Mostrar el registro sencillo del ítem

dc.contributor.authorCama-Pinto, Doraspa
dc.contributor.authorDamas, Miguelspa
dc.contributor.authorHolgado-Terriza, Juan Antoniospa
dc.contributor.authorGómez Mula, Franciscospa
dc.contributor.authorCalderin-Curtidor, Andrés Camilospa
dc.contributor.authorMartínez Lao, Juanspa
dc.contributor.authorCama-Pinto, Alejandrospa
dc.date.accessioned2021-05-31T22:05:50Z
dc.date.available2021-05-31T22:05:50Z
dc.date.issued2021-04-13
dc.identifier.issn2079-9292spa
dc.identifier.urihttps://hdl.handle.net/11323/8308spa
dc.description.abstractThe deployment of the 5G mobile network is currently booming, offering commercially available services that improve network performance metrics by minimizing network latency in countries such as the USA, China, and Korea. However, many countries around the world are still in the pilot phase promoted and regulated by government agencies. This is the case in Colombia, where the assignment of the first 5G band is planned for the third quarter of 2021. By analyzing the results of the pilot phase and the roadmap of the Colombian Ministry of Information and Communication Technologies (MinTIC), we can determine the main issues, which contribute to the deployment of 5G mobile technology as well as the plans to achieve a 5G stand-alone network from 4G networks. This is applicable to other countries in Latin America and the world. Then, our objective is to synthesize and share the most important concepts of 5G mobile technology such as the MIMO (multiple input/multiple output) antenna, RAN (Radio Access Network), C-RAN (Centralised-RAN), and frequency bands, and evaluate the current stage of its introduction in Colombia.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceElectronicsspa
dc.subject5Geng
dc.subjectMassive MIMOeng
dc.subjectMIMOeng
dc.subject5G Colombiaeng
dc.subjectO-RANeng
dc.subject5G trialeng
dc.subjectMm-Weng
dc.subjectStand-aloneeng
dc.subject5G deploymenteng
dc.subject5G Latin Americaeng
dc.title5G mobile phone network introduction in Colombiaeng
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.mdpi.com/2079-9292/10/8/922spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.3390/electronics10080922spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Robaei, M.; Akl, R. Examining Spatial Consistency for Millimeter-Wave Massive MIMO Channel Estimation in 5G-NR. IEEE Int. Conf. Consum. Electron. (ICCE) 2020, 9042983. [CrossRef]spa
dc.relation.references2. Sun, L.; Li, Y.; Zhang, Z.; Feng, Z. Wideband 5G MIMO Antenna with Integrated Orthogonal-Mode Dual-Antenna Pairs for Metal-Rimmed Smartphones. IEEE Trans. Antennas Propag. 2019, 68, 2494–2503. [CrossRef]spa
dc.relation.references3. Chataut, R.; Akl, R.; Robaei, M. Accelerated and Preconditioned Refinement of Gauss-Seidel Method for Uplink Signal Detection in 5G Massive MIMO Systems. Annu. Comput. Commun. Workshop Conf. (CCWC) 2020, 83–89. [CrossRef]spa
dc.relation.references4. Khalid, M.; Naqvi, S.I.; Hussain, N.; Rahman, M.; Fawad; Mirjavadi, S.S.; Khan, M.J.; Amin, Y. 4-Port MIMO Antenna with Defected Ground Structure for 5G Millimeter Wave Applications. Electronics 2020, 9, 71. [CrossRef]spa
dc.relation.references5. Albataineh, Z.; Hayajneh, K.; Salameh, H.B.; Dang, C.; Dagmseh, A. Robust massive MIMO channel estimation for 5G networks using compressive sensing technique. AEU Int. J. Electron. Commun. 2020, 120, 153197. [CrossRef]spa
dc.relation.references6. Sakai, M.; Kamohara, K.; Iura, H.; Nishimoto, H.; Ishioka, K.; Murata, Y.; Yamamoto, M.; Okazaki, A.; Nonaka, N.; Suyama, S.; et al. Experimental Field Trials on MU-MIMO Transmissions for High SHF Wide-Band Massive MIMO in 5G. IEEE Trans. Wirel. Commun. 2020, 19, 2196–2207. [CrossRef]spa
dc.relation.references7. Ibrahim, A.A.Z.; Hashim, F.; Noordin, N.K.; Sali, A.; Navaie, K.; Fadul, S.M.E. Heuristic Resource Allocation Algorithm for Controller Placement in Multi-Control 5G Based on SDN/NFV Architecture. IEEE Access 2021, 9, 2602–2617. [CrossRef]spa
dc.relation.references8. Wang, H.; Zhang, R.; Luo, Y.; Yang, G. Compact Eight-Element Antenna Array for Triple-Band MIMO Operation in 5G Mobile Terminals. IEEE Access 2020, 8, 19433–19449. [CrossRef]spa
dc.relation.references9. Elshirkasi, A.M.; Al-Hadi, A.A.; Soh, P.J.; Mansor, M.F.; Khan, R.; Chen, X.; Akkaraekthalin, P. Performance Study of a MIMO Mobile Terminal with Upto 18 Elements Operating in the Sub-6 GHz 5G Band with User Hand. IEEE Access 2020, 8, 28164–28177. [CrossRef]spa
dc.relation.references10. Carrera, D.F.; Vargas-Rosales, C.; Azpilicueta, L.; Galaviz-Aguilar, J.A. Comparative study of channel estimators for massive MIMO 5G NR systems. IET Commun. 2020, 14, 1175–1184. [CrossRef]spa
dc.relation.references11. Ribeiro, C.; Gomes, R.; Duarte, L.; Hammoudeh, A.; Caldeirinha, R.F. Multi-Gigabit/s OFDM real-time based transceiver engine for emerging 5G MIMO systems. Phys. Commun. 2020, 38, 100957. [CrossRef]spa
dc.relation.references12. Kim, J.; Sung, M.; Cho, S.-H.; Won, Y.-J.; Lim, B.-C.; Pyun, S.-Y.; Lee, J.-K.; Lee, J.H. MIMO-Supporting Radio-Over-Fiber System and its Application in mmWave-Based Indoor 5G Mobile Network. J. Light. Technol. 2020, 38, 101–111. [CrossRef]spa
dc.relation.references13. Usami, M. New World Explored by 5G. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 4–6 January 2020.spa
dc.relation.references14. Popovski, P.; Trillingsgaard, K.F.; Simeone, O.; Durisi, G. 5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View. IEEE Access 2018, 6, 55765–55779. [CrossRef]spa
dc.relation.references15. Hui, H.; Ding, Y.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [CrossRef]spa
dc.relation.references16. Husenovic, K.; Bedi, I.; Maddens, S.; Bozsoki, I.; Karyabwite, D.; Sundberg, N.; Maniewicz, M. Setting the Scene for 5G: Opportunities & Challenges. International Telecommunication Union. 2018. Available online: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.5G_01-2018-PDF-E.pdf (accessed on 21 June 2020).spa
dc.relation.references17. Chaudhary, P.; Kumar, A.; Yadav, A. Pattern diversity MIMO 4G AND 5G wideband circularly polarized antenna with integrated LTE band for mobile handset. Prog. Electromagn. Res. M 2020, 89, 111–120. [CrossRef]spa
dc.relation.references18. Chen, W.; Lv, G.; Liu, X.; Wang, D.; Ghannouchi, F.M. Doherty PAs for 5G Massive MIMO: Energy-Efficient Integrated DPA MMICs for Sub-6-GHz and mm-Wave 5G Massive MIMO Systems. IEEE Microw. Mag. 2020, 21, 78–93. [CrossRef]spa
dc.relation.references19. Singh, A.; Saavedra, C.E. Fluidically Reconfigurable MIMO Antenna with Pattern Diversity for Sub-6-GHz 5G Relay Node Applications. Can. J. Electr. Comput. Eng. 2020, 43, 92–99. [CrossRef]spa
dc.relation.references20. Xu, Z.; Deng, C. High-Isolated MIMO Antenna Design Based on Pattern Diversity for 5G Mobile Terminals. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 467–471. [CrossRef]spa
dc.relation.references21. Alkaraki, S.; Gao, Y. mm-Wave Low-Cost 3D Printed MIMO Antennas with Beam Switching Capabilities for 5G Communication Systems. IEEE Access 2020, 8, 32531–32541. [CrossRef]spa
dc.relation.references22. Vojnovi´c, N.M.; Savi´c, S.V.; Ili´c, M.M.; Ili´c, A.Ž. Performance Analysis of Low-Cost Printed Antenna Array Elements for 5G LOS-MIMO Arrays at 60 GHz. Wirel. Pers. Commun. 2020, 111, 2641–2658. [CrossRef]spa
dc.relation.references23. Barani, I.R.R.; Wong, K.-L.; Zhang, Y.-X.; Li, W.-Y. Low-Profile Wideband Conjoined Open-Slot Antennas Fed by Grounded Coplanar Waveguides for 4 × 45 G MIMO Operation. IEEE Trans. Antennas Propag. 2020, 68, 2646–2657. [CrossRef]spa
dc.relation.references24. Kavitha, M.; Shanthi, S.; Beno, A.; Arul Rajan, B.; Sathish, M. Design of 2 × 2 MIMO-DRA antenna for 5g communication. Int. J. Sci. Technol. Res. 2020, 9, 7025–7029.spa
dc.relation.references25. El Misilmani, H.M.; El-Hajj, A.M. Massive MIMO Design for 5G Networks: An Overview on Alternative Antenna Configurations and Channel Model Challenges. Int. Conf. High Perform. Comput. Simul. (HPCS) 2017, 288–294. [CrossRef]spa
dc.relation.references26. GSMA. 5G Spectrum GSMA Public Policy Position. 2020. Available online: https://www.gsma.com/spectrum/wp-content/uploads/2020/03/5G-Spectrum-Positions.pdf (accessed on 1 April 2021).spa
dc.relation.references27. Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.I.A.; Abdulkhaleq, A.M.; Patwary, M.; Abd-Alhameed, R.A. A New CPW-Fed Diversity Antenna for MIMO 5G Smartphones. Electronics 2020, 9, 261. [CrossRef]spa
dc.relation.references28. Parchin, N.O.; Al-Yasir, Y.I.A.; Basherlou, H.J.; Abd-Alhameed, R.A. A closely spaced dual-band MIMO patch antenna with reduced mutual coupling for 4G/5G applications. Prog. Electromagn. Res. C 2020, 101, 71–80. [CrossRef]spa
dc.relation.references29. Zhang, X.-X.; Ren, A.-D.; Liu, Y. Decoupling methods of MIMO antenna arrays for 5G applications: A review. Front. Inf. Technol. Electron. Eng. 2020, 21, 62–71. [CrossRef]spa
dc.relation.references30. Subbaraj, S.; Kanagasabai, M.; Mohammed, G.N.A.; Palaniswamy, S.K.; Tipparaju, R.R.; Kingsly, S.; Selvam, Y.P. Integrated 4G/5G Multiservice MIMO Antenna for Hand-Held Devices. Wirel. Pers. Commun. 2019, 111, 2023–2043. [CrossRef]spa
dc.relation.references31. Tang, W.; Kang, S.; Zhao, J.; Zhang, Y.; Zhang, X.; Zhang, Z. Design of MIMO-PDMA in 5G mobile communication system. IET Commun. 2020, 14, 76–83. [CrossRef]spa
dc.relation.references32. Tsai, M.-D.; Yang, S.-Y.; Yu, C.-Y.; Chen, P.-Y.; Wu, T.-H.; Hassan, M.; Chen, C.-T.; Wang, C.-W.; Huang, Y.-C.; Hung, L.-H.; et al. 10.3 A 12nm CMOS RF Transceiver Supporting 4G/5G UL MIMO. IEEE Int. Solid State Circuits Conf. (ISSCC) 2020, 176–178. [CrossRef]spa
dc.relation.references33. Larsson, E.G.; Danev, D.; Olofsson, M.; Sorman, S. Teaching the Principles of Massive MIMO: Exploring reciprocity-based multiuser MIMO beamforming using acoustic waves. IEEE Signal Process. Mag. 2017, 34, 40–47. [CrossRef]spa
dc.relation.references34. Zhu, Y.; Chen, Y.; Yang, S. Integration of 5G Rectangular MIMO Antenna Array and GSM Antenna for Dual-Band Base Station Applications. IEEE Access 2020, 8, 63175–63187. [CrossRef]spa
dc.relation.references35. Buzzi, S.; D’Andrea, C.; Zappone, A.; D’Elia, C. User-Centric 5G Cellular Networks: Resource Allocation and Comparison with the Cell-Free Massive MIMO Approach. IEEE Trans. Wirel. Commun. 2020, 19, 1250–1264. [CrossRef]spa
dc.relation.references36. Bjornson, E.; Van Der Perre, L.; Buzzi, S.; Larsson, E.G. Massive MIMO in Sub-6 GHz and mmWave: Physical, Practical, and Use-Case Differences. IEEE Wirel. Commun. 2019, 26, 100–108. [CrossRef]spa
dc.relation.references37. MinTIC. Ministry of Information and Communication Technologies—Mobile Service. Available online: https://www.mintic. gov.co/portal/inicio/Sala-de-Prensa/Noticias/161329:En-mayo-de-2021-954-localidades-de-zonas-rurales-tendran-serviciomovil-4G-anuncia-la-ministra-Karen-Abudinen (accessed on 1 April 2021).spa
dc.relation.references38. Jungnickel, V.; Habel, K.; Parker, M.; Walker, S.; Bock, C.; Riera, J.F.; Marques, V.; Levi, D. Software-defined open architecture for front- and backhaul in 5G mobile networks. Int. Conf. Transparent Opt. Netw. (ICTON) 2014, 1–4. [CrossRef]spa
dc.relation.references39. Chih-Lin, I.; Huang, J.; Duan, R.; Cui, C.; Jiang, J.; Li, L. Recent Progress on C-RAN Centralization and Cloudification. IEEE Access 2014, 2, 1030–1039. [CrossRef]spa
dc.relation.references40. Intel. Wind an Intel Company—vRAN: The Next Step in Network Transformation. Available online: https://builders.intel.com/ docs/networkbuilders/vran-the-next-step-in-network-transformation.pdf (accessed on 1 April 2021).spa
dc.relation.references41. Lin, Y.; Feng, L.; Li, W.; Zhou, F.; Ou, Q. Stochastic Joint Bandwidth and Computational Allocation for Multi-Users and Multi-Edge-Servers in 5G D-RANs. IEEE Int. Conf. Smart Cloud 2019, 65–70. [CrossRef]spa
dc.relation.references42. Xu, J.; Dziong, Z.; Luxin, Y.; Huang, Z.; Xu, P.; Cabani, A. Intelligent multi-agent based C-RAN architecture for 5G radio resource management. Comput. Networks 2020, 180, 107418. [CrossRef]spa
dc.relation.references43. Mei, H.; Peng, L. Flexible functional split for cost-efficient C-RAN. Comput. Commun. 2020, 161, 368–374. [CrossRef]spa
dc.relation.references44. Keysight. 5G Terms and Acronyms. Available online: https://www.keysight.com/us/en/assets/7018-06171/brochures/5992-2 996.pdf (accessed on 1 April 2021).spa
dc.relation.references45. Gavrilovska, L.; Rakovic, V.; Denkovski, D. From Cloud RAN to Open RAN. Wirel. Pers. Commun. 2020, 113, 1523–1539. [CrossRef]spa
dc.relation.references46. Mendes, J.; Jiao, X.; Garcia-Saavedra, A.; Huici, F.; Moerman, I. Cellular access multi-tenancy through small-cell virtualization and common RF front-end sharing. Comput. Commun. 2019, 133, 59–66. [CrossRef]spa
dc.relation.references47. McKenney, B. Open RAN: Reality or Illusion? Available online: https://www.microwavejournal.com/articles/35108-open-ranreality-or-illusion (accessed on 1 April 2021).spa
dc.relation.references48. Nokia. Open RAN Explained. Available online: https://www.nokia.com/about-us/newsroom/articles/open-ran-explained/ (accessed on 1 April 2021).spa
dc.relation.references49. Ericsson. Non-Standalone and Standalone: Two Standards-Based Paths to 5G. Available online: https://www.ericsson.com/en/ blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g-tracks (accessed on 1 April 2021).spa
dc.relation.references50. GSMA. 5G Implementation Guidelines. Available online: https://www.gsma.com/futurenetworks/wp-content/uploads/2019 /03/5G-Implementation-Guideline-v2.0-July-2019.pdf (accessed on 1 April 2021).spa
dc.relation.references51. Samsung. 5G Standalone Architecture. Available online: https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-papers/0107_5g-standalone-architecture/5G_SA_Architecture_Technical_White_Paper_Public.pdf (accessed on 1 April 2021).spa
dc.relation.references52. Agiwal, M.; Kwon, H.; Park, S.; Jin, H. A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation. IEEE Access 2021, 9, 16193–16210. [CrossRef]spa
dc.relation.references53. GSMA. 5G Implementation Guidelines: NSA Option 3. Available online: https://www.gsma.com/futurenetworks/wp-content/ uploads/2019/03/5G-Implementation-Guidelines-NSA-Option-3-v2.1.pdf (accessed on 1 April 2021).spa
dc.relation.references54. Constain, S.; Mantilla-Gaviria, I.A.; Rueda-Jiménez, G.C.; Fernanda-Trujillo, L.; Barrera-Medina, J.G.; Thiriat-Tovar, P.E.; UstateBermúdez, A.G.; Triviño-Arbelaez, H.M.; Agudelo-Mora, O.I. Plan 5G—Colombia’s Digital Future Belongs to Everyone; Ministry of Information and Communication Technologies of Colombia: Bogota, Colombia, 2019. Available online: https://micrositios. mintic.gov.co/plan_tic_2018_2022/pdf/plan_tic_2018_2022_20191121.pdf (accessed on 1 April 2021).spa
dc.relation.references55. MinTIC. Ministry of Information and Communications – Resolution number 00467 of March 9, 2020. Available online: http: //micrositios.mintic.gov.co/plan_5g/pdf/resolucion_467_2020_temporal_espectro_pruebas.pdf (accessed on 1 April 2021).spa
dc.relation.references56. MinTIC. Ministry of Information and Communications Technology—Resolution number 003209 of 5 December 2019. Available online: https://www.mintic.gov.co/portal/604/articles-118058_resolucion_3209_2019.pdf (accessed on 1 April 2021).spa
dc.relation.references57. ANE. National Spectrum Agency. Resolution Number 442 of 22 August 2013. Available online: https://normograma.mintic.gov. co/mintic/docs/resolucion_mintic_0963_2019.htm (accessed on 1 April 2021).spa
dc.relation.references58. MinTIC. Ministry of Information and Communications—5G Pilot Expressions of Interest Report. 2020. Available online: http:// micrositios.mintic.gov.co/plan_5g/pdf/informe_manifestaciones_interes_piloto_5Gg_u20200311.pdf (accessed on 1 April 2021).spa
dc.relation.references59. MinTIC. Ministry of Information and Communications—Resolution number 000638 of 1 April 2020. Available online: http: //micrositios.mintic.gov.co/plan_5g/pdf/resolucion_638.pdf (accessed on 1 April 2021).spa
dc.relation.references60. MinTIC. Ministry of Information and Communications—Resolution number 000722 of 30 April 2020. Available online: https: //micrositios.mintic.gov.co/plan_5g/pdf/resolucion_722.pdf (accessed on 1 April 2021).spa
dc.relation.references61. GSMA. 5G y el Rango 3,3-3,8 GHz en América Latina November 2020. Available online: https://www.gsma.com/spectrum/wpcontent/uploads/2020/11/5G-and-3.5-GHz-Range-in-Latam-Spanish.pdf (accessed on 1 April 2021).spa
dc.relation.references62. MinTIC. Ministry of Information and Communications—Mintic Hopes to Have a 5G Auction before the End of the Government. Available online: https://mintic.gov.co/portal/inicio/https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-enlos-Medios/161584:Mintic-espera-tener-una-subasta-5G-antes-que-termine-el-Gobierno (accessed on 1 April 2021).spa
dc.relation.references63. MinTIC. Ministry of Information and Communications—By May 2021, 954 Rural Localities will Have 4G Mobile Service, Announces Minister Karen Abudinen. Available online: https://mintic.gov.co/portal/inicio/Sala-de-Prensa/Noticias/161329: En-mayo-de-2021-954-localidades-de-zonas-rurales-tendran-servicio-movil-4G-anuncia-la-ministra-Karen-Abudinen (accessed on 1 April 2021).spa
dc.relation.references64. MinTIC. Ministry of Information and Communications—Resolution 638 of 1 April 2020. Available online: https://micrositios. mintic.gov.co/plan_5g/pdf/infome_asignacion_5g_2.pdf (accessed on 1 April 2021).spa
dc.relation.references65. Telefonica. Movistar Empresas and Hospital Militar Central Present Second 5G Pilot. Available online: https://www.telefonica. co/ver_noticia?id_not=409248143 (accessed on 1 April 2021).spa
dc.relation.references66. HOMIL. Hospital Militar Central—HOMIL and Movistar Empresas Present Second 5G Pilot. Available online: https://www. hospitalmilitar.gov.co/index.php?idcategoria=69906 (accessed on 1 April 2021).spa
dc.relation.references67. Claro. The Deployment of 5G Antennas Continues. Available online: https://www.claro.com.co/institucional/pruebas-5g/ (accessed on 1 April 2021).spa
dc.relation.references68. Claro. 5G Technology in Colombia: Already in Trials. Available online: https://www.claro.com.co/empresas/sectores/noticiasinteres/5g-colombia/ (accessed on 1 April 2021).spa
dc.relation.references69. MinTIC. Ministry of Information and Communications—MinTIC Assigned Spectrum to Claro to Develop 5G Trials for Six Months. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-en-los-Medios/145864:MinTIC-leasigno-espectro-a-Claro-para-desarrollar-pruebas-5G-durante-seis-meses (accessed on 1 April 2021).spa
dc.relation.references70. MinTIC. Ministry of Information and Communications—Resolution 001039 of 23 June 2020. Available online: https://micrositios. mintic.gov.co/plan_5g/pdf/permisos_uso_espectro_piloto_5G.zip (accessed on 1 April 2021).spa
dc.relation.references71. Claro. Claro Expresses Interest in 5G Technology. Available online: https://www.claro.com.co/institucional/tecnologia-5g (accessed on 1 April 2021).spa
dc.relation.references72. MinTIC. Ministry of Information and Communications—In Colombia, 5G Networks Will Be Ready in 2022. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-en-los-Medios/101472:En-Colombia-redes-5G-estaranlistas-en-2022 (accessed on 1 April 2021).spa
dc.relation.references73. Enter. Telefonica conducted 5G technology trial in Colombia. Available online: https://www.enter.co/empresas/colombiadigital/telefonica-prueba-5g-en-colombia/ (accessed on 1 April 2021).spa
dc.relation.references74. Rebato, M.; Zorzi, M. A Spectrum Sharing Solution for the Efficient Use of mmWave Bands in 5G Cellular Scenarios. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN) 2018, 1–5. [CrossRef]spa
dc.relation.references75. ANE. National Spectrum Agency—Functions. Available online: http://www.ane.gov.co/Agencia/SitePages/MarcoEstrategico. aspx?p=1&d=8] (accessed on 1 April 2021).spa
dc.relation.references76. MinTIC. Ministry of Information and Communications—Commercial Roll-Out of 5G Network. Available online: https:// www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-en-los-Medios/149152:Colombia-inicia-proceso-para-desplieguecomercial-de-red-5G (accessed on 1 April 2021).spa
dc.relation.references77. GSMA. The WRC Series 3.5 GHz in the 5G Era Preparing for New Services in 3.3-4.2 GHz March 2021. Available online: https://www.gsma.com/spectrum/wp-content/uploads/2021/02/3.5-GHz-for-5G.pdf (accessed on 1 April 2021).spa
dc.relation.references78. GSA. 2020 in Review 5G networks, Spectrum & Devices (December 2020). Available online: https://gsacom.com/paper/2020-inreview-5g-networks-spectrum-devices/ (accessed on 1 April 2021).spa
dc.relation.references79. Ericsson. Building Efficient Fronthaul Networks Using Packet Technologies. 2020. Available online: https://www.ericsson.com/ en/blog/2020/4/building-efficient-fronthaul-networks-using-packet-technologies (accessed on 1 April 2021).spa
dc.relation.references80. Pérez, G.O.; Hernández, J.A.; Larrabeiti, D. Fronthaul Network Modeling and Dimensioning Meeting Ultra-Low Latency Requirements for 5G. J. Opt. Commun. Netw. 2018, 10, 573–581. [CrossRef]spa
dc.relation.references81. Perez, G.O.; Lopez, D.L.; Hernandez, J.A. 5G New Radio Fronthaul Network Design for eCPRI-IEEE 802.1CM and Extreme Latency Percentiles. IEEE Access 2019, 7, 82218–82230. [CrossRef]spa
dc.relation.references82. MinTIC. Ministry of Information and Communications Technologies—The Spectrum Auction Last December Was Very Clear,”Sylvia Constaín. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/Columnas-Ministra-TIC/126186: La-subasta-de-espectro-del-pasado-diciembre-fue-muy-clara-Sylvia-Constain (accessed on 1 April 2021).spa
dc.relation.references83. MinTIC. Ministry of Information and Communication Technologies—Resolution 3078 of 2019. Available online: https:// normograma.mintic.gov.co/mintic/docs/resolucion_mintic_3078_2019.htm (accessed on 1 April 2021).spa
dc.relation.references84. MinTIC. Ministry of Information and Communication Technologies—Resolution 3121 of 2019. Available online: https:// normograma.mintic.gov.co/mintic/docs/resolucion_mintic_3121_2019.htm (accessed on 1 April 2021).spa
dc.relation.references85. Abudinen-Abuchaibe, K.A.; Mantilla-Gaviria, I.A.; Barrera-Medina, J.G.; Ramírez-Echeverry, J.; Rueda-Pepinosa, J.D.; DávilaBarragán, J.A.; González-Cárdenas, G.; Corredor-Forero, H.A.A.; Ustate-Bermúdez, A.G.; Ruiz-Eraso, A.B.; et al. Preliminary Analysis of the Objective Selection Process for the Allocation of Spectrum Use Permits in IMT Bands (2020). Ministry of Information Technologies and Communications of Colombia. Available online: https://www.mintic.gov.co/portal/604/articles146624_resolucion_1322_20200727_soporte_tecnico.pdf (accessed on 1 April 2021).spa
dc.relation.references86. Qualcomm. Global Update on Spectrum for 4G & 5G. Available online: https://www.qualcomm.com/media/documents/files/ spectrum-for-4g-and-5g.pdf (accessed on 1 April 2021).spa
dc.relation.references87. ANE. National Spectrum Agency—Public consultation document on frequency bands available for the future development of International Mobile Telecommunications (IMT) in Colombia, August 2020. Available online: http: //www.ane.gov.co/Documentos%20compartidos/ArchivosDescargables/noticias/Consulta%20p%C3%BAblica%20sobre%20 las%20bandas%20disponibles%20para%20el%20futuro%20desarrollo%20de%20las%20IMT%20en%20Colombia.pdf (accessed on 1 April 2021).spa
dc.relation.references88. GSMA. 5G Spectrum Positions. 2019. Available online: https://www.gsma.com/latinamerica/wp-content/uploads/2019/03/ 5G-Spectrum-Positions-InfoG.pdf (accessed on 1 April 2021).spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal