Mostrar el registro sencillo del ítem

dc.contributor.authorGindri Ramos, Claudetespa
dc.contributor.authorCelimar Dalmora, Adilsonspa
dc.contributor.authorMüller Kautzmann, Rubensspa
dc.contributor.authorHower, Jamesspa
dc.contributor.authorDotto, Guilherme Luizspa
dc.contributor.authorSilva Oliveira, Luis Felipespa
dc.date.accessioned2021-05-14T21:49:02Z
dc.date.available2021-05-14T21:49:02Z
dc.date.issued2021
dc.identifier.issn1520-7439spa
dc.identifier.urihttps://hdl.handle.net/11323/8263spa
dc.description.abstractBy-products from the dairy industry and mining activities represent a great environmental overload, which justify research for value-added reuse of these by-products (dairy sludge and dacite rock powder). Dairy sludge is generated at a rate of about 0.2–10 l per liter of processed milk, and dacite powder, from rock mining extraction and processing, is generated for about 52,400 m3 per year in Nova Prata city, Southern Brazil. For both by-products, the compositions of calcium (Ca), magnesium (Mg), potassium (K) and phosphorous (P), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb) were determined by using appropriate analytical techniques. A greenhouse experiment was conducted to determine release of macronutrients, such as Ca, K, Mg, and P, from by-products to support black oat (Avena strigosa) and maize nutrition. Twelve by-products doses were blended with a typic Hapludox soil and were applied to pots with five replications each. Black oat (first cultivation) and, sequentially, maize (second cultivation) were cultivated for 70 days each. Ameliorations in soil chemical attributes, leaf dry matter yield, and plant nutritional status were evaluated at the end of each cultivation. There was a significant (p < 0.05) increase in all parameters evaluated in a dose of 7251 kg ha−1 of dacite rock powder and 20,594 kg ha−1 of dairy sludge. Compared to the control treatments, both crops grew well better on all mixtures. The presence of potentially toxic elements in both by-products was irrelevant, indicating that effective blending of dacite rock powder along with dairy sludge could be a potential source of Ca, K, Mg, and P in agriculture without posing a risk of contamination to the environment.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceNatural Resources Researchspa
dc.subjectDairy sludgespa
dc.subjectDacite rock poderspa
dc.subjectBy-productsspa
dc.subjectSoil fertilizationspa
dc.titleSustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powderspa
dc.typePre-Publicaciónspa
dc.source.urlhttps://link.springer.com/article/10.1007/s11053-021-09862-0spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/s11053-021-09862-0spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Anjanadevi, I. P., John, N. S., John, K. S., Jeeva, M. L., & Misra, R. S. (2016). Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution. Journal of Basic Microbiology, 56, 67–77.spa
dc.relation.references2. Balannec, B., Vourch, M., Rabiller-Baudry, M., & Chaufer, B. (2005). Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration. Separation and Purification Technology, 42, 195–200.spa
dc.relation.references3. Basak, B. B., Sarkar, B., Biswas, D. R., Sarkar, S., Sanderson, P., & Naidu, R. (2017). Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities. Advances in Agronomy, 141, 115–145.spa
dc.relation.references4. Basak, B. B. (2019). Waste mica as alternative source of plant available potassium: Evaluation of agronomic potential through chemical and biological methods. Natural Resources Research, 28(3), 953–965.spa
dc.relation.references5. Basak, B. B., Sarkar, B., & Naidu, R. (2020). Environmentally safe release of plant available potassium and micronutrients from organically amended rock mineral powder. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00677-1spa
dc.relation.references6. Bhadouria, B. S., & Sai, V. S. (2011). Utilization and treatment of dairy effluent through biogas generation-A case study. International Journal of Environmental Sciences, 1, 1621.spa
dc.relation.references7. Brazil. (2006). Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente. Resolução n. 375, de 29 de agosto de 2006. Define critérios e procedimentos, para o uso agrícola de lodos de esgoto gerados em estações de tratamento de esgoto sanitário e seus produtos derivados. Brasília. http://www.mma.gov.br/port/conama/res/res06/res37506.pdf. Accessed 19 May 2020.spa
dc.relation.references8. Brazil. (2016). Instrução Normativa Nº 05 de 10 de março de 2016. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-5-de-10-3-16-remineralizadores-e-substratos-para-plantas.pdf. Accessed 28 May 2020.spa
dc.relation.references9. Cavallaro, N., Padilla, N., & Villarrubia, J. (1993). Sewage sludge effects on chemical properties of acid soils. Soil Science, 156, 63–70.spa
dc.relation.references10. Dalmora, A. C., Ramos, C. G., Oliveira, M. L. S., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2020). Application of andesite rock as a clean source of fertilizer for eucalyptus crop: Evidence of sustainability. Journal of Cleaner Production, 256, 120432.spa
dc.relation.references11. De Conti, L., Ceretta, C. A., Melo, G. W. B., Tiecher, T. L., Silva, L. O. S., Garlet, L. P., Mimmo, T., Cesco, S., & Brunetto, G. (2019). Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere, 216, 147–156.spa
dc.relation.references12. Donagema, G. K., Campos, D. V. B., Calderano, S. B., Teixeira, W. G., & Viana, J. H. M. (2011). Manual de métodos de análise de solo. 2. ed. rev. Rio de Janeiro: Embrapa Solos, 230 p.spa
dc.relation.references13. European Union - E.U. (1986). Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01986L0278-20090420&qid=1439354498400&from=DE. Accessed 25 May 2020.spa
dc.relation.references14. Fageria, N. K. (2009). The use of nutrients in crop plants (p. 430). CRC Press.spa
dc.relation.references15. Ferrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L. S., Saikia, B. K., & Oliveira, L. F. S. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production., 208, 297–306.spa
dc.relation.references16. Fornasieri Filho, D. (2007). Manual da Cultura do Milho (p. 574p). Funep.spa
dc.relation.references17. Frac, M., Jezierska-Tys, S., Oszust, K., Gryta, A., & Pastor, M. (2017). Assessment of microbiological and biochemical properties of dairy sewage sludge. International Journal of Environmental Science and Technology, 14, 679–688.spa
dc.relation.references18. Furrer, O. J., Gupta, S. K., & Stauffer, W. (1984). Sludge as a source of phosphorus and consequences of phosphorus accumulation in soils. In P. L’Hermite (Ed.), Processing and use of sewage sludge. proceedings of the third international symposium held at Brighton (pp. 279–294). Dordrecht: Reidel Publishing Co.spa
dc.relation.references19. García-Delgado, C., Calab, V., & Eymara, E. (2012). Inûuence of chemical and mineralogical properties of organic amendments on the selection of an adequate analytical procedure for trace elements determination. Talanta, 88, 375–384.spa
dc.relation.references20. Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32, 390–399.spa
dc.relation.references21. Gupta, S., & Hani, H. (1979). Estimation of available phosphate content of sewage sludges. In D. Alexandre, & H. Ott (Eds.), Treatment and use of sewage sludge. Proceedings of the first European Symposium held in Cadarache, 1979. (pp. 261–268).spa
dc.relation.references22. Haraldsen, T. K., & Pedersen, P. A. (2003). Mixtures of crushed rock, forest soils, and sewage sludge used as soils for grassed green areas. Urban Forestry & Urban Greening, 21, 41–51. https://doi.org/10.1078/1618-8667-00022spa
dc.relation.references23. Hue, N. V., & Ranjith, S. A. (1994). Sewage sludges in Hawaii: chemical composition and reactions with soils and plants. Water Air Soil Pollution, 72, 265–283.spa
dc.relation.references24. Kwano, B. H., Moreira, A., Moraes, L. A. C., & Nogueira, M. A. (2017). Magnesium-manganese interaction in soybean cultivars with different nutritional requirements. Journal of Plant Nutrition, 40, 372–381.spa
dc.relation.references25. Li, Z., Zhang, R., Xia, S., Wang, L., Liu, C., Zhang, R., Fan, Z., Chen, F., & Liu, Y. (2019). Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2019.e00663spa
dc.relation.references26. Lins, F. A. F. (2008). Panorama das rochas e minerais industriais no Brasil. http://mineralis.cetem.gov.br/bitstream/cetem/1031/1/01.Panorama%20da%20Produ%C3%A7%C3%A3o%20de%20RMIs%20%28novo%20texto%29.pdf. Accessed 17 May 2020.spa
dc.relation.references27. López-Mosquera, M. E., Moirón, C., & Carral, E. (2000). Use of dairy-industry sludge as fertiliser for grasslands in northwest Spain: heavy metal levels in the soil and plants. Resources, Conservation & Recycling, 30, 95–109.spa
dc.relation.references28. López-Mosquera, M. E., Cascallana, V., & Seoane, S. (2002). Comparison of the effects of dairy sludge and a mineral NPK fertilizer on an acid soil. Instituto Nacional de Investigaciones Agrarias, 17, 87–99.spa
dc.relation.references29. Macoon, B., Woodard, K. R., Slooenberger, L. E., French, E. C., Portier, K. M., Graetz, D. A., Prine, G. M., & Van Horn, H. H. (2002). Dairy effluent effects on herbage yield and nutritive value of forage cropping systems. Agronomy Journal, 94, 1043–1049.spa
dc.relation.references30. Manning, D. A. (2018). Innovation in resourcing geological materials as crop nutrients. Natural Resources Research, 27(2), 217–227.spa
dc.relation.references31. Mclaughlin, M. J., & Champion, L. (1987). Sewage sludge as a phosphorus amendment for sesquioxic soils. Soil Science, 14, 45–75.spa
dc.relation.references32. Mohammed, S. M. O., Brandt, K., Gray, N. D., White, M. L., & Manning, D. A. C. (2014). Comparison of silicate minerals as sources of potassium for plant nutrition in sandy soil. European Journal of Soil Science, 65(5), 653–662.spa
dc.relation.references33. Moura, E., Gehring, C., Braun, H., Ferraz Junior, A., Reis, F., & Aguiar, A. (2016). Improving farming practices for sustainable soil use in the humid tropics and rainforest ecosystem health. Sustainability, 8, 841.spa
dc.relation.references34. Oszust, K., Frac, M., & Lipiec, J. (2015). Soil microbial functionality in response to dairy sewage sludge and mineral fertilisers application under winter rape. International Journal of Environmental Science and Technology, 12, 3675–3684.spa
dc.relation.references35. Pauletti, V. (2004). Nutrientes: Teores e interpretações. 2a edição, Fundação ABC para a Assistência e Divulgação Técnica Agropecuária. Castro, 86 p.spa
dc.relation.references36. Qasim, W., & Mane, A. V. (2013). Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resources and Industry, 4, 1–12.spa
dc.relation.references37. Ramos, C. G., Querol, X., Dalmora, A. C., Pires, K. C. J., Shneider, I. A. H., Oliveira, L. F. S., & Kautzmann, R. M. (2017). Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 142, 2700–2706.spa
dc.relation.references38. Ramos, C. G., de Medeiros, D. S., Gomez, L., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2019). Evaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops. Natural Resources Research, 28, 1–18.spa
dc.relation.references39. Rawat, J., Sanwal, P., & Saxena, J. (2016). Potassium and its role in sustainable agriculture. In V. Meena, B. Maurya, J. Verma, & R. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture. New Delhi: Springer. https://doi.org/10.1007/978-81-322-2776-2_17spa
dc.relation.references40. Rosling, A., Suttle, K. B., Johansson, E., van Hees, P. A., & Banfield, J. F. (2007). Phosphorous availability influences the dissolution of apatite by soil fungi. Geobiology, 5(3), 265–280.spa
dc.relation.references41. Santos, W. O., Mattiello, E. M., Vergutz, L., & Costa, R. F. (2016). Production and evaluation of potassium fertilizers from silicate rock. Journal of Plant Nutrition and Soil Science, 179, 547–556.spa
dc.relation.references42. Sociedade Brasileira de Ciência do Solo – SBCS. (2004). Manual de Adubação e de Calagem: para os estados do Rio Grande do Sul e Santa Catarina. Comissão de Química e Fertilidade do Solo.spa
dc.relation.references43. Sommers, L. E., & Sutton A. L. (1980). Use of waste materials as sources of phosphorus, in the role of phosphorus in agriculture. R.C. Dinauer and M. Stelly (Eds.). American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin.spa
dc.relation.references44. Spohn, M., Zeißig, I., Brucker, E., Widdig, M., Lacher, U., & Aburto, F. (2020). Phosphorus solubilization in the rhizosphere in two saprolites with contrasting phosphorus fractions. Geoderma, 366, 114245.spa
dc.relation.references45. Stranghoener, M., Schippers, A., Dultz, S., & Behrens, H. (2018). Experimental microbial alteration and Fe mobilization from basaltic rocks of the ICDP HSDP2 drill core, Hilo, Hawaii. Frontiers in Microbiology, 9, 1252.spa
dc.relation.references46. Suárez, P. C., Seoane, S., Mosquera, O., Lopez, E., Solla-Grullin, F., & Merino, A. (2004). Dairy industry sewage sludge as a fertilizer for an acid soil: a laboratory experiment with Lolium multiflorium L. Spanish Journal of Agricultural Research, 2, 419–427.spa
dc.relation.references47. Theodoro, S. H., & Leonardos, O. H. (2006). The use of rocks to improve family agriculture in Brazil. Anais da Academia Brasileira de Ciências, 78(4), 721–730.spa
dc.relation.references48. Theodoro, S. H., & Leonardos, O. H. (2014). Stonemeal: principles, potencial and Perspective from Brazil. In T. J. Goreau, R. W. Larson, & J. Campe (Eds.), Geotherapy: Innovative methods of soil fertility restoration, carbon sequestration and reversing CO2 increase (pp. 403–418). USA: CRC Press.spa
dc.relation.references49. Tikariha, A., & Sahu, O. (2014). Study of characteristics and treatments of dairy industry waste water. Journal of Applied & Environmental Microbiology, 2, 16–22.spa
dc.relation.references50. Toscan, L., Kautzmann, R. M., & Sabedot, S. (2007). O rejeito da mineração de basalto no nordeste do Estado do Rio Grande do Sul: diagnóstico do problema. Revista Escola de Minas, 60, 657–662.spa
dc.relation.references51. Turek, A., Wieczorek, K., & Wolf, W. M. (2019). Digestion procedure and determination of heavy metals in sewage sludge—An analytical problem. Sustainability, 11, 1753.spa
dc.relation.references52. USEPA. (1999). Title 40 CFR: part 503: final rules standards for the use for disposal of sewage sludge. Washington. https://www.epa.gov/sites/production/files/2017-1/documents/frn_part_503_february_19_1993_converted_20090305.pdf. Accessed 10 Jun 2020.spa
dc.relation.references53. USDA. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed.). Agriculture Handbook.spa
dc.relation.references54. van Straaten, P. (2013). Which rocks for which crops? Ecophysiological and geological factors. II Congresso Brasileiro de Rochagem, Poços de Caldas. Annals... Poços de Caldas. Visconde do Rio Branco: Suprema (pp. 65–73).spa
dc.relation.references55. van Straaten, P. (2016). ‘Rocks for crops’ in the world. III Congresso Brasileiro de Rochagem (pp. 59–69). Pelotas. Annals... Pelotas.spa
dc.relation.references56. Vance, C. P., Uhde-Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a non-renewable resource. New Phytologist, 157, 423–447.spa
dc.relation.references57. Velazco, C. L. (2013). Crop rotation design in view of soilborne pathogen dynamics: A methodological approach illustrated with sclerotium rolfsii and fusarium oxysporum f. sp. cepae. Wageningen University and Research.spa
dc.relation.references58. Volf, M. R., Guimarães, T. M., Scudeletti, D., Cruz, I. V., & Rosolem, C. A. (2018). Potassium Dynamics in Ruzigrass Rhizosphere. Revista Brasileira de Ciência do Solo. https://doi.org/10.1590/18069657rbcs20170370spa
dc.relation.references59. White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92, 487–511.spa
dc.relation.references60. Withers, P. J., Rodrigues, M., Soltangheisi, A., Carvalho, T. S., Guilherme, L. R., Benites, V. D. M., Gatiboni, L. C., Sousa, D. M. G., Nunes, R. S., Rosolem, C. A., Andreote, F. D., Oliveira, A., Jr., Coutinho, E. L. M., & Pavinato, P. S. (2018). Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific Reports, 8(1), 2537.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal