Mostrar el registro sencillo del ítem

dc.contributor.authorCanales, Fausto A.spa
dc.contributor.authorJurasz, Jakub K.spa
dc.contributor.authorGuezgouz, Mohammedspa
dc.contributor.authorBeluco, Alexandrespa
dc.date.accessioned2021-06-01T00:31:20Z
dc.date.available2021-06-01T00:31:20Z
dc.date.issued2021
dc.identifier.issn2213-1388spa
dc.identifier.urihttps://hdl.handle.net/11323/8311spa
dc.description.abstractThis paper presents a mathematical model for estimating the optimal sizing and assessing a standalone hybrid power system's performance entirely based on variable renewable energy sources and coupled with a hybrid energy storage system. This study evaluates how different levels of the main components' capital cost and the loss of power supply probability would affect the cost of energy and the power system's optimal sizing. The case study selected for this study was Ometepe Island in Nicaragua, where the crater lake of an extinct volcano was considered a feasible upper reservoir of a pumped storage hydropower plant, reducing the investments associated with this component. The mathematical formulation considers energy storage losses and gains, and the Pareto efficient solutions of the multi-objective optimization model simultaneously increase reliability, reduce the cost of energy, and minimize curtailment energy. By employing time-series with an hourly resolution, the model allows assessing the impact of the interannual variability of renewable energy sources on the system's performance. As for the case study, the cost of energy obtained from the model results ranges between €0.047/kWh and €0.095/kWh, based on international reference values, and these values match the information available in the literature and other databases.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceSustainable Energy Technologies and Assessmentsspa
dc.subjectHybrid power systemseng
dc.subjectMulti-objective optimizationeng
dc.subjectHybrid energy storageeng
dc.subjectReliabilityeng
dc.subjectEnergy management strategyeng
dc.titleCost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island communityeng
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/abs/pii/S2213138821000722spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.seta.2021.101062spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesInternational Renewable Energy Agency Global renewables outlook: energy transformation 2050 IRENA, Abu Dhabi (2020)spa
dc.relation.referencesM.Z. Jacobson, M.A. Delucchi, G. Bazouin, M.J. Dvorak, R. Arghandeh, Z.A.F. Bauer, T.W. Yeskoo, et al. A 100% wind, water, sunlight (WWS) all-sector energy plan for Washington State Renewable Energy, 86 (2016), pp. 75-88, 10.1016/j.renene.2015.08.003spa
dc.relation.referencesM. Diesendorf, B. Elliston The feasibility of 100% renewable electricity systems: a response to critics Renew Sustain Energy Rev, 93 (2018), pp. 318-330, 10.1016/j.rser.2018.05.042spa
dc.relation.referencesM.Z. Jacobson, M.A. Delucchi Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials Energy Policy, 39 (3) (2011), pp. 1154-1169, 10.1016/j.enpol.2010.11.040spa
dc.relation.referencesI.G. Mason, S.C. Page, A.G. Williamson A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources Energy Policy, 38 (8) (2010), pp. 3973-3984, 10.1016/j.enpol.2010.03.022spa
dc.relation.referencesZ. Bačelić Medić, B. Ćosić, N. Duić Sustainability of remote communities: 100% renewable island of Hvar J Renewable Sustainable Energy, 5 (4) (2013), p. 041806, 10.1063/1.4813000spa
dc.relation.referencesElliston B, Diesendorf M, MacGill I. Reliability of 100 % Renewable Electricity Supply in the Australian National Electricity Market. In: Uyar TS, editor. Towar. 100% Renew. Energy. Springer Proc. Energy, Cham: Springer; 2017, p. 297–303. https://ezproxy.cuc.edu.co:2067/10.1007/978-3-319-45659-1_32.spa
dc.relation.referencesC.G. Meza, N.B. Amado, I.L. Sauer Transforming the Nicaraguan energy mix towards 100% renewable Energy Procedia, 138 (2017), pp. 494-499, 10.1016/j.egypro.2017.10.234spa
dc.relation.referencesM.Z. Jacobson, M.A. Delucchi, M.A. Cameron, B.V. Mathiesen Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes Renewable Energy, 123 (2018), pp. 236-248, 10.1016/j.renene.2018.02.009spa
dc.relation.referencesA. Aghahosseini, D. Bogdanov, L.S.N.S. Barbosa, C. Breyer Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030 Renew Sustain Energy Rev, 105 (2019), pp. 187-205, 10.1016/j.rser.2019.01.046spa
dc.relation.referencesR. Hinrichs-Rahlwes, H.-J. Fell, S. Furuya, L. Gorroño, L. Holm, T. Kåberger, et al. Towards 100% Renewable Energy: Status Trends and Lessons Learned IRENA, Abu Dhabi (2019)spa
dc.relation.referencesM. Fasihi, C. Breyer Baseload electricity and hydrogen supply based on hybrid PV-wind power plants J Cleaner Prod, 243 (2020), p. 118466, 10.1016/j.jclepro.2019.118466spa
dc.relation.referencesT. Weir Renewable energy in the Pacific Islands: Its role and status Renew Sustain Energy Rev, 94 (2018), pp. 762-771, 10.1016/j.rser.2018.05.069spa
dc.relation.referencesMuehlenhaus I, editor. Geography Today: An Encyclopedia of Concepts, Issues, and Technology. Santa Barbara: ABC-CLIO; 2019.spa
dc.relation.referencesK. Sperling How does a pioneer community energy project succeed in practice? The case of the Samsø Renewable Energy Island Renew Sustain Energy Rev, 71 (2017), pp. 884-897, 10.1016/j.rser.2016.12.116spa
dc.relation.referencesA.S. Oyewo, J. Farfan, P. Peltoniemi, C. Breyer Repercussion of large scale hydro dam deployment: the case of Congo grand Inga hydro Project Energies, 11 (2018), p. 972, 10.3390/en11040972spa
dc.relation.referencesT.W. Brown, T. Bischof-Niemz, K. Blok, C. Breyer, H. Lund, B.V. Mathiesen Response to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems’ Renew Sustain Energy Rev, 92 (2018), pp. 834-847, 10.1016/j.rser.2018.04.113spa
dc.relation.referencesB.K. Sovacool The intermittency of wind, solar, and renewable electricity generators: technical barrier or rhetorical excuse? Util Policy, 17 (3-4) (2009), pp. 288-296, 10.1016/j.jup.2008.07.001spa
dc.relation.referencesB.P. Heard, B.W. Brook, T.M.L. Wigley, C.J.A. Bradshaw Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems Renew Sustain Energy Rev, 76 (2017), pp. 1122-1133, 10.1016/j.rser.2017.03.114spa
dc.relation.referencesM.W. Murage, C.L. Anderson Contribution of pumped hydro storage to integration of wind power in Kenya: an optimal control approach Renewable Energy, 63 (2014), pp. 698-707, 10.1016/j.renene.2013.10.026spa
dc.relation.referencesJ. Jurasz, P.B. Dąbek, B. Kaźmierczak, A. Kies, M. Wdowikowski Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland) Energy, 161 (2018), pp. 183-192, 10.1016/j.energy.2018.07.085spa
dc.relation.referencesLacal Arantegui R, Jaeger-Waldau A, Vellei M, Sigfusson B, Magagna D, Jakubcionis M, et al. ETRI 2014 - Energy Technology Reference Indicator projections for 2010-2050. Petten: Publications Office of the European Union; 2014. https://ezproxy.cuc.edu.co:2067/10.2790/057687.spa
dc.relation.referencesT. Hino, A. Lejeune Pumped storage hydropower developments Compr. Renew. Energy, Elsevier (2012), pp. 405-434, 10.1016/B978-0-08-087872-0.00616-8spa
dc.relation.referencesE. Pujades, T. Willems, S. Bodeux, P. Orban, A. Dassargues Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow Hydrogeol J, 24 (6) (2016), pp. 1531-1546, 10.1007/s10040-016-1413-zspa
dc.relation.referencesJ. Menéndez, J. Loredo, J.M. Fernandez, M. Galdo Underground pumped-storage hydro power plants with mine water in abandoned coal mines Mine Water Circ Econ (2017), pp. 6-13spa
