Mostrar el registro sencillo del ítem

dc.contributor.authorSilva, Nathália F.spa
dc.contributor.authorNetto, Matias S.spa
dc.contributor.authorSilva Oliveira, Luis Felipespa
dc.contributor.authorMallmann, Evandro S.spa
dc.contributor.authorLima, Eder Claudiospa
dc.contributor.authorFerrari, Valdecirspa
dc.contributor.authorDotto, Guilherme Luizspa
dc.date.accessioned2021-05-27T20:21:12Z
dc.date.available2021-05-27T20:21:12Z
dc.date.issued2021
dc.identifier.issn2213-3437spa
dc.identifier.urihttps://hdl.handle.net/11323/8294spa
dc.description.abstractThe present work consisted of preparing and characterizing composite carbon materials (WRCC) from raw winery residues (WR) activated with zinc chloride to produce a carbon adsorbent. The WRCC was used for the adsorption of emerging contaminants in aqueous media. The WRCC presented a morphology with favorable characteristics for the adsorption process, giving an abundant porous structure with pores of different sizes. The results show the WRCC’s effectiveness, presenting surface area values (227 m2 g−1) and total pore volume (0.175 cm3 g−1). The general order kinetic model predicted the experimental curves sufficiently. The Sips model better described the two adsorbates' equilibrium data, with maximum adsorption capacities of 376.0 and 119.6 mg g−1 for 2-nitrophenol and ketoprofen, respectively. The WRCC carbon material was also highly efficient, with maximum removal of 81.4% and 94% in 1000 mg L−1 of the compounds 2-nitrophenol and ketoprofen. Finally, the prepared material has essential characteristics that make it an efficient adsorbent in treating effluents with emerging contaminants.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceJournal of Environmental Chemical Engineeringspa
dc.subjectAdsorptionspa
dc.subjectEmerging contaminantsspa
dc.subject2-nitrophenolspa
dc.subjectKetoprofenspa
dc.subjectComposite carbonspa
dc.titleComposite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenolspa
dc.typePre-Publicaciónspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S2213343721003985?via%3Dihubspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.jece.2021.105421spa
dc.date.embargoEnd2023
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] C. Rodrigues, C. Alves, A.J. Santos-neto, C. Fernandes, F.M. Lan Analysis of tricyclic antidepressant drugs in plasma by means of solid-phase microextraction-liquid chromatography-mass spectrometry J. Mass Spectrom. (2007), pp. 1342-1347, 10.1002/jmsspa
dc.relation.references[2] R. Castagna, S. Donini, P. Colnago, A. Serafini, E. Parisini, C. Bertarelli Biohybrid electrospun membrane for the filtration of ketoprofen drug from water ACS Omega, 4 (2019), pp. 13270-13278, 10.1021/acsomega.9b01442spa
dc.relation.references[3] J. Fan, G. Zhao, H. Zhao, S. Chai, T. Cao Fabrication and application of mesoporous Sb-doped SnO2 electrode with high specific surface in electrochemical degradation of ketoprofen Electrochim. Acta, 94 (2013), pp. 21-29, 10.1016/j.electacta.2013.01.129spa
dc.relation.references[4] A.C. Fröhlich, G.S. dos Reis, F.A. Pavan, É.C. Lima, E.L. Foletto, G.L. Dotto Improvement of activated carbon characteristics by sonication and its application for pharmaceutical contaminant adsorption Environ. Sci. Pollut. Res., 25 (2018), pp. 24713-24725, 10.1007/s11356-018-2525-xspa
dc.relation.references[5] A.C. Fröhlich, E.L. Foletto, G.L. Dotto Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions J. Clean. Prod., 229 (2019), pp. 828-837, 10.1016/j.jclepro.2019.05.037spa
dc.relation.references[6] C. Schummer, C. Groff, J. Al Chami, F. Jaber, M. Millet Analysis of phenols and nitrophenols in rainwater collected simultaneously on an urban and rural site in east of France Sci. Total Environ., 407 (2009), pp. 5637-5643, 10.1016/j.scitotenv.2009.06.051spa
dc.relation.references[7] A.E. Navarro, N.A. Cuizano, R.F. Portales, B.P. Llanos Adsorptive removal of 2-nitrophenol and 2-chlorophenol by cross-linked algae from aqueous solutions Sep. Sci. Technol., 43 (2008), pp. 3183-3199, 10.1080/01496390802221642spa
dc.relation.references[8] J. He, Y. Li, X. Cai, K. Chen, H. Zheng, C. Wang, K. Zhang, D. Lin, L. Kong, J. Liu Study on the removal of organic micropollutants from aqueous and ethanol solutions by HAP membranes with tunable hydrophilicity and hydrophobicity Chemosphere, 174 (2017), pp. 380-389, 10.1016/j.chemosphere.2017.02.008spa
dc.relation.references[9] E.R. Abaide, G.L. Dotto, M.V. Tres, G.L. Zabot, M.A. Mazutti Adsorption of 2–nitrophenol using rice straw and rice husks hydrolyzed by subcritical water Bioresour. Technol., 284 (2019), pp. 25-35, 10.1016/j.biortech.2019.03.110spa
dc.relation.references[10] A.H.C. Chan, C.K. Chan, J.P. Barford, J.F. Porter Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater Water Res., 37 (2003), pp. 1125-1135, 10.1016/S0043-1354(02)00465-7spa
dc.relation.references[11] Y. Cui, X.Y. Liu, T.S. Chung, M. Weber, C. Staudt, C. Maletzko Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: evaluation of FO as an alternative method to reverse osmosis (RO) Water Res., 91 (2016), pp. 104-114, 10.1016/j.watres.2016.01.001spa
dc.relation.references[12] R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S.T. Mostafavi Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions Appl. Surf. Sci., 256 (2010), pp. 4447-4455, 10.1016/j.apsusc.2010.01.057spa
dc.relation.references[13] F.B. Dalla Nora, V.V.C. Lima, M.L.S. Oliveira, A. Hosseini-Bandegharaei, T.A. De Lima Burgo, L. Meili, G.L. Dotto Adsorptive potential of Zn-Al and Mg-Fe layered double hydroxides for the removal of 2-nitrophenol from aqueous solutions J. Environ. Chem. Eng., 8 (2020), Article 103913, 10.1016/j.jece.2020.103913spa
dc.relation.references[14] J. Radjenović, M. Petrović, F. Ventura, D. Barceló Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment Water Res., 42 (2008), pp. 3601-3610, 10.1016/j.watres.2008.05.020spa
dc.relation.references[15] H. Li, H. Xia, Y. Mei Modeling organic fouling of reverse osmosis membrane: from adsorption to fouling layer formation Desalination, 386 (2016), pp. 25-31, 10.1016/j.desal.2016.02.037spa
dc.relation.references[16] S. Gul, Z.A. Rehan, S.A. Khan, K. Akhtar, M.A. Khan, M.I. Khan, M.I. Rashid, A.M. Asiri, S.B. Khan Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol J. Mol. Liq., 230 (2017), pp. 616-624, 10.1016/j.molliq.2016.12.093spa
dc.relation.references[17] M. Tian, L. Bakovic, A. Chen Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics Electrochim. Acta, 52 (2007), pp. 6517-6524, 10.1016/j.electacta.2007.04.080spa
dc.relation.references[18] Z. Sun, L. Zhao, C. Liu, Y. Zhen, J. Ma Catalytic ozonation of ketoprofen with in situ n-doped carbon: a novel synergetic mechanism of hydroxyl radical oxidation and an intra-electron-transfer nonradical reaction Environ. Sci. Technol., 53 (2019), pp. 10342-10351, 10.1021/acs.est.9b02745spa
dc.relation.references[19] A. Shokri Degradation of 2-nitrophenol from petrochemical wastewater by ozone Russ. J. Appl. Chem., 88 (2015), pp. 2038-2043, 10.1134/S10704272150120216spa
dc.relation.references[20] Z. Li, L. Sellaoui, G. Luiz Dotto, A. Bonilla-Petriciolet, A. Ben Lamine Understanding the adsorption mechanism of phenol and 2-nitrophenol on a biopolymer-based biochar in single and binary systems via advanced modeling analysis Chem. Eng. J., 371 (2019), pp. 1-6, 10.1016/j.cej.2019.04.035spa
dc.relation.references[21] B.S. Marques, K. Dalmagro, K.S. Moreira, M.L.S. Oliveira, S.L. Jahn, T.A. de Lima Burgo, G.L. Dotto Ca–Al, Ni–Al and Zn–Al LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol J. Alloy. Compd., 838 (2020), Article 155628, 10.1016/j.jallcom.2020.155628spa
dc.relation.references[22] A.F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry Chemosphere (2020), 10.1016/j.chemosphere.2020.128322spa
dc.relation.references[23] F.F. Liu, J. Zhao, S. Wang, P. Du, B. Xing Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes Environ. Sci. Technol., 48 (2014), pp. 13197-13206, 10.1021/es5034684spa
dc.relation.references[24] D.M. Ruthven Principles of Adsorption and Adsorption Processes John Wiley & Sons, Hoboken (1984), p. 433spa
dc.relation.references[25] J. Akhtar, N.A.S. Amin, K. Shahzad A review on removal of pharmaceuticals from water by adsorption Desalin. Water Treat., 57 (2016), pp. 12842-12860, 10.1080/19443994.2015.1051121spa
dc.relation.references[26] G. Kyriakopoulos, D. Doulia Adsorption of pesticides on carbonaceous and polymeric materials from aqueous solutions: a review Sep. Purif. Rev., 35 (2006), pp. 97-191, 10.1080/15422110600822733spa
dc.relation.references[27] B. Petrie, R. Barden, B. Kasprzyk-Hordern A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring Water Res., 72 (2015), pp. 3-27, 10.1016/j.watres.2014.08.053spa
dc.relation.references[28] C. Sophia A, E.C. Lima Removal of emerging contaminants from the environment by adsorption Ecotoxicol. Environ. Saf., 150 (2018), pp. 1-17, 10.1016/j.ecoenv.2017.12.026spa
dc.relation.references[29] M. Olivares-Marín, C. Fernández-González, A. Macías-García, V. Gómez-Serrano Preparation of activated carbon from cherry stones by chemical activation with ZnCl 2 Appl. Surf. Sci., 252 (2006), pp. 5967-5971, 10.1016/j.apsusc.2005.11.008spa
dc.relation.references[30] F. Karacan, U. Ozden, S. Karacan Optimization of manufacturing conditions for activated carbon from Turkish lignite by chemical activation using response surface methodology Appl. Therm. Eng., 27 (2007), pp. 1212-1218, 10.1016/j.applthermaleng.2006.02.046spa
dc.relation.references[31] D. Angin Production and characterization of activated carbon from sour cherry stones by zinc chloride Fuel, 115 (2014), pp. 804-811, 10.1016/j.fuel.2013.04.060spa
dc.relation.references[32] D.C. Dos Santos, M.A. Adebayo, E.C. Lima, S.F.P. Pereira, R. Cataluña, C. Saucier, P.S. Thue, F.M. Machado Application of carbon composite adsorbents prepared from coffee waste and clay for the removal of reactive dyes from aqueous solutions J. Braz. Chem. Soc., 26 (2015), pp. 924-938, 10.5935/0103-5053.20150053spa
dc.relation.references[33] D.C. dos Santos, M.A. Adebayo, S. de Fátima Pinheiro Pereira, L.D.T. Prola, R. Cataluña, E.C. Lima, C. Saucier, C.R. Gally, F.M. Machado New carbon composite adsorbents for the removal of textile dyes from aqueous solutions: kinetic, equilibrium, and thermodynamic studies Korean J. Chem. Eng., 31 (2014), pp. 1470-1479, 10.1007/s11814-014-0086-3spa
dc.relation.references[34] A. Yazidi, M. Atrous, F. Edi Soetaredjo, L. Sellaoui, S. Ismadji, A. Erto, A. Bonilla-Petriciolet, G. Luiz Dotto, A. Ben Lamine Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: experimental study and modeling analysis Chem. Eng. J., 379 (2020), Article 122320, 10.1016/j.cej.2019.122320spa
dc.relation.references[35] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review Renew. Sustain. Energy Rev., 46 (2015), pp. 218-235, 10.1016/j.rser.2015.02.051spa
dc.relation.references[36] L.M.R. de Mello, Vitivinicultura brasileira: Panorama 2018, Mello-CampoNegocio-V22-N142-P54–56-2017.Pdf, 2019, embrapa.br (accessed December 3, 2020).spa
dc.relation.references[37] V. Ferrari, S.R. Taffarel, E. Espinosa-Fuentes, M.L.S. Oliveira, B.K. Saikia, L.F.O. Silva Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers J. Clean. Prod., 208 (2019), pp. 297-306, 10.1016/j.jclepro.2018.10.032spa
dc.relation.references[38] B. Aline, intro, Embrapa Agroindústria de Alimentos, 2018, embrapa.br (accessed January 25, 2021).spa
dc.relation.references[39] L.M.R. Mello, G.A. Silva Disponibilidade e Características de Resíduos Provenientes da Agroindústria de Processamento de Uva do Rio Grande do Sul Embrapa (2014), pp. 1-6 Comunicado Técnico 155spa
dc.relation.references[40] A. Cortés, L.F.S. Oliveira, V. Ferrari, S.R. Taffarel, G. Feijoo, M.T. Moreira Environmental assessment of viticulture waste valorisation through composting as a biofertilisation strategy for cereal and fruit crops Environ. Pollut., 264 (2020), pp. 1-8, 10.1016/j.envpol.2020.114794spa
dc.relation.references[41] M.H. da S. Deolin, H.M.C. Fagnani, P.A. Arroyo, M.A.S.D. de Barros, Obtenção do Ponto de Carga zero de Materiais Adsorventes, VIII EPCC – Encontro Internacional de Produção Científica Cesumar, 2013, 2–5. http://www.cesumar.br/prppge/pesquisa/epcc2013/oit_mostra/Mara_Helen_da Silva_Deolin.pdf.spa
dc.relation.references[42] S.L. Goertzen, K.D. Thériault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination Carbon, 48 (2010), pp. 1252-1261, 10.1016/j.carbon.2009.11.050spa
dc.relation.references[43] G.L. Dotto, J.M.N. Santos, E.H. Tanabe, D.A. Bertuol, E.L. Foletto, E.C. Lima, F.A. Pavan Chitosan/polyamide nanofibers prepared by Forcespinning® technology: a new adsorbent to remove anionic dyes from aqueous solutions J. Clean. Prod., 144 (2017), pp. 120-129, 10.1016/j.jclepro.2017.01.004spa
dc.relation.references[44] S. Lagergren About the theory of so-called adsorption of soluble substances K. Sven. Vetensk., 24 (1898), pp. 1-39spa
dc.relation.references[45] Y.S. Ho, G. McKay Kinetic models for the sorption of dye from aqueous solution by wood Process Saf. Environ. Prot., 76 (1998), pp. 183-191, 10.1205/095758298529326spa
dc.relation.references[46] E.C.N. Lopes, F.S.C. Dos Anjos, E.F.S. Vieira, A.R. Cestari An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes J. Colloid Interface Sci., 263 (2003), pp. 542-547, 10.1016/S0021-9797(03)00326-6spa
dc.relation.references[47] W.S. Alencar, E.C. Lima, B. Royer, B.D. dos Santos, T. Calvete, E.A. da Silva, C.N. Alves Application of aqai stalks as biosorbents for the removal of the dye procion blue MX-R from aqueous solution Sep. Sci. Technol., 47 (2012), pp. 513-526, 10.1080/01496395.2011.616568spa
dc.relation.references[48] H.M. Freundlich Over the adsorption in solution. J. Chem. Phys., 57 (1906), p. 385 e 470spa
dc.relation.references[49] I. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40 (1918), pp. 1361-1403spa
dc.relation.references[50] R. Sips On the structure of a catalyst surface J. Chem. Phys., 16 (1948), pp. 490-495, 10.1063/1.1746922spa
dc.relation.references[51] J. Tóth Calculation of the BET-compatible surface area from any Type I isotherms measured above the critical temperature J. Colloid Interface Sci., 225 (2000), pp. 378-383, 10.1006/jcis.2000.6723spa
dc.relation.references[52] Y. Liu Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data, 54 (2009), pp. 1981-1985, 10.1021/je800661qspa
dc.relation.references[53] J.H. Xueyong Zhou, Huifen Liu How to calculate the thermodynamic equilibrium constant using the langmuir equation Adsorpt. Sci. Technol., 30 (2012), pp. 647-649, 10.32380/alrj.v0i0.829spa
dc.relation.references[54] I. Anastopoulos, G.Z. Kyzas Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J. Mol. Liq., 218 (2016), pp. 174-185, 10.1016/j.molliq.2016.02.059spa
dc.relation.references[55] T. Chen, T. Da, Y. Ma Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant J. Mol. Liq., 322 (2021), Article 114980, 10.1016/j.molliq.2020.114980spa
dc.relation.references[56] B.-P. Adrián, M.-C.D. Ileana, R.-Á.H. Elizabeth Adsorption Processes for Water Treatment and Purification (2017), 10.1007/978-3-319-58136-1spa
dc.relation.references[57] R.S. Pigatto, D.S.P. Franco, M.S. Netto, É. Carissimi, L.F.S. Oliveira, S.L. Jahn, G.L. Dotto An eco-friendly and low-cost strategy for groundwater defluorination: adsorption of fluoride onto calcinated sludge J. Environ. Chem. Eng., 8 (2020), Article 104546, 10.1016/j.jece.2020.104546spa
dc.relation.references[58] M. Schadeck Netto, N.F. da Silva, E.S. Mallmann, G.L. Dotto, E.L. Foletto Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design Water Air Soil Pollut., 230 (2019), p. 187, 10.1007/s11270-019-4230-xspa
dc.relation.references[59] Z. Li, H. Hanafy, L. Zhang, L. Sellaoui, M. Schadeck Netto, M.L.S. Oliveira, M.K. Seliem, G. Luiz Dotto, A. Bonilla-Petriciolet, Q. Li Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: experiments, characterization and physical interpretations Chem. Eng. J., 388 (2020), Article 124263, 10.1016/j.cej.2020.124263spa
dc.relation.references[60] C. Suksiripattanapong, S. Horpibulsuk, P. Chanprasert, P. Sukmak, A. Arulrajah Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge Constr. Build. Mater., 82 (2015), pp. 20-30, 10.1016/j.conbuildmat.2015.02.040spa
dc.relation.references[61] M. Muruganandham, S.H. Chen, J.J. Wu Evaluation of water treatment sludge as a catalyst for aqueous ozone decomposition Catal. Commun., 8 (2007), pp. 1609-1614, 10.1016/j.catcom.2007.01.018spa
dc.relation.references[62] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review Desalination, 280 (2011), pp. 1-13, 10.1016/j.desal.2011.07.019spa
dc.relation.references[63] C.N. Tejada, D. Almanza, A. Villabona, F. Colpas, C. Granados Caracterización de carbón activado sintetizado a baja temperatura a partir de cáscara de cacao (Theobroma cacao) para la adsorción de amoxicilina Ing. Compet., 19 (2017), pp. 45-54, 10.25100/iyc.v19i2.5292spa
dc.relation.references[64] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption J. Environ. Chem. Eng., 7 (2019), Article 103396, 10.1016/j.jece.2019.103396spa
dc.relation.references[65] L. Shao, Z. Ren, G. Zhang, L. Chen Facile synthesis, characterization of a MnFe 2O 4/activated carbon magnetic composite and its effectiveness in tetracycline removal Mater. Chem. Phys., 135 (2012), pp. 16-24, 10.1016/j.matchemphys.2012.03.035spa
dc.relation.references[66] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents Chemosphere, 250 (2020), Article 126248, 10.1016/j.chemosphere.2020.126248spa
dc.relation.references[67] C. Saucier, M.A. Adebayo, E.C. Lima, R. Cataluña, P.S. Thue, L.D.T. Prola, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, G.L. Dotto Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents J. Hazard. Mater., 289 (2015), pp. 18-27, 10.1016/j.jhazmat.2015.02.026spa
dc.relation.references[68] M.J. Puchana- Rosero, M.A. Adebayo, E.C. Lima, F.M. Machado, P.S. Thue, J.C.P. Vaghetti, C.S. Umpierres, M. Gutterres Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes Colloids Surf. A Physicochem. Eng. Asp., 504 (2016), pp. 105-115, 10.1016/j.colsurfa.2016.05.059spa
dc.relation.references[69] M.C. Ribas, M.A. Adebayo, L.D.T. Prola, E.C. Lima, R. Cataluña, L.A. Feris, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, T. Calvete Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions Chem. Eng. J., 248 (2014), pp. 315-326, 10.1016/j.cej.2014.03.054spa
dc.relation.references[70] C. Saucier, M.A. Adebayo, E.C. Lima, L.D.T. Prola, P.S. Thue, C.S. Umpierres, M.J. Puchana-Rosero, F.M. Machado Comparison of a homemade bacuri shell activated carbon with carbon nanotubes for food dye removal Clean. Soil Air Water, 43 (2015), pp. 1389-1400, 10.1002/clen.201400669spa
dc.relation.references[71] R. Portinho, O. Zanella, L.A. Féris Grape stalk application for caffeine removal through adsorption J. Environ. Manag., 202 (2017), pp. 178-187, 10.1016/j.jenvman.2017.07.033spa
dc.relation.references[72] A.F.M. Streit, L.N. Côrtes, S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G.L. Dotto Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions Sci. Total Environ., 660 (2019), pp. 277-287, 10.1016/j.scitotenv.2019.01.027spa
dc.relation.references[73] A.J.K. Kupeta, E.B. Naidoo, A.E. Ofomaja Kinetics and equilibrium study of 2-nitrophenol adsorption onto polyurethane cross-linked pine cone biomass J. Clean. Prod., 179 (2018), pp. 191-209, 10.1016/j.jclepro.2018.01.034spa
dc.relation.references[74] H. Zheng, W. Guo, S. Li, Y. Chen, Q. Wu, X. Feng, R. Yin, S.H. Ho, N. Ren, J.S. Chang Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism Bioresour. Technol., 244 (2017), pp. 1456-1464, 10.1016/j.biortech.2017.05.025spa
dc.relation.references[75] P. Iovino, S. Canzano, S. Capasso, A. Erto, D. Musmarra A modeling analysis for the assessment of ibuprofen adsorption mechanism onto activated carbons Chem. Eng. J., 277 (2015), pp. 360-367, 10.1016/j.cej.2015.04.097spa
dc.relation.references[76] J.S. Piccin, G.L. Dotto, M.L.G. Vieira, L.A.A. Pinto Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan J. Chem. Eng. Data, 56 (2011), pp. 3759-3765, 10.1021/je200388sspa
dc.relation.references[77] R. da Rosa Schio, B.C. da Rosa, J.O. Gonçalves, L.A.A. Pinto, E.S. Mallmann, G.L. Dotto Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye Int. J. Biol. Macromol., 121 (2019), pp. 373-380, 10.1016/j.ijbiomac.2018.09.186spa
dc.relation.references[78] J. Van Der Stap, S. Klaasse Labwaarden: acute nierinsufficiëntie Nursing, 22 (2016), pp. 36-38, 10.1007/s41193-016-0111-5spa
dc.relation.references[79] L. Sellaoui, G.L. Dotto, J.O. Gonçalves, L.A.A. Pinto, S. Knani, A. Ben Lamine Equilibrium modeling of single and binary adsorption of Food Yellow 4 and Food Blue 2 on modified chitosan using a statistical physics theory: new microscopic interpretations J. Mol. Liq., 222 (2016), pp. 151-158, 10.1016/j.molliq.2016.07.005spa
dc.relation.references[80] M.F. Elkady, A.M. Ibrahim, M.M.A. El-Latif Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads Desalination, 278 (2011), pp. 412-423, 10.1016/j.desal.2011.05.063spa
dc.relation.references[81] X. Gu, H. Kang, H. Li, X. Liu, F. Dong, M. Fu, J. Chen Adsorption removal of various nitrophenols in aqueous solution by aminopropyl-modified mesoporous MCM-48 J. Chem. Eng. Data, 63 (2018), pp. 3606-3614, 10.1021/acs.jced.8b00477spa
dc.relation.references[82] M. Darwish, Q. Sadr Manuchehri, A. Mohammadi, N. Assi NiFe2O4 nanomagnets prepared through a microwave autocombustion route as an efficient recoverable adsorbent for 2-nitrophenol removal Part. Sci. Technol., 37 (2019), pp. 524-533, 10.1080/02726351.2017.1402835spa
dc.relation.references[83] L.B. Ariza Traslaviña, L.J. Torres Romero, D.A. Blanco Martínez Adsorption kinetics of 2-nitrophenol from aqueous solution on activated carbon Rev. Cienc., 20 (2016), pp. 65-75spa
dc.relation.references[84] I.A. Lawal, M.M. Lawal, S.O. Akpotu, M.A. Azeez, P. Ndungu, B. Moodley Theoretical and experimental adsorption studies of sulfamethoxazole and ketoprofen on synthesized ionic liquids modified CNTs Ecotoxicol. Environ. Saf., 161 (2018), pp. 542-552, 10.1016/j.ecoenv.2018.06.019spa
dc.relation.references[85] R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product Chem. Eng. J., 211–212 (2012), pp. 310-317, 10.1016/j.cej.2012.09.099spa
dc.relation.references[86] M. Sarker, J.Y. Song, S.H. Jhung Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites Chem. Eng. J., 335 (2018), pp. 74-81, 10.1016/j.cej.2017.10.138spa
dc.relation.references[87] Y. Gao, M.A. Deshusses Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter Environ. Technol., 32 (2011), pp. 1719-1727, 10.1080/09593330.2011.554888spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal