Mostrar el registro sencillo del ítem

dc.contributor.advisorSagastume Gutiérrez, Alexisspa
dc.contributor.advisorCabello Eras, Juan Joséspa
dc.contributor.authorBarrera Hernández, Juan Camilospa
dc.date.accessioned2021-05-26T19:28:10Z
dc.date.available2021-05-26T19:28:10Z
dc.date.issued2021
dc.identifier.citationBarrera, J. (2021) Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia. Trabajo de maestría. Recuperado de https://hdl.handle.net/11323/8286spa
dc.identifier.urihttps://hdl.handle.net/11323/8286spa
dc.description.abstractThe energy potential of the residual oil palm biomass generated in seven extraction plants located in northern Colombia is evaluated through a cogeneration system with extraction turbine – condensation. For all the cases analyzed, the available biomass not only covers the energy requirements of the process, but it can also supply a surplus of energy. The energy potential of residual biomass ranges from 22.5 - 46.5 MW per year for the cases studied. For palm oil mills with capacities between 21 – 41 tRFF-1 it is estimated that it is possible to obtain surplus electricity between 1.7 – 8.9 MW, considering that the energy use of the empty fruit bunch as fuel can increase between 40 – 60 % the energy provided by the kernel shell and fiber. Regarding environmental performance, the calculated GHG emissions were 1 – 3 g CO2eq per kWh for the cases studied. By replacing the electricity of the national interconnected system, the energy generated by biomass could mitigate between 214 - 385 g CO2eq per ton of fresh fruit bunch per year. Depending on the availability of the empty fruit bunch, its energy use can increase the replacement of emissions by 60 – 80%. Electricity generation can be developed at a level cost of electricity between 131 – 223 COP kWh-1 for the palm oil mills studied considering a ten-year investment, which could be economically attractive considering that the cost of selling electricity in Colombia stood between 113 - 321 COP kWh-1 for 2019.spa
dc.description.abstractEl potencial energético de la biomasa residual de palma de aceite generada en siete plantas extractoras ubicadas en la Zona Norte de Colombia es evaluado a través de un sistema de cogeneración con turbina de extracción – condensación. Para todos los casos evaluados, la biomasa disponible no solo cubre los requerimientos energéticos del proceso, sino que también puede suplir un excedente de energía. El potencial energético de la biomasa residual oscila entre los 22.5 - 46.5 MW anuales para los casos estudiados. Para plantas extractoras de aceite con capacidades entre 21 – 41 tRFF-1 se estima que es posible obtener excedentes de energía eléctrica entre 1.7 – 8.9 MW, considerando que el aprovechamiento energético de la tusa como combustible puede incrementar entre un 40 – 60 % la energía aportada por el cuesco y la fibra. Respecto al desempeño ambiental, las emisiones de GEI calculadas fueron de 1 – 3 g CO2eq por kWh en las diferentes plantas de aceite. En comparación con la energía eléctrica del sistema interconectado nacional, la electricidad generada por la biomasa residual de la extracción del aceite de palma tiene el potencial de reducir entre 214 - 385 g CO2eq por tonelada de fruto procesado al año. Dependiendo de la disponibilidad de la tusa para su aprovechamiento energético, puede incrementarse la reducción de emisiones entre un 60 – 80%. La generación eléctrica puede desarrollarse con un costo nivelado de electricidad entre 131 – 223 COP kWh-1 para las plantas estudiadas considerando una inversión a diez años, lo cual podría ser económicamente atractivo considerando que el costo de venta de electricidad en Colombia se situó entre los 113 - 321 COP kWh-1 para el año 2019.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subjectBiomassspa
dc.subjectPalm oilspa
dc.subjectPower generationspa
dc.subjectCHPspa
dc.subjectBioenergyspa
dc.subjectBiomasaspa
dc.subjectPalma de aceitespa
dc.subjectGeneración eléctricaspa
dc.subjectCogeneraciónspa
dc.subjectBioenergíaspa
dc.titlePotencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.programMaestría en Eficiencia Energética y Energías Renovablesspa
dc.relation.referencesAbbas, T., Issa, M., & Ilinca, A. (2020). Biomass Cogeneration Technologies: A Review. Journal of Sustainable Bioenergy Systems, 10(01), 1–15. https://doi.org/10.4236/jsbs.2020.101001spa
dc.relation.referencesAbdullah, N., & Sulaiman, F. (2013). The Oil Palm Wastes in Malysia. In Biomass Now -Sustainable Growth and Use (Vol. 3, Issue 1, pp. 97–103). https://doi.org/10.1016/j.jclepro.2012.04.004spa
dc.relation.referencesAlNouss, A., Mckay, G., & Al-Ansari, T. (2018). Optimum Utilization of Biomass for the Production of Power and Fuels using Gasification. In Computer Aided Chemical Engineering (Vol. 43). Elsevier Masson SAS. https://doi.org/10.1016/B978-0-444-64235- 6.50258-8spa
dc.relation.referencesAmerican Society Mechanical Engineering. (2008). Norma ASME PTC4-2008. In Asme (Vol. 2008).spa
dc.relation.referencesArrieta, F. R. P., Teixeira, F. N., Yáñez, E., Lora, E., & Castillo, E. (2007). Cogeneration potential in the Columbian palm oil industry: Three case studies. Biomass and Bioenergy, 31(7), 503–511. https://doi.org/10.1016/j.biombioe.2007.01.016spa
dc.relation.referencesAsadullah, M. (2014). Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074spa
dc.relation.referencesAziz, M. K. A., Morad, N. A., Wambeck, N., & Shah, M. H. (2011). Optimizing palm biomass energy though size reduction. 2011 4th International Conference on Modeling, Simulation and Applied Optimization, ICMSAO 2011, APRIL. https://doi.org/10.1109/ICMSAO.2011.5775516spa
dc.relation.referencesAziz, M., Kurniawan, T., Oda, T., & Kashiwagi, T. (2016). Advanced power generation using biomass wastes from palm oil mills. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2016.11.031spa
dc.relation.referencesBanco de la República de Colombia. (2021, January 1). Estadísticas Económicas. https://totoro.banrep.gov.co/estadisticas-economicas/spa
dc.relation.referencesBarrera, J., Ramírez, N., Garcia-Nunez, J. A., & Guevara, F. (2016). Diagnóstico del desempeño en consumo de energía eléctrica en plantas de beneficio en Colombia. Palmas, 37(4), 47– 62.spa
dc.relation.referencesBasu, P. (2006). Combustion and Gasification in Fluidized Beds. In CRC Press. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesBazmi, A. A., Zahedi, G., & Hashim, H. (2011). Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation. Renewable and Sustainable Energy Reviews, 15(1), 574–583. https://doi.org/10.1016/j.rser.2010.09.031spa
dc.relation.referencesBevan Nyakuma, B., Johari, A., & Ahmad, A. (2013). Thermochemical analysis of palm oil wastes as fuel for biomass gasification. Jurnal Teknologi (Sciences and Engineering), 62(3), 73–76. https://doi.org/10.11113/jt.v62.1891spa
dc.relation.referencesBörjesson, M., & Ahlgren, E. O. (2012). Biomass CHP energy systems: A critical assessment. In Comprehensive Renewable Energy (Vol. 5). Elsevier Ltd. https://doi.org/10.1016/B978- 0-08-087872-0.00508-4spa
dc.relation.referencesCaillat, S., & Vakkilainen, E. (2013). 9 – Large-scale biomass combustion plants: an overview. In Biomass Combustion Science, Technology and Engineering. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097439.3.189spa
dc.relation.referencesCala A, S. L., Yáñez Angarita, E. E., & García Núñez, J. A. (2011). Recuperación de almendra: Sintonización de columnas de separación neumáticas en plantas de beneficio (Fedepalma (ed.)).spa
dc.relation.referencesCala Gaitán, G., & Bernal Castillo, G. (2008). Procesos modernos de extracción de aceite de palma (Issue 00442).spa
dc.relation.referencesCenipalma. (2020). XMAC - Extensión de monitoreo Agroclimático. https://geoportal.cenipalma.org/spa
dc.relation.referencesChang, S. H. (2014). An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass and Bioenergy, 62, 174–181. https://doi.org/10.1016/j.biombioe.2014.01.002spa
dc.relation.referencesChiew, Y. L., & Shimada, S. (2013). Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer - A case study of Malaysia. Biomass and Bioenergy, 51, 109–124. https://doi.org/10.1016/j.biombioe.2013.01.012spa
dc.relation.referencesChoong, Y. Y., Chou, K. W., & Norli, I. (2018). Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review. Renewable and Sustainable Energy Reviews, 82(January), 2993–3006. https://doi.org/10.1016/j.rser.2017.10.036spa
dc.relation.referencesCongreso de Colombia. (2014). Ley 1715 de 2014. Diario Oficial, 104.spa
dc.relation.referencesCorley, O. T., & Tinker, J. R. (2003). The Oil Palm. In West African Agriculture (pp. 93–104). Cambridge University Press. https://doi.org/10.1017/CBO9781316530122.010spa
dc.relation.referencesCREG. (2018). Resolución No. 30. In Ministerio de Minas y energia (Issue Mayo, p. 13). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c 4474f05258243005a1191/$FILE/Creg030-2018.pdfspa
dc.relation.referencesCruz, A. V. (2016). Lineamientos para la operación eficiente de sistemas de generación de vapor y reducción de emisiones atmosféricas en plantas de beneficio del sector palmero * Guidelines for an Efficient Operation of Steam Generation Systems and the Reduction of Atmospher. Figura 1, 55–64.spa
dc.relation.referencesDai, L., Wang, Y., Liu, Y., Ruan, R., He, C., Yu, Z., Jiang, L., Zeng, Z., & Tian, X. (2019). Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 107(January), 20–36. https://doi.org/10.1016/j.rser.2019.02.015spa
dc.relation.referencesDam, J. E. G. Van. (2015). Oil Palm by-products as biocommodities.spa
dc.relation.referencesDaud, Z. A. M., Kaur, D., & Khosla, P. (2012). 18 – Health and Nutritional Properties of Palm Oil and Its Components. Palm Oil, 545–560. https://doi.org/10.1016/B978-0-9818936-9- 3.50021-6spa
dc.relation.referencesDemirbas, A. (2007). Effects of moisture and hydrogen content on the heating value of fuels. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 29(7), 649– 655. https://doi.org/10.1080/009083190957801spa
dc.relation.referencesDishington, J. M. (2018, February). Fedepalma, 55 años de gestión gremial para desarrollar y consolidar la agroindustria de la palma de aceite en Colombia. El Palmicutor, 552, 5–7. http://web.fedepalma.org/sites/default/files/files/Fedepalma/semanariopalmero/publicaciones/Boletin-El-Palmicultor-de-febrero-de-2018.pdfspa
dc.relation.referencesEras, J. J. C., Morejón, M. B., Gutiérrez, A. S., García, A. P., Ulloa, M. C., Martínez, F. J. R., & Rueda-Bayona, J. G. (2019a). A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15–25. https://doi.org/10.32479/ijeep.7108spa
dc.relation.referencesEras, J. J. C., Morejón, M. B., Gutiérrez, A. S., García, A. P., Ulloa, M. C., Martínez, F. J. R., & Rueda-Bayona, J. G. (2019b). A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15–25. https://doi.org/10.32479/ijeep.7108spa
dc.relation.referencesFedepalma. (2016). Balance económico del sector palmero colombiano en 2015. Boletín Económico, 8. http://web.fedepalma.org/sites/default/files/files/BTE 2016_en baja.pdfspa
dc.relation.referencesFedepalma. (2019). Statistical Yearbook. https://drive.google.com/file/d/1WOrjaYVXpXGDVmLTQcIfS9fLDCxEymy5/viewspa
dc.relation.referencesFedepalma. (2020). MINIANUARIO ESTADÍSTICO 2020. In Principales cifras de la agroindustria de la palma de aceite en Colombia.spa
dc.relation.referencesFernández, C. A., García, H., Ramirez C, N. E., & García N, J. A. (2016). Impacto de la clarificación dinámica sobre el proceso de extracción y recuperación de aceite de palma crudo Processes in Crude Palm Oil (Case study ). Revista Palmas, 37(3), 47–64. Garcia-Nunez, J. A., Ramirez-Contreras, N. E., Rodriguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C., & Garcia-Perez, M. (2016a). Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling, 110, 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022spa
dc.relation.referencesGarcia-Nunez, J. A., Ramirez-Contreras, N. E., Rodriguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C., & Garcia-Perez, M. (2016b). Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling, 110, 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022spa
dc.relation.referencesGarcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., Stockle, C., Amonette, J., & Garcia-Perez, M. (2016a). Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass and Bioenergy, 95, 310– 329. https://doi.org/10.1016/j.biombioe.2016.05.020spa
dc.relation.referencesGarcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., Stockle, C., Amonette, J., & Garcia-Perez, M. (2016b). Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2016.05.020spa
dc.relation.referencesGerssen-Gondelach, S. J., Saygin, D., Wicke, B., Patel, M. K., & Faaij, A. P. C. (2014). Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renewable and Sustainable Energy Reviews, 40(April), 964–998. https://doi.org/10.1016/j.rser.2014.07.197spa
dc.relation.referencesGómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(March), 131–141. https://doi.org/10.1016/j.rser.2018.03.015spa
dc.relation.referencesGonzalez-Salazar, M. A., Venturini, M., Poganietz, W. R., Finkenrath, M., Kirsten, T., Acevedo, H., & Spina, P. R. (2016). Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation & CHP. Applied Energy, 180, 338–352. https://doi.org/10.1016/j.apenergy.2016.07.120spa
dc.relation.referencesGozan, M., Aulawy, N., Rahman, S. F., & Budiarto, R. (2018). Techno-Economic Analysis of Biogas Power Plant from POME (Palm Oil Mill Effluent) Oil Recovery from Oil Sludge View project Salt quality improvement View project Techno-Economic Analysis of Biogas Power Plant from POME (Palm Oil Mill Effluent). International Journal of Applied Engineering Research, 13(8), 6151–6157. http://www.ripublication.comspa
dc.relation.referencesGuercio, A., & Bini, R. (2017). Biomass-fired Organic Rankine Cycle combined heat and power systems. In Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100510-1.00015-6spa
dc.relation.referencesHashim, K., Tahiruddin, S., & Asis, A. J. (2012). 8 – Palm and Palm Kernel Oil Production and Processing in Malaysia and Indonesia. Palm Oil, 2008, 235–250. https://doi.org/10.1016/B978-0-9818936-9-3.50011-3spa
dc.relation.referencesHossain, M. A., Jewaratnam, J., & Ganesan, P. (2016). Prospect of hydrogen production from oil palm biomass by thermochemical process ??? A review. International Journal of Hydrogen Energy, 41(38), 16637–16655. https://doi.org/10.1016/j.ijhydene.2016.07.104spa
dc.relation.referencesHu, X., & Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 39(x), 109–143. https://doi.org/10.1016/j.jechem.2019.01.024spa
dc.relation.referencesHuang, Y. F., & Lo, S. L. (2020). Predicting heating value of lignocellulosic biomass based on elemental analysis. Energy, 191(xxxx), 116501. https://doi.org/10.1016/j.energy.2019.116501spa
dc.relation.referencesHurskainen, M., & Vainikka, P. (2015). Technology options for large-scale solid-fuel combustion. In Fuel Flexible Energy Generation.spa
dc.relation.referencesHusain, Z., Zainal, Z. A., & Abdullah, M. Z. (2002). Analysis of biomass-residue-based cogeneration system in palm oil mills. Biomass and Bioenergy, 24(2), 117–124. https://doi.org/10.1016/S0961-9534(02)00101-0spa
dc.relation.referencesIdris, S. S., Rahman, N. A., & Ismail, K. (2012). Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresource Technology, 123, 581–591. https://doi.org/10.1016/j.biortech.2012.07.065spa
dc.relation.referencesIndex Mundi. (2019). Palm Oil Production by Country in 1000 MT. https://www.indexmundi.com/agriculture/?commodity=palm-oilspa
dc.relation.referencesInternational Energy Agency. (2017). Technology Roadmap Delivering Sustainable Bioenergy. In IEA.spa
dc.relation.referencesIPCC. (2006). Stationary combustion. In IPCC Guidelines for National Greenhouse Gas Inventories. https://doi.org/10.1007/BF00914340spa
dc.relation.referencesKowalczyk-Juśko, A. (2017). The influence of the ash from the biomass on the power boiler pollution. Journal of Ecological Engineering, 18(6), 200–204. https://doi.org/10.12911/22998993/76897spa
dc.relation.referencesLing-Hoak, O., Keong-Hoe, L., & Khoon-San, C. (2007). Conversion de efluentes y tusas en fertilizante orgánico con cero desperdicios. PALMAS, 28(2), 180–190.spa
dc.relation.referencesLoh, S. K. (2016). The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2016.08.081spa
dc.relation.referencesLuk, H. T., Lam, T. Y. G., Oyedun, A. O., Gebreegziabher, T., & Hui, C. W. (2013). Drying of biomass for power generation: A case study on power generation from empty fruit bunch. Energy, 63, 205–215. https://doi.org/10.1016/j.energy.2013.10.056spa
dc.relation.referencesMalico, I., Nepomuceno Pereira, R., Gonçalves, A. C., & Sousa, A. M. O. (2019). Current status and future perspectives for energy production from solid biomass in the European industry. Renewable and Sustainable Energy Reviews, 112(November 2018), 960–977. https://doi.org/10.1016/j.rser.2019.06.022spa
dc.relation.referencesMalmgren, A., & Riley, G. (2018). Biomass Power Generation ☆. In Reference Module in Earth Systems and Environmental Sciences (Issue December 2017). Elsevier Inc. https://doi.org/10.1016/b978-0-12-409548-9.11014-0spa
dc.relation.referencesMba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry - A review. Food Bioscience, 10, 26–41. https://doi.org/10.1016/j.fbio.2015.01.003spa
dc.relation.referencesMedina, J. D. C., Magalhães, A. I., Zamora, H. D., & Melo, J. D. Q. (2019). Oil palm cultivation and production in South America: status and perspectives. Biofuels, Bioproducts and Biorefining, 1–9. https://doi.org/10.1002/bbb.2013spa
dc.relation.referencesMinagricultura, & UPRA. (2017). Colombia: 16 millones de hectáreas aptas para palma de aceite. Palma de Aceite. https://www.upra.gov.co/sala-de-prensa/noticias/- /asset_publisher/GEKyUuxHYSXZ/content/colombia-16-millones-de-hectareas-aptaspara-palma-de-aceitespa
dc.relation.referencesMinisterio de Hacienda y Crédito Público. (2017). Decreto 926 de 2017. http://es.presidencia.gov.co/normativa/normativa/DECRETO 926 DEL 01 DE JUNIO DE 2017.pdfspa
dc.relation.referencesMohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., & Mohamad Amran, M. S. (2012). Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology, 110, 628–636. https://doi.org/10.1016/j.biortech.2012.01.056spa
dc.relation.referencesMonroy, E. F. C. (2007). Integración energética en el proceso de extracción de aceite de palma. 28, 93–104.spa
dc.relation.referencesMontero V, J. C., Díaz R, C. A., Guevara T, F. E., Cepeda R, A. H., & Barrera H, J. C. (2013). Modelo para medición de eficiencia real de producción y administración integrada de información en Planta de Beneficio Producción. In Boletin técnico No. 33 (Issue 33).spa
dc.relation.referencesMontoya, J., Valdés, C., Chaquea, H., Pecha, M. B., & Chejne, F. (2020). Surplus electricity production and LCOE estimation in Colombian palm oil mills using empty fresh bunches (EFB) as fuel. Energy, 202, 117713. https://doi.org/10.1016/j.energy.2020.117713spa
dc.relation.referencesMulugetta, Y., Hertwich, E., Riahi, K., Gibon, T., & Neuhoff, K. (2014). Climate Change 2014: Mitigation of climate change. IPCC Fifth Assessment Report, 527–532. https://doi.org/10.1017/CBO9781107415416spa
dc.relation.referencesNanda, S., Mohammad, J., Reddy, S. N., Kozinski, J. A., & Dalai, A. K. (2014). Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 4(2), 157–191. https://doi.org/10.1007/s13399-013-0097-zspa
dc.relation.referencesNasrin, A. B., Ravi, N., Lim, W. S., Choo, Y. M., & Fadzil, A. M. (2011). Assessment of the Performance and Potential Export Renewable Energy (RE) From Typical Co generation Plants Used in Palm Oil Mills. Journal of Engineering and Applied Sciences, 6(6), 433– 439. https://doi.org/10.3923/jeasci.2011.433.439spa
dc.relation.referencesNasution, M. A., Herawan, T., & Rivani, M. (2014). Analysis of palm biomass as electricity from palm oil mills in north sumatera. Energy Procedia, 47, 166–172. https://doi.org/10.1016/j.egypro.2014.01.210spa
dc.relation.referencesNinduangdee, P., & Kuprianov, V. I. (2016). A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition. Applied Energy, 176, 34–48. https://doi.org/10.1016/j.apenergy.2016.05.063spa
dc.relation.referencesNoel, B., & June, W. (1999). Volume I – OIL PALM MILL , SYSTEMS AND PROCESS. Update, I.spa
dc.relation.referencesNunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53, 235–242. https://doi.org/10.1016/j.rser.2015.08.053spa
dc.relation.referencesOhimain, E. I., & Izah, S. C. (2017). A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renewable and Sustainable Energy Reviews, 70(December 2014), 242–253. https://doi.org/10.1016/j.rser.2016.11.221spa
dc.relation.referencesOpenEI. (2015). Levelized Cost Calculations | Transparent Cost Database. https://openei.org/apps/TCDB/spa
dc.relation.referencesPande, G., Akoh, C. C., & Lai, O. M. (2012). Food Uses of Palm Oil and Its Components. Palm Oil: Production, Processing, Characterization, and Uses, 561–586. https://doi.org/10.1016/B978-0-9818936-9-3.50022-8spa
dc.relation.referencesPelaez, C. M. (2010). Buenas prácticas de procesamiento en plantas de beneficio : estudio de caso. 31, 64–73.spa
dc.relation.referencesRamirez-Contreras, N. E., Arévalo S, A., & Garcia-Nuñez, J. A. (2015). Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Revista Palmas, 36(4), 41–54. http://publicaciones.fedepalma.org/index.php/palmas/article/view/11644/11636spa
dc.relation.referencesRamirez-contreras, N. E., Munar-florez, D. A., Faaij, P. C., & Garcia-nu, J. A. (2020). The GHG emissions and economic performance of the Colombian palm oil sector ; current status and long-term perspectives. 258. https://doi.org/10.1016/j.jclepro.2020.120757spa
dc.relation.referencesRamirez-Contreras, N. E., Munar-Florez, D. A., Garcia-Nuñez, J. A., Mosquera-Montoya, M., & Faaij, A. P. C. (2020). The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. Journal of Cleaner Production, 258. https://doi.org/10.1016/j.jclepro.2020.120757spa
dc.relation.referencesRamirez-Contreras, N. E., Ramírez, Á. S. S., González, E. M. G., & Yañez A., E. E. (2011). Caracterización y manejo de subproductos del beneficio del fruto de palma de aceite. Boletín Técnico No. 30, 30, 1–46. https://doi.org/10.5897/AJB11.3582spa
dc.relation.referencesRincon Martinez, J. M., & Silva Lora, E. E. (2015). Bioenergía : Fuentes, conversion y sostenibilidad.spa
dc.relation.referencesRivera-Méndez, Y. D., Rodríguez, D. T., & Romero, H. M. (2017). Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. Journal of Cleaner Production, 149, 743–750. https://doi.org/10.1016/j.jclepro.2017.02.149spa
dc.relation.referencesSamiran, N. A., Jaafar, M. N. M., Ng, J. H., Lam, S. S., & Chong, C. T. (2016). Progress in biomass gasification technique - With focus on Malaysian palm biomass for syngas production. Renewable and Sustainable Energy Reviews, 62, 1047–1062. https://doi.org/10.1016/j.rser.2016.04.049spa
dc.relation.referencesShafie, S. M., Mahlia, T. M. I., Masjuki, H. H., & Ahmad-Yazid, A. (2012). A review on electricity generation based on biomass residue in Malaysia. Renewable and Sustainable Energy Reviews, 16(8), 5879–5889. https://doi.org/10.1016/j.rser.2012.06.031spa
dc.relation.referencesSISPA. (2020). Evolución histórica anual del fruto procesado, el aceite de palma y el palmiste extraídos. http://sispa.fedepalma.org/sispaweb/default.aspx?Control=Pages/produccionspa
dc.relation.referencesSokhansanj, S. (2011). The Effect of Moisture on Heating Values. Biomass Energy Data Book, C, 1–5. http://cta.ornl.gov/bedbspa
dc.relation.referencesSolarte-Toro, J. C., Chacón-Pérez, Y., & Cardona-Alzate, C. A. (2018). Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electronic Journal of Biotechnology, 33, 52–62. https://doi.org/10.1016/j.ejbt.2018.03.005spa
dc.relation.referencesSommart, K., & Pipatmanomai, S. (2011). Assessment and Improvement of Energy Utilization in Crude Palm Oil Mill. 10, 161–166.spa
dc.relation.referencesStrzalka, R., Schneider, D., & Eicker, U. (2017). Current status of bioenergy technologies in Germany. Renewable and Sustainable Energy Reviews, 72, 801–820. https://doi.org/10.1016/j.rser.2017.01.091spa
dc.relation.referencesTai, Z. S., Hubadillah, S. K., Othman, M. H. D., Dzahir, M. I. H. M., Koo, K. N., Tendot, N. I. S. T. I., Ismail, A. F., Rahman, M. A., Jaafar, J., & Aziz, M. H. A. (2019). Influence of pretreatment temperature of palm oil fuel ash on the properties and performance of green ceramic hollow fiber membranes towards oil/water separation application. Separation and Purification Technology, 264–277. https://doi.org/10.1016/j.seppur.2019.04.046spa
dc.relation.referencesTaylor, G. (2008). Biofuels and the biorefinery concept. Energy Policy, 36(12), 4406–4409. https://doi.org/10.1016/j.enpol.2008.09.069spa
dc.relation.referencesTidball, R., Bluestein, J., Rodriguez, N., & Knoke, S. (2010). Cost and performance assumptions for modeling electricity generation technologies. [NREL] - National Renewable Energy Laboratory. November. https://doi.org/10.2172/993653spa
dc.relation.referencesTortosa Masiá, A. A., Buhre, B. J. P., Gupta, R. P., & Wall, T. F. (2007). Characterising ash of biomass and waste. Fuel Processing Technology, 88(11–12), 1071–1081. https://doi.org/10.1016/j.fuproc.2007.06.011spa
dc.relation.referencesUmar, M. S., Jennings, P., & Urmee, T. (2014). Sustainable electricity generation from oil palm biomass wastes in Malaysia: An industry survey. Energy, 67, 496–505. https://doi.org/10.1016/j.energy.2014.01.067spa
dc.relation.referencesUniversidad Industrial de Santander, Centro de Estudios e Investigaciones Ambientales, Unidad de Planeación Minero Energética - UPME, & Instituto de Hidrología Meteorología y estudios ambientales. (2011). Atlas del Potencial Energético de la Biomasa Residual en Colombia (2011 Bucaramanga (Colombia) : Universidad Industrial de Santander (ed.)).spa
dc.relation.referencesUPME. (2015). Plan Energetico Nacional Colombia: Ideario Energético 2050. Unidad de Planeación Minero Energética, Republica de Colombia, 184. http://www.upme.gov.co/Docs/PEN/PEN_IdearioEnergetico2050.pdfspa
dc.relation.referencesUPME. (2019). Metodología de calculo de emisiones de gases de efecto invernadero del sistema interconectado nacional.spa
dc.relation.referencesUSDA. (2018). Oilseeds: World Markets and Trade.spa
dc.relation.referencesVan Loo, S. (2008). The Handbook of Biomass Combustion and Cofiring (Issue January).spa
dc.relation.referencesVargas, D. L., Yáñez A, E. E., García Núñez, J. A., Meneses, A., & Cuellar, M. (2011). Cogeneración con biomasa de palma de aceite en el sistema eléctrico colombiano: barreras, perspectivas y oportunidades. Revista Palmas, 32 No. 3(3), 49–62.spa
dc.relation.referencesWolf, J. P., & Dong. (2013). 1 – Biomass combustion for power generation: an introduction. In Biomass Combustion Science, Technology and Engineering. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097439.1.3spa
dc.relation.referencesWu, T. Y., Mohammad, A. W., Jahim, J. M., & Anuar, N. (2010). Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management, 91(7), 1467–1490. https://doi.org/10.1016/j.jenvman.2010.02.008spa
dc.relation.referencesYeong, S. K., Idris, Z., & Hassan, H. A. (2012). Palm Oleochemicals in Non-food Applications. Palm Oil: Production, Processing, Characterization, and Uses, 587–624. https://doi.org/10.1016/B978-0-9818936-9-3.50023-Xspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International