• español
    • English
    • português (Brasil)
  • English 
    • español
    • English
    • português (Brasil)
  • Login

Repositorio CUC

  • Inicio
  • Colecciones
  • Navegar
    • Autores
    • Títulos
    • Fechas
    • Materias
    • Tipo de Material
  • Biblioteca
  • Información de interés
  • Comunities Comunities
  • Authors Authors
  • Titles Titles
  • Dates Dates
  • Subjects Subjects
  • Resource Type Resource Type
View Item 
  •   DSpace Home
  • Producción científica y académica
  • Artículos científicos
  • View Item
  •   DSpace Home
  • Producción científica y académica
  • Artículos científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cambiar vista

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPrint ISSNResource TypeElectronic ISSNProgramThis CollectionBy Issue DateAuthorsTitlesSubjectsPrint ISSNResource TypeElectronic ISSNProgram

My Account

LoginRegister

Statistics

View Usage Statistics

A Clustering Approach To Reduce The Available Bandwidth Estimation Error


Guerrero, Cesar D.
Salcedo Morillo, Dixon David
Lamos, Henry

Artículo de revista

2013-05-03

IEEE

https://doi.org/http://doi.org/10.1109/TLA.2013.6568835

15480992

Available Bandwidth EstimationBuscar en Repositorio UMECIT
ClusteringBuscar en Repositorio UMECIT
K-MeansBuscar en Repositorio UMECIT
TracebandBuscar en Repositorio UMECIT

The estimation of the available bandwidth (AB) in an end-to-end manner can be used in several network applications to improve their performance. Several tools send pairs of packets from one end to the other and measure the packets' dispersion to infer the value of the AB. Given the fractal nature of Internet traffic, these measurements have significant errors that affect the accuracy of the estimation. This article presents the application of a clustering technique to reduce the estimation error of the available bandwidth in and end-to-end path. The clustering technique used is K-means which is applied to a tool called Traceband that is originally based on a Hidden Markov Model to perform the estimation. It is shown that using K-means in Traceband can improve its accuracy in 67.45% when the cross traffic is about 70% of the end-to-end capacity.

http://hdl.handle.net/11323/812

  • Artículos científicos [2634]

Descripción: A Clustering Approach to Reduce.pdf
Título: A Clustering Approach to Reduce.pdf
Tamaño: 346.1Kb

Unicordoba LogoPDFOpen AccessFLIPLEER EN FLIP

Show full item record

Cita

Cómo citar

Cómo citar

Miniatura

Thumbnail

Gestores Bibliográficos

Exportar a Bibtex

Exportar a RIS

Exportar a Excel

Buscar en google Schoolar

Buscar en microsoft academic

untranslated

Código QR

Envíos recientes

    No hay artículos recientes

HORARIOS DE ATENCIÓN AL USUARIO

LUNES A VIERNES 7:00 a.m a 7:00 p.m

SABADOS: 8:00 a.m a 6:00 p.m

DOMINGOS Y FESTIVOS NO HAY ATENCIÓN


Ubicados en el Bloque 2, Piso 1 y 2

Logo CUC

Contacto

Correo: biblioteca@cuc.edu.co

Telefono: 3362248

Barranquilla, Colombia

Calle 58 # 55-66 Barrio Modelo


Accesos


  • Bases de datos
  • Investigación
  • PQR
  • Catálogo bibliográfico
  • Publish or perish
  • Booklick
  • Libby
Todos los derechos reservados.

Sistema DSPACE - Metabiblioteca | logo