dc.relation.referencesB. Lu, M. Stocks, A. Blakers, K. Anderson Geographic information system algorithms to locate prospective sites for pumped hydro energy storage Appl Energy, 222 (2018), pp. 300-312, 10.1016/j.apenergy.2018.03.177spa
dc.relation.referencesN. Ghorbani, H. Makian, C. Breyer A GIS-based method to identify potential sites for pumped hydro energy storage - case of Iran Energy, 169 (2019), pp. 854-867, 10.1016/j.energy.2018.12.073spa
dc.relation.referencesK. Bunker, S. Doig, K. Hawley, J. Morris Renewable microgrids: profiles from islands and remote communities across the globe Rocky Mountain Institute, Boulder (2015)spa
dc.relation.referencesN. Duić, M. da Graça Carvalho Increasing renewable energy sources in island energy supply: case study Porto Santo Renew Sustain Energy Rev, 8 (4) (2004), pp. 383-399, 10.1016/j.rser.2003.11.004spa
dc.relation.referencesC. Bueno, J.A. Carta Technical–economic analysis of wind-powered pumped hydrostorage systems. Part II: model application to the island of El Hierro Sol Energy, 78 (3) (2005), pp. 396-405, 10.1016/j.solener.2004.08.007spa
dc.relation.referencesC. Bueno, J.A. Carta Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands Renew Sustain Energy Rev, 10 (4) (2006), pp. 312-340, 10.1016/j.rser.2004.09.005spa
dc.relation.referencesG. Caralis, A. Zervos Analysis of the combined use of wind and pumped storage systems in autonomous Greek islands IET Renew Power Gener, 1 (1) (2007), p. 49, 10.1049/iet-rpg:20060010spa
dc.relation.referencesG. Caralis, K. Rados, A. Zervos On the market of wind with hydro-pumped storage systems in autonomous Greek islands Renew Sustain Energy Rev, 14 (8) (2010), pp. 2221-2226, 10.1016/j.rser.2010.02.008spa
dc.relation.referencesS. Papaefthimiou, E. Karamanou, S. Papathanassiou, M. Papadopoulos Operating policies for wind-pumped storage hybrid power stations in island grids IET Renew Power Gener, 3 (3) (2009), p. 293, 10.1049/iet-rpg.2008.0071spa
dc.relation.referencesD.A. Katsaprakakis, D.G. Christakis, K. Pavlopoylos, S. Stamataki, I. Dimitrelou, I. Stefanakis, P. Spanos Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos Appl Energy, 97 (2012), pp. 38-48, 10.1016/j.apenergy.2011.11.069spa
dc.relation.referencesM. Kapsali, J.S. Anagnostopoulos, J.K. Kaldellis Wind powered pumped-hydro storage systems for remote islands: a complete sensitivity analysis based on economic perspectives Appl Energy, 99 (2012), pp. 430-444, 10.1016/j.apenergy.2012.05.054spa
dc.relation.referencesT. Ma, H. Yang, L. Lu, J. Peng Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong Renewable Energy, 69 (2014), pp. 7-15, 10.1016/j.renene.2014.03.028spa
dc.relation.referencesS.V. Papaefthymiou, S.A. Papathanassiou Optimum sizing of wind-pumped-storage hybrid power stations in island systems Renew Energy, 64 (2014), pp. 187-196, 10.1016/j.renene.2013.10.047spa
dc.relation.referencesT. Ma, H. Yang, L. Lu, J. Peng Optimal design of an autonomous solar–wind-pumped storage power supply system Appl Energy, 160 (2015), pp. 728-736, 10.1016/j.apenergy.2014.11.026spa
dc.relation.referencesI. Barreira, C. Gueifão, J. Ferreira de Jesus Off-stream Pumped Storage Hydropower plant to increase renewable energy penetration in Santiago Island, Cape Verde J Phys Conf Ser, 813 (2017), 10.1088/1742-6596/813/1/012011 012011spa
dc.relation.referencesP. Tsamaslis, A. Katsanevakis, G. Karagiorgis Hybridization of photovoltaics with pumped storage hydroelectricity. an approach to increase RES penetration and achieve grid benefits. Application in the island of Cyprus J Power Technol, 97 (2017), pp. 336-341spa
dc.relation.referencesM.S. Javed, T. Ma, J. Jurasz, M.Y. Amin Solar and wind power generation systems with pumped hydro storage: Review and future perspectives Renewable Energy, 148 (2020), pp. 176-192, 10.1016/j.renene.2019.11.157spa
dc.relation.referencesM. Guezgouz, J. Jurasz, B. Bekkouche, T. Ma, M.S. Javed, A. Kies Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems 112046 Energy Convers Manage, 199 (2019), 10.1016/j.enconman.2019.112046spa
dc.relation.referencesC.G. Meza, C. Zuluaga Rodríguez, C.A. D'Aquino, N.B. Amado, A. Rodrigues, I.L. Sauer Toward a 100% renewable island: a case study of Ometepe's energy mix Renewable Energy, 132 (2019), pp. 628-648, 10.1016/j.renene.2018.07.124spa
dc.relation.referencesMinisterio de Energía y Minas. Plan de expansión de la generación eléctrica de 2019-2033. Managua; 2017.spa
dc.relation.referencesL. Kapelanczyk, W.I. Rose, B. Jicha An eruptive history of Maderas volcano using new 40Ar/39Ar ages and geochemical analyses Bull Volcanol, 74 (9) (2012), pp. 2007-2021, 10.1007/s00445-012-0644-7spa
dc.relation.referencesM. Ranaboldo, B. Domenech, G.A. Reyes, L. Ferrer-Martí, R. Pastor Moreno, A. García-Villoria Off-grid community electrification projects based on wind and solar energies: a case study in Nicaragua Sol Energy, 117 (2015), pp. 268-281, 10.1016/j.solener.2015.05.005spa
dc.relation.referencesEmpresa Nacional de Transmisión Eléctrica. Ometepe recibe energía eléctrica confiable 2017. <http://www.enatrel.gob.ni/ometepe-recibira-energia-electrica-confiable-2/> [accessed January 5, 2020].spa
dc.relation.referencesOmetepe – Google Maps 2020. <https://goo.gl/maps/XEVVrMfKK632> [accessed July 7, 2020].spa
dc.relation.referencesJ. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions Sol Energy, 195 (2020), pp. 703-724spa
dc.relation.referencesS.H. Karaki, R.B. Chedid, R. Ramadan Probabilistic performance assessment of autonomous solar-wind energy conversion systems IEEE Trans Energy Convers, 14 (1999), pp. 766-772, 10.1109/60.790949spa
dc.relation.referencesI. Abouzahr, R. Ramakumar Loss of power supply probability of stand-alone photovoltaic systems: a closed form solution approach IEEE Trans Energy Convers, 6 (1991), pp. 1-11, 10.1109/60.73783spa
dc.relation.referencesW.R. Powell An analytical expression for the average output power of a wind machine Sol Energy, 26 (1) (1981), pp. 77-80, 10.1016/0038-092X(81)90114-6spa
dc.relation.referencesBauer L, Matysik S. Enercon E-33/300-300 kW Wind Turbine. Wind Big Portal Wind Energy 2020. <https://en.wind-turbine-models.com/turbines/368-enercon-e-33-300> [accessed May 8, 2020].spa
dc.relation.referencesENERCON. Wind reduces fuel consumption on Falklands. Windblatt; 2007p. 10–1.spa
dc.relation.referencesF.A. Canales, A. Beluco, C.A.B. Mendes Modelling a hydropower plant with reservoir with the micropower optimisation model (HOMER) Int J Sustain Energ, 36 (7) (2017), pp. 654-667spa
dc.relation.referencesH. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding Progress in electrical energy storage system: a critical review Prog Nat Sci, 19 (3) (2009), pp. 291-312, 10.1016/j.pnsc.2008.07.014spa
dc.relation.referencesCopernicus Atmosphere Monitoring Service Products. CAMS radiation service n.d. <http://www.soda-pro.com/web-services/radiation/cams-radiation-service> [accessed November 15, 2018].spa
dc.relation.referencesB.Y.H. Liu, R.C. Jordan The interrelationship and characteristic distribution of direct, diffuse and total solar radiation Sol Energy, 4 (3) (1960), pp. 1-19spa
dc.relation.referencesGlobal Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4 2015. https://ezproxy.cuc.edu.co:2067/10.5067/VJAFPLI1CSIV.spa
dc.relation.referencesJ.A. Gómez Navarrete, V. Maderas Identificación de áreas con potenciales riesgos de inundación y deslizamiento a través de geoprocesamiento con SIG Universidad Nacional del Litoral (2009)spa
dc.relation.referencesStocks C, editor. The world's pumped storage plants. Int. Water Power Dam Constr. Yearb., London: Global Trade Media - Progressive Media Group Limited; 2012, p. 282–92.spa
dc.relation.referencesE. Nkiaka, N.R. Nawaz, J.C. Lovett Evaluating global reanalysis precipitation datasets with rain gauge measurements in the Sudano-Sahel region: case study of the Logone catchment, Lake Chad Basin: evaluating reanalysis precipitation estimates in the Sudano-Sahel Met. Apps, 24 (1) (2017), pp. 9-18spa
dc.relation.referencesK. Gudulas, K. Voudouris, G. Soulios, G. Dimopoulos Comparison of different methods to estimate actual evapotranspiration and hydrologic balance Desalin Water Treat, 51 (13-15) (2013), pp. 2945-2954spa
dc.relation.referencesA.R. Ghumman, Y.M. Ghazaw, A. Alodah, A. Raufur, M. Shafiquzzaman, H. Haider Identification of parameters of evaporation equations using an optimization technique based on pan evaporation Water (Switzerland) (2020), p. 12, 10.3390/w12010228spa
dc.relation.referencesMinisterio de Energía y Minas. Anuario estadístico del sector eléctrico 2015. Managua; 2016.spa
dc.relation.referencesFundación Nicaragüense para el Desarrollo Económico y Social. El sector de energía eléctrica de Nicaragua. Managua; 2016.spa
dc.relation.referencesThe World Bank. Electric power consumption (kWh per capita) 2019. https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC [accessed December 12, 2019].spa
dc.relation.referencesElectricity Map: Live CO2 emissions of electricity consumption 2020. <https://www.electricitymap.org/map> [accessed May 5, 2020].spa
dc.relation.referencesM. Guezgouz, J. Jurasz, B. Bekkouche Techno-economic and environmental analysis of a hybrid PV-WT-PSH/BB standalone system supplying various loads Energies (2019), p. 12, 10.3390/en12030514spa
dc.relation.referencesS. Mirjalili, S. Saremi, S.M. Mirjalili, L. dos S. Coelho Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization Expert Syst Appl, 47 (2016), pp. 106-119, 10.1016/j.eswa.2015.10.039spa
dc.relation.referencesN.H. Reich, B. Mueller, A. Armbruster, W.G.J.H.M. Van Sark, K. Kiefer, C. Reise Performance ratio revisited: Is PR > 90% realistic? Prog Photovoltaics Res Appl, 20 (2012), pp. 717-726, 10.1002/pip.1219spa
dc.relation.referencesS. Baek, E. Park, M.-G. Kim, S.J. Kwon, K.J. Kim, J.Y. Ohm, et al. Optimal renewable power generation systems for Busan metropolitan city in South Korea Renewable Energy, 88 (2016), pp. 517-525, 10.1016/j.renene.2015.11.058spa
dc.relation.referencesNicaragua prepara trabajo de exploración geotérmica. Bus News Am; 2020.spa
dc.relation.referencesSánchez Molina P. Comienza el funcionamiento de la planta Solaris de 12 MW en Nicaragua. PV Mag; 2017.spa
dc.relation.referencesOng S, Campbell C, Denholm P, Margolis R, Heath G. Land-Use Requirements for Solar Power Plants in the United States. Golden; 2013.spa
dc.relation.referencesAsturias Ozaeta J. Desarrollo y situación actual del sector eólico en América Central. Quito; 2012.spa
dc.relation.referencesM.M.V. Cantarero Decarbonizing the transport sector: The Promethean responsibility of Nicaragua J Environ Manage, 245 (2019), pp. 311-321, 10.1016/j.jenvman.2019.05.109spa
dc.relation.referencesB. Ceran Multi-criteria comparative analysis of clean hydrogen production scenarios Energies, 13 (2020), 10.3390/en13164180spa
dc.relation.referencesHydrogenics. Renewable Hydrogen Solutions 2018:18. <http://www.hydrogenics.com/wp-content/uploads/Renewable-Hydrogen-Brochure.pdf> [accessed September 9, 2020].spa
dc.relation.referencesJ. Proost State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings Int J Hydrogen Energy, 44 (9) (2019), pp. 4406-4413, 10.1016/j.ijhydene.2018.07.164spa
dc.relation.referencesA.A. Solomon, D. Bogdanov, C. Breyer Curtailment-storage-penetration nexus in the energy transition Appl Energy, 235 (2019), pp. 1351-1368, 10.1016/j.apenergy.2018.11.069spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International