Show simple item record

dc.creatorL.S. Oliveira, Marcos
dc.creatorNeckel, Alcindo
dc.creatorPinto, Diana
dc.creatorStolfo Maculan, Laercio
dc.creatorDalmagro Zanchett, Matheus Roberto
dc.creatorF.O. Silva, Luis
dc.date.accessioned2021-06-01T15:20:40Z
dc.date.available2021-06-01T15:20:40Z
dc.date.issued2021-03-14
dc.identifier.issn0045-6535
dc.identifier.urihttps://hdl.handle.net/11323/8321
dc.description.abstractHistoric buildings that comprise the cultural heritage of humanity are in need of preservation on a worldwide scale in regard to degradation resultant from atmospheric pollutants. The Brazilian Public Market, located in the historic center of the mega city of Sao Paulo, is the object of this research, due to its representation of historical Brazilian architecture. The general objective of this manuscript is to analyze the influence of air pollutants on the degradation of the historic Sao Paulo Public Market in the city of Sao~ Paulo, Brazil. Methodologically, between May 2018 and April 2019, samples of sedimented dust were collected at five points on the side walls of the market’s historic structure, for the analysis of accumulated ultrafine particles (UFPs) and nanoparticles (NPs). A total of 20 samples of particulate matter were collected using self-made passive samplers (SMPSs). Using SMPSs, 12 months of accumulation and deposition were used to sample the atmospheric PM1. The results demonstrate the presence of dangerous elements such as: As, Cd, Cr, Pb, Zn. Note that EDS coupled with microscopy techniques, points out the risks to human health, due to the presence of these dangerous elements that accumulate in the building’s structure. The results show that 85% of the NPs sampled contained Pb, and 56% contained Pb and Ti, which are harmful to both historic buildings and human health. Air pollution enables the further deterioration of the Sao Paulo Public Market, which is in need of restoration.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceChemospherespa
dc.subjectVehicular trafficeng
dc.subjectIndustrial pollutantseng
dc.subjectBuilt historical heritageeng
dc.subjectNanoparticleseng
dc.subjectToxic elementseng
dc.subjectHuman healtheng
dc.titleAir pollutants and their degradation of a historic building in the largest metropolitan area in latin americaeng
dc.typearticlespa
dcterms.referencesAmato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Enviroment 43 (9), 1650e1659.spa
dcterms.referencesBessa, M.J., Brandao, F., Viana, M., Gomes, J.F., Monfort, E., Cassee, F.R., Fraga, S., ~ Teixeira, J.P., 2020. Nanoparticle exposure and hazard in the ceramic industry: an overview of potential sources, toxicity and health effects. Environ. Res. 184, 109297. https://doi.org/10.1016/j.envres.2020.109297spa
dcterms.referencesBorges, C.S., Weindorf, D.C., Nascimento, D.C., Curi, N., Guilherme, L.R.G., Carvalho, G.S., Ribeiro, B.T., 2020. Comparison of portable X-ray fluorescence spectrometry and laboratory-based methods to assess the soil elemental composition: applications for wetland soils. Environmental Technology & Innovation 19, 100826. https://doi.org/10.1016/j.eti.2020.100826.spa
dcterms.referencesBrodny, J., Tutak, M., 2021. The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod. 279, 123641. https:// doi.org/10.1016/j.jclepro.2020.123641.spa
dcterms.referencesCETESB, 2021. Sao Paulo state environmental agency: 2021 vehicle emissions ~ report. https://cetesb.sp.gov.br/veicular/#:~:text¼A%20frota%20motorizada% 20no%20Estado,e%202%2C5%20milh%C3%B5es%20de. (Accessed 3 March 2021)spa
dcterms.referencesComite, V., Pozo-Antonio, J.S., Cardell, C., Randazzo, L., Larussa, M.F., Fermo, P., 2020. A multi-analytical approach for the characterization of black crusts on the facade of an historical cathedral. Microchem. J. 158 https://doi.org/10.1016/ j.microc.2020.105121, 105121-1.spa
dcterms.referencesCosta, E., Seixas, J., Baptista, P., Costa, G., Turrentine, T., 2018. CO2 emissions and mitigation policies for urban road transportation: sao Paulo versus shanghai. Urbe. Revista Brasileira de Gestao Urbana 10 (1), 43 ~ e158. https://doi.org/ 10.1590/2175-3369.010.supl1.ao15.spa
dcterms.referencesDalmora, A.C., Ramos, C.G., Querol, X., Kautzmann, R.M., Oliveira, M.L.S., Taffarel, S.R., Moreno, T., Silva, L.F.O., 2016. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere 144, 2013e2017. https://doi.org/10.1016/ j.chemosphere.2015.10.047.spa
dcterms.referencesDebone, D., Leiriao, L.F.L., Miraglia, S.G.E.K., 2020. Air quality and health impact ~ assessment of a truckers’ strike in Sao Paulo state, Brazil: a case study. Urban Climate 34, 100687. https://doi.org/10.1016/j.uclim.2020.100687spa
dcterms.referencesGallego-Cartagena, E., Morillas, H., Maguregui, M., Patino-Camelo, K., Marcaida, I., ~ Morgado-Gamero, W., Silva, L.F.O., Madariaga, J.M., 2020. A comprehensive study of biofilms growing on the built heritage of a Caribbean industrial city in correlation with construction materials. Int. Biodeterior. Biodegrad. 147, 104874. https://doi.org/10.1016/j.ibiod.2019.104874.spa
dcterms.referencesGope, M., Masto, R.E., George, J., Balachandran, S., 2018. Tracing source, distribution and health risk of potentially harmful elements (PHEs) in street dust of Durgapur, India. Ecotoxicol. Environ. Saf. 154, 280e293. https://doi.org/10.1016/ j.ecoenv.2018.02.042.spa
dcterms.referencesGuo, D., Zhao, P., Wang, R., Yao, R., Hu, J., 2020. Numerical simulations of the flow field and pollutant dispersion in an idealized urban area under different atmospheric stability conditions. Process Saf. Environ. Protect. 136, 310e323. https://doi.org/10.1016/j.psep.2020.01.031.spa
dcterms.referencesGredilla, A., de Vallejuelo, S.F.O., Gomez-Nubla, L., Carrero, J.A., de Le~ ao, F.B., Madariaga, J.M., Silva, L.F., 2017. Are children playgrounds safe play areas? Inorganic analysis and lead isotope ratios for contamination assessment in recreational (Brazilian) parks. Environ. Sci. Pollut. Control Ser. 24, 24333e24345.spa
dcterms.referencesHao, Y., Gao, C., Deng, S., Yuan, M., Song, W., Lu, Z., Qiu, Z., 2019. Chemical characterisation of PM2.5 emitted from motor vehicles powered by diesel, gasoline, natural gas and methanol fuel. Sci. Total Environ. 674, 128e139. https://doi.org/ 10.1016/j.scitotenv.2019.03.410.spa
dcterms.referencesHatCr, M.E., 2020. Determining the weathering classification of stone cultural heritage via the analytic hierarchy process and fuzzy inference system. J. Cult. Herit. 44, 120e134. https://doi.org/10.1016/j.culher.2020.02.011.spa
dcterms.referencesHatir, M.E., Barstugan, M., _ Ince, _ I., 2020. Deep learning-based weathering type recognition in historical stone monuments. J. Cult. Herit. 45, 193e203. https:// doi.org/10.1016/j.culher.2020.04.008.spa
dcterms.referencesHerrera, L.K., Videla, H.A., 2009. Surface analysis and materials characterization for the study of biodeterioration and weathering effects on cultural property. Int. Biodeterior. Biodegrad. 63 (7), 813e822. https://doi.org/10.1016/ j.ibiod.2009.05.002.spa
dcterms.referencesHoward, J., Weyhrauch, J., Loriaux, G., Schultz, B., Baskaran, M., 2019. Contributions of artifactual materials to the toxicity of anthropogenic soils and street dusts in a highly urbanized terrain. Environ. Pollut. 255, 113350. https://doi.org/10.1016/ j.envpol.2019.113350.spa
dcterms.referencesIbge, 2020. Brazilian Institute of Geography and Statistics. Demographic Data. https://cidades.ibge.gov. (Accessed 4 September 2020).spa
dcterms.referencesKhajavi, M.Z., Mohammadi, R., Ahmadi, S., Farhoodi, M., Yousefi, M., 2019. Strategies for controlling release of plastic compounds into foodstuffs based on application of nanoparticles and its potential health issues. Trends Food Sci. Technol. 90, 1e12. https://doi.org/10.1016/j.tifs.2019.05.009.spa
dcterms.referencesLeiriao, L.F.L., Miraglia, S.G.E.K., 2019. Environmental and health impacts due to the ~ violation of Brazilian emissions control program standards in Sao Paulo Metropolitan Area. Transport. Res. Transport Environ. 70, 70e76. https:// doi.org/10.1016/j.trd.2019.03.006.spa
dcterms.referencesLiu, D., Guo, X., Xiao, B., 2019a. What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Sci. Total Environ. 661, 750e766. https://doi.org/10.1016/j.scitotenv.2019.01.197.spa
dcterms.referencesLiu, J.B., Zhang, Z.J., Li, B., 2019b. Microscopic & macroscopic characterizations of Beijing marble as a building material for UNESCO heritage sites: new insights into physico-mechanical property estimation and weathering resistance. Construct. Build. Mater. 225, 510e525. https://doi.org/10.1016/ j.conbuildmat.2019.07.094spa
dcterms.referencesMandurino, C., Vestrucci, P., 2009. Using meteorological data to model pollutant dispersion in the atmosphere. Environ. Model. Software 24 (2), 270e278. https://doi.org/10.1016/j.envsoft.2008.06.013spa
dcterms.referencesNeckel, A., Silva, J.L.da, Saraiva, P.P., Kujawa, H.A., Araldi, J., Paladini, E.P., 2020. Estimation of the economic value of urban parks in Brazil, the case of the City of Passo Fundo. J. Clean. Prod. 264, 121369. https://doi.org/10.1016/ j.jclepro.2020.121369.spa
dcterms.referencesNeckel, A., Korcelski, C., Kujawa, H.A., Silva, I.S.da, Prezoto, F., Amorin, A.L.W., Maculan, L.S., Gonçalves, A.C., Bodah, E.T., Bodah, B.W., Dotto, G.L., Silva, L.F.O., 2021. Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. Chemosphere 262, 128248. https://doi.org/ 10.1016/j.chemosphere.2020.128248.spa
dcterms.referencesNorhafana, M., Noor, M.M., Hairuddin, A.A., Harikrishnan, S., Kadirgama, K., Ramasamy, D., 2020. The effects of nano-additives on exhaust emissions and toxicity on mankind. Mater. Today: Proceedings 22, 1181e1185. https://doi.org/ 10.1016/j.matpr.2019.12.110.spa
dcterms.referencesOliveira, M.L.S., Flores, E.M.M., Dotto, G.L., Neckel, A., Silva, L.F.O., 2021. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): the protagonist of black crusts produced on historic buildings. J. Clean. Prod. 278, 123982. https://doi.org/10.1016/j.jclepro.2020.123982.spa
dcterms.referencesQuerol, X., Alastuey, A., Pandolfi, M., Reche, C., Perez, N., Minguill on, M.C., Moreno, T., Viana, M., Escudero, M., Orio, A., 2014. 2001e2012 trends on air quality in Spain. Sci. Total Environ. 490, 957e969. https://doi.org/10.1016/ j.scitotenv.2014.05.074spa
dcterms.referencesRajput, V., Minkina, T., Mazarji, M., Shende, S., Sushkova, S., Mandzhieva, S., Burachevskaya, M., Chaplygin, V., Singh, A., Jatav, H., 2020. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 65 (2), 137e143. https://doi.org/10.1016/j.aoas.2020.08.001.spa
dcterms.referencesRamírez, O., Boit, K.da, Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Climate 33, 100655. https://doi.org/10.1016/j.uclim.2020.100655.spa
dcterms.referencesRojas, J.C., S anchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: environmental implications. Urban Climate 27, 412e419. https://doi.org/10.1016/ j.uclim.2018.12.011.spa
dcterms.referencesSaini, A., Harner, T., Chinnadhurai, S., Schuster, J.K., Yates, A., Sweetman, A., Aristizabal-Zuluaga, B.H., Jimenez, B., Manzano, C.A., Gaga, E.O., 2020. GAPS-mega- cities: a new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air. Environ. Pollut. 267, 115416. https://doi.org/10.1016/j.envpol.2020.115416.spa
dcterms.referencesSilva, L.F.O., Hower, J.C., Dotto, G.L., Oliveira, M.L.S., Pinto, D., 2021. Titanium nanoparticles in sedimented dust aggregates from urban children’s parks around coal ashes wastes. Fuel 285, 119162. https://doi.org/10.1016/ j.fuel.2020.119162.spa
dcterms.referencesSilva, L.F.O., Pinto, D., Neckel, A., Dotto, G.L., Oliveira, M.L.S., 2020. The impact of air pollution on the rate of degradation of the fortress of Florianopolis Island, Brazil. Chemosphere 251, 126838. https://doi.org/10.1016/ j.chemosphere.2020.126838spa
dcterms.referencesSuzuki, A., Vettori, S., Giorgi, S., Carretti, E., Benedetto, F.D., Dei, L., Benvenuti, M., Moretti, S., Pecchioni, E., Costagliola, P., 2018. Laboratory study of the sulfation of carbonate stones through SWIR hyperspectral investigation. J. Cult. Herit. 32, 30e37. https://doi.org/10.1016/j.culher.2018.01.006.spa
dcterms.referencesTalaiekhozani, A., Dokhani, M., Dehkordi, A.A., Eskandari, Z., Rezania, S., 2018. Evaluation of emission inventory for the emitted pollutants from landfill of Borujerd and modeling of dispersion in the atmosphere. Urban Climate 25, 82e98. https://doi.org/10.1016/j.uclim.2018.05.005.spa
dcterms.referencesTrejos, E.M., Silva, L.F.O., Hower, J.C., Flores, E.M.M. de, Gonzalez, C.M., Pach on, J.E., Aristizabal, B.H., 2021. Volcanic emissions and atmospheric pollution: a study of nanoparticles. Geoscience Frontiers 1e40. https://doi.org/10.1016/ j.gsf.2020.08.013.spa
dcterms.referencesWu, R., Zhao, X., Liu, Y., 2021. Atomic insights of Cu nanoparticles melting and sintering behavior in Cu Cu direct bonding. Mater. Des. 197, 109240. https:// doi.org/10.1016/j.matdes.2020.109240.spa
dcterms.referencesZahmatkesh, I., Sheremet, M., Yang, L., Heris, S.Z., Sharifpur, M., Meyer, J.P., Ghalambaz, M., Wongwises, S., Jing, D., Mahian, O., 2020. Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: a critical review. J. Mol. Liq. 114430 https://doi.org/10.1016/j.molliq.2020.114430.spa
dcterms.referencesZhang, C., Qiao, Q., Appel, E., Huang, B., 2012. Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. J. Geochem. Explor. 119, 60e75. https://doi.org/10.1016/j.gexplo.2012.06.014.spa
dc.source.urlhttps://www.sciencedirect.com/science/article/abs/pii/S0045653521007554spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.chemosphere.2021.130286
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International