Carbon N. Y. 48 (2010) 2734–2745. doi:10.1016/j.carbon.2010.03.071.spa
dc.relation.references[20] M. Garcia-Oton, F. Montilla, M.A. Lillo-Rodenas, E. Morallón, J.L. Vazquez, Electrochemical Regeneration of Activated Carbon Saturated with Toluene, J. Appl. Electrochem. 35 (2005) 319–325. doi:10.1007/s10800-004-7470-3.spa
dc.relation.references[21] H. Zhang, Regeneration of exhausted activated carbon by electrochemical method, 85 (2002) 81–85. doi:https://doi.org/10.1016/S1385-8947(01)00176-0.spa
dc.relation.references[22] C.-H. Weng, M.-C. Hsu, Regeneration of granular activated carbon by an electrochemical process, Sep. Purif. Technol. 64 (2008) 227–236. doi:10.1016/j.seppur.2008.10.006.spa
dc.relation.references[23] C. Comninellis, G. Chen, Electrochemistry for the Enviroment, New York, 2008. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed March 12, 2014)spa
dc.relation.references[24] D. Gandini, E. Mahé, P.A. Michaud, W. Haenni, A. Perret, C. Comninellis, Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment, J. Appl. Electrochem. 30 (2000) 1345–1350. doi:10.1023/A:1026526729357.spa
dc.relation.references[25] A.A. Najafpoor, M. Davoudi, E. Rahmanpour Salmani, Decolorization of synthetic textile wastewater using electrochemical cell divided by cellulosic separator, J. Environ. Heal. Sci. Eng. 15 (2017) 1–11. doi:10.1186/s40201-017-0273-3.spa
dc.relation.references[26] M.H. Zhou, L.C. Lei, Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor, Electrochim. Acta. 51 (2006) 4489–4496. doi:10.1016/j.electacta.2005.12.028.spa
dc.relation.references[27] R.M. Narbaitz, J. Cen, Alternative methods for determining the percentage regeneration of activated carbon, Water Res. 31 (1997) 2532–2542. doi:10.1016/S0043-1354(97)00085-7spa
dc.relation.references[28] T.C. An, X.H. Zhu, Y. Xiong, Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor, Chemosphere. 46 (2002) 897–903. doi:10.1016/S0045-6535(01)00157-6.spa
dc.relation.references[29] I. Bouaziz, M. Hamza, A. Sellami, R. Abdelhedi, A. Savall, K. Groenen Serrano, New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater, Sep. Purif. Technol. 175 (2017) 1–8. doi:10.1016/j.seppur.2016.11.020.spa
dc.relation.references[30] C. a. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Appl. Catal. B Environ. 87 (2009) 105–145. doi:10.1016/j.apcatb.2008.09.017.spa
dc.relation.references[31] C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, M. Zhou, Three-dimensional electrochemical process for wastewater treatment: A general review, Chem. Eng. J. 228 (2013) 455–467. doi:10.1016/j.cej.2013.05.033 Review.spa
dc.relation.references[32] P. Sathishkumar, R. Viswanathan, Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants, Renew. Sustain. Energy Rev. 55 (2016) 426–454. doi:10.1016/j.rser.2015.10.139.spa
dc.relation.references[33] Z. Ren, D. Zhou, L. Zhang, M. Yu, Z. Wang, Y. Fan, ZnSn ( OH ) 6 Photocatalyst for Methylene Blue Degradation : Electrolyte-Dependent Morphology and Performance, (2018) 10849–10856. doi:10.1002/slct.201802195.spa
dc.relation.references[34] F. Raposo, M.A. De La Rubia, R. Borja, Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate/adsorbent mass ratio and particle size, J. Hazard. Mater. 165 (2009) 291–299. doi:10.1016/j.jhazmat.2008.09.106.spa
dc.relation.references[35] C.B. Beck, Physicochemical processes for water quality control, Wiley Interscience, John Wiley & Sons, New York, 1973. doi:10.1002/aic.690190245.spa
dc.relation.references[36] R. V. McQuillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration of granular activated carbons: A review, J. Hazard. Mater. 355 (2018) 34–49 doi:10.1016/j.jhazmat.2018.04.079spa
dc.relation.references[37] B. Liu, H. Cang, L. Cui, H. Zhang, Electrochemical polymerization of methylene blue on glassy carbon electrode, Int. J. Electrochem. Sci. 12 (2017) 9907–9913. doi:10.20964/2017.10.49spa
dc.relation.references[38] S. Wang, Z.H. Zhu, A. Coomes, F. Haghseresht, G.Q. Lu, The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater, 284 (2005) 440–446. doi:10.1016/j.jcis.2004.10.050spa
dc.relation.references[39] R.M. Narbaitz, J. Cen, Electrochemical regeneration of granular activated carbon, Water Res. 28 (1994) 1771–1778. doi:10.1016/0043-1354(94)90250-Xspa
dc.relation.references[40] A. Karimi-Jashni, R.M. Narbaitz, Electrochemical reactivation of granular activated carbon: pH dependence, J. Environ. Eng. Sci. 4 (2005) 187–194. doi:10.1139/s04-055.spa
dc.relation.references[41] A. Karimi-Jashni, R.M. Narbaitz, Electrochemical Reactivation of Granular Activated Carbon: Effect of Electrolyte Mixing, J. Environ. Eng. 131 (2005) 443– 449. doi:10.1061/(ASCE)0733-9372(2005)131:3(443).spa
dc.relation.references[42] C.E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L.A. Prado-Arce, N. Marriaga-Cabrales, Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes, Diam. Relat. Mater. 93 (2019) 193–199. doi:10.1016/j.diamond.2019.02.018spa
dc.relation.references[43] C.J. Sun, L.Z. Sun, X.X. Sun, Graphical evaluation of the favorability of adsorption processes by using conditional langmuir constant, Ind. Eng. Chem. Res. 52 (2013) 14251–14260. doi:10.1021/ie401571p.spa
dc.relation.references[44] R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, Applied Catalysis B : Environmental Electrochemical oxidation of ofloxacin using a TiO 2 -based kinetics and mass transfer impact, "Applied Catal. B, Environ. 203 (2017) 515–525. doi:10.1016/j.apcatb.2016.10.057.spa
dc.relation.references[45] W. Zhou, X. Meng, Y. Ding, L. Rajic, J. Gao, Y. Qin, A.N. Alshawabkeh, “Selfcleaning” electrochemical regeneration of dye-loaded activated carbon, Electrochem. Commun. 100 (2019) 85–89. doi:10.1016/j.elecom.2019.01.025.spa
dc.relation.references[46] J. Zou, X. Peng, M. Li, Y. Xiong, B. Wang, F. Dong, B. Wang, Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption, Chemosphere. 171 (2017) 332–338. doi:10.1016/j.chemosphere.2016.12.065.spa
dc.relation.references[47] J. Muff, H. Jepsen, E. Søgaard, Bench-Scale Study of Electrochemical Oxidation for On-Site Treatment of Polluted Groundwater, J. Environ. Eng. 138 (2012) 915–922. Journal Pre-proof 31 doi:10.1061/(ASCE)EE.1943-7870.0000561.spa
dc.relation.references[48] P.J. Tauetsile, E.A. Oraby, J.J. Eksteen, Adsorption behaviour of copper and gold glycinates in alkaline media onto activated carbon. Part 1: Isotherms, Hydrometallurgy. 178 (2018) 202–208. doi:10.1016/j.hydromet.2018.04.015.spa
dc.relation.references[49] B. Karabacakoğlu, O. Savlak, Electrochemical Regeneration of Cr (VI) Saturated Granular and Powder Activated Carbon : Comparison of Regeneration Efficiency, Ind. Eng. Chem. Res. 53 (2014). doi:dx.doi.org/10.1021/ie500161dspa
dc.relation.references[50] K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, J. Hazard. Mater. 170 (2009) 552–559. doi:10.1016/j.jhazmat.2009.05.057.spa
dc.relation.references[51] J.M.P.Q. Delgado, A critical review of dispersion in packed beds, Heat Mass Transf. Und Stoffuebertragung. 42 (2006) 279–310. doi:10.1007/s00231-005-0019-0.spa
dc.relation.references[52] N. ‐ W Han, J. Bhakta, R.G. Carbonell, Longitudinal and lateral dispersion in packed beds: Effect of column length and particle size distribution, AIChE J. 31 (1985) 277–288. doi:10.1002/aic.690310215spa
dc.relation.references[53] D. Nemec, J. Levec, Flow through packed bed reactors: 1. Single-phase flow, Chem. Eng. Sci. 60 (2005) 6947–6957. doi:10.1016/j.ces.2005.05.068.spa
dc.relation.references[54] Mintek, Energy efficient Minfurn TM for regeneration of activated carbon, (n.d.) 1. http://www.mintek.co.za/wp-content/uploads/2014/10/The-MinfurnTM-energyefficient-carbon-furnace-2014.pdf (accessed December 14, 2015).spa
dc.relation.references[55] S. Bradshaw, E. Van Wyk, J. De Swardt, Preliminary economic assessment of microwave regeneration of activated carbon for the carbon in pulp process, J. Microw. Power Electromagn. Energy. 32 (1997) 131–144. http://cat.inist.fr/?aModele=afficheN&cpsidt=10861378.spa
dc.relation.references[56] Condias, DIACHEM® DIAMOND ELECTRODES, (n.d.). https://condias.de/en/products/diachem/ (accessed January 26, 2020).spa
dc.relation.references[57] X.R. Lu, M.H. Ding, C. Zhang, W.Z. Tang, Comparative study on stability of boron doped diamond coated titanium and niobium electrodes, Diam. Relat. Mater. 93 (2019) 26–33. doi:10.1016/j.diamond.2019.01.010.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal