Mostrar el registro sencillo del ítem

dc.contributor.authorBarreto, Deibysspa
dc.contributor.authorFajardo, Juanspa
dc.contributor.authorCarrillo Caballero, Gaylordspa
dc.contributor.authorCardenas Escorcia, Yulinethspa
dc.date.accessioned2021-06-01T15:21:02Z
dc.date.available2021-06-01T15:21:02Z
dc.date.issued2021-03-03
dc.identifier.issn2194-4288, 2194-4296spa
dc.identifier.urihttps://hdl.handle.net/11323/8322spa
dc.description.abstractGas turbine power plants have been widely studied, and as a result the negative effects on their output power and thermal efficiency have been known when operating in atmospheric conditions exceeding ISO conditions. For this reason, different technologies and methodologies have been implemented, aiming to increase the output power and improve the thermal efficiency. Unfortunately, the lack of operational parameters for this system limited its characterization and implementation of strategies to improve its performance. Advanced exergetic and exergoeconomic analyses have been applied to improve energy and economic performance in steam injection gas turbine (STIG) cycle power plants with air cooling with a compression refrigeration machine. Results shows that the main sources of irreversibilities and higher costs are in the Combustion Chamber (CC), Heat Recovery Steam Generator (HRSG) and Gas Turbine (GT). From these components, the components of the HRSG and GT have the greatest potential for improvement, and this can be achieved by improving the overall configuration of the system, due to the fact that the destruction of exogenous exergy is in more significant measure avoidable. While the higher costs of investment can be reduced in the Combustion Chamber and Gas Turbine.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceEnergy Technologyspa
dc.subjectBrayton cycleeng
dc.subjectcompression cooling systemseng
dc.subjectexergoeconomiceng
dc.subjectexergyeng
dc.subjectsteam injectioneng
dc.subjectsting cycleeng
dc.titleAdvanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machineeng
dc.typeArtículo de revistaspa
dc.source.urlhttps://onlinelibrary.wiley.com/doi/pdf/10.1002/ente.202000993spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1002/ente.202000993spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesUdeh, G.T., Udeh, P.O. Comparative thermo-economic analysis of multi-fuel fired gas turbine power plant (Open Access) (2019) Renewable Energy, 133, pp. 295-306. Cited 9 times. http://ezproxy.cuc.edu.co:2147/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2018.10.036spa
dc.relation.referencesDe Sa, A., Al Zubaidy, S. Gas turbine performance at varying ambient temperature (2011) Applied Thermal Engineering, 31 (14-15), pp. 2735-2739. Cited 93 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2011.04.045spa
dc.relation.referencesComodi, G., Renzi, M., Caresana, F., Pelagalli, L. Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique (2015) Applied Energy, 147, pp. 40-48. Cited 24 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.02.076spa
dc.relation.referencesMohapatra, A.K., Sanjay Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance (2014) Energy, 68, pp. 191-203. Cited 50 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2014.02.066spa
dc.relation.referencesBaakeem, S.S., Orfi, J., Al-Ansary, H. Performance improvement of gas turbine power plants by utilizing turbine inlet air-cooling (TIAC) technologies in Riyadh, Saudi Arabia (2018) Applied Thermal Engineering, 138, pp. 417-432. Cited 26 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.04.018spa
dc.relation.referencesZare, V. Performance improvement of biomass-fueled closed cycle gas turbine via compressor inlet cooling using absorption refrigeration; thermoeconomic analysis and multi-objective optimization (2020) Energy Conversion and Management, 215, art. no. 112946. Cited 12 times. https://ezproxy.cuc.edu.co:2070/energy-conversion-and-management doi: 10.1016/j.enconman.2020.112946spa
dc.relation.referencesXue, R., Hu, C., Sethi, V., Nikolaidis, T., Pilidis, P. (2016) Appl. Therm. Eng.spa
dc.relation.referencesZhang, S.-J., Chi, J.-L., Xiao, Y.-H. Performance analysis of a partial oxidation steam injected gas turbine cycle (2015) Applied Thermal Engineering, 91, pp. 622-629. Cited 14 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2015.08.062spa
dc.relation.referencesShukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 31 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136spa
dc.relation.referencesShukla, A.K., Singh, O. (2016) Int. J. Ambient Energy, p. 1. Cited 3 times.spa
dc.relation.referencesShukla, A.K., Singh, O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling (2017) Applied Thermal Engineering, 122, pp. 380-388. Cited 29 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2017.05.034spa
dc.relation.referencesAthari, H., Soltani, S., Rosen, M., Mohmoudi, S., Morosuk, T. (2016) Renew. Energy, p. 95.spa
dc.relation.referencesAthari, H., Soltani, S., Rosen, M., Kordoghli, M., Morosuk, T. (2016) Renew. Energy, p. 715.spa
dc.relation.referencesKeçebaş, A., Gökgedik, H. Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis (2015) Energy, 88, pp. 746-755. Cited 22 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.05.094spa
dc.relation.referencesAçikkalp, E., Aras, H., Hepbasli, A. Advanced exergy analysis of an electricity-generating facility using natural gas (2014) Energy Conversion and Management, 82, pp. 146-153. Cited 50 times. doi: 10.1016/j.enconman.2014.03.006spa
dc.relation.referencesBoyahchi, F.A., Molaine, H. (2015) Energy Convers. Manage., 99, p. 374.spa
dc.relation.referencesAçikkalp, E., Aras, H., Hepbasli, A. Advanced exergoeconomic analysis of a trigeneration system using a diesel-gas engine (2014) Applied Thermal Engineering, 67 (1-2), pp. 388-395. Cited 54 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/630/description#description doi: 10.1016/j.applthermaleng.2014.03.005spa
dc.relation.referencesAnvari, S., Khoshbakhti Saray, R., Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production (2015) Energy, 91, pp. 925-939. Cited 51 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.08.108spa
dc.relation.references(accessed September 2017) https://www.cioh.org.co/meteorologia/Climatologia/ResumenCartagena4.phpspa
dc.relation.referencesCengel, Y.A., Boles, M.A. (2014) Thermodinamic. Cited 2 times. Mc Graw Hill, New Yorkspa
dc.relation.referencesSanaye, S., Amani, M., Amani, P. 4E modeling and multi-criteria optimization of CCHPW gas turbine plant with inlet air cooling and steam injection (2018) Sustainable Energy Technologies and Assessments, 29, pp. 70-81. Cited 16 times. http://ezproxy.cuc.edu.co:2147/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2018.06.003spa
dc.relation.referencesBejan, A., Tsatsaronis, G., Moran, M. (1996) Thermal Desing and Optimazation. Cited 3710 times. John Wiley & Sons, New Yorkspa
dc.relation.referencesAthari, H., Soltani, S., Rosen, M.A., Seyed Mahmoudi, S.M., Morosuk, T. Comparative exergoeconomic analyses of gas turbine steam injection cycles with and without fogging inlet cooling (Open Access) (2015) Sustainability (Switzerland), 7 (9), pp. 12236-12257. Cited 11 times. http://www.mdpi.com/2071-1050/7/9/12236/pdf doi: 10.3390/su70912236spa
dc.relation.referencesAminyavari, M., Mamaghani, A.H., Shirazi, A., Najafi, B., Rinaldi, F. Exergetic, economic, and environmental evaluations and multi-objective optimization of an internal-reforming SOFC-gas turbine cycle coupled with a Rankine cycle (Open Access) (2016) Applied Thermal Engineering, 108, pp. 833-846. Cited 67 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.07.180spa
dc.relation.referencesMorosuk, T., Tsatsaronis, G. Advanced exergetic evaluation of refrigeration machines using different working fluids (2009) Energy, 34 (12), pp. 2248-2258. Cited 140 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2009.01.006spa
dc.relation.referencesHuang, R., Ling, J., Aute, V. Comparison of approximation-assisted heat exchanger models for steady-state simulation of vapor compression system (2020) Applied Thermal Engineering, 166, art. no. 114691. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2019.114691spa
dc.relation.referencesLi, Z., Chen, E., Jing, Y., Lv, S. Thermodynamic relationship of subcooling power and increase of cooling output in vapour compression chiller (2017) Energy Conversion and Management, 149, pp. 254-262. Cited 18 times. doi: 10.1016/j.enconman.2017.07.030spa
dc.relation.referencesDincer, I., Rosen, M. (2013) Exergy: Energy, Environment, and Sustainable Development. Cited 1538 times. segunda),, Elsevier, Oxfordspa
dc.relation.referencesSohret, Y., Acikkalp, E., Hepbasli, A., Karakoc, T.H. (2015) Energy, p. 1219.spa
dc.relation.referencesKotas, T. (1985) The Exergy Method of Thermal Power Plants. Cited 2565 times. Anchon Brendon, Londresspa
dc.relation.referencesYumrutas, R., Kunduz, M., Kano, M. (2002) Exergy, 2, p. 266. Cited 155 times.spa
dc.relation.referencesD'Acaddia, M., Vanoli, L. (2004) Int. J. Refriger., 25, p. 433.spa
dc.relation.referencesSzargut, E. (2007) Poradnik obliczania I stosowania. Cited 35 times. Widawnictwo Politechniki Shlaskej, Gliwicespa
dc.relation.referencesMansouri, M., Ahmadi, P., Kaviri, A., Jaafar, M. (2012) Energy Convers. Manage., 58, p. 47.spa
dc.relation.referencesAbusoglu, A., Kanoglu, M. Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1 - Formulations (2009) Applied Thermal Engineering, 29 (2-3), pp. 234-241. Cited 123 times. doi: 10.1016/j.applthermaleng.2008.02.025spa
dc.relation.referencesMehrpooya, M., Moftakhari Sharifzadeh, M.M., Ansarinasab, H. (2017) Appl. Therm. Eng.spa
dc.relation.referencesWang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (Open Access) (2012) Energies, 5 (6), pp. 1850-1863. Cited 74 times. http://www.mdpi.com/1996-1073/5/6/1850/pdf doi: 10.3390/en5061850spa
dc.relation.referencesAnvari, S., Khoshbakhti Saray, R., Bahlouli, K. Employing a new optimization strategy based on advanced exergy concept for improvement of a tri-generation system (2017) Applied Thermal Engineering, 113, pp. 1452-1463. Cited 18 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.11.146spa
dc.relation.referencesKelly, S., Tsatsaronis, G., Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts (2009) Energy, 34 (3), pp. 384-391. Cited 250 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2008.12.007spa
dc.relation.referencesSoltani, S., Yari, M., Mahmoudi, S.M.S., Morosuk, T., Rosen, M.A. Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit (2013) Energy, 59, pp. 775-780. Cited 71 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.07.038spa
dc.relation.referencesChen, J., Havtun, H., Palm, B. Conventional and advanced exergy analysis of an ejector refrigeration system (2015) Applied Energy, 144, pp. 139-151. Cited 109 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.01.139spa
dc.relation.referencesFallah, M., Siyahi, H., Akbarpour Ghiasi, R., Mahmoudi, S., Yari, M., Rosen, M. (2016) Energy, p. 701.spa
dc.relation.referencesAnvari, S., Khoshbakhti Saray, R., Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production (2015) Energy, 91, pp. 925-939. Cited 51 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.08.108spa
dc.relation.referencesPalizdar, A., Sadrameli, S.M. Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant (2017) Energy Conversion and Management, 138, pp. 474-485. Cited 13 times. doi: 10.1016/j.enconman.2017.02.019spa
dc.relation.referencesBarreto, D., Fajardo, J., Campillo, J. (2020) International Mechanical Engineering Congress & Exposition No IMECE2019-10410spa
dc.relation.referencesMorosuk, T., Tsatsaronis, G. Splitting physical exergy: Theory and application (2019) Energy, 167, pp. 698-707. Cited 22 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2018.10.090spa
dc.relation.referencesAnsarinasab, H., Mehrpooya, M. Advanced exergoeconomic analysis of a novel process for production of LNG by using a single effect absorption refrigeration cycle (2017) Applied Thermal Engineering, 114, pp. 719-732. Cited 47 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.12.003spa
dc.relation.references(2018) F-Chart Software, EES “Engineering Equation Solver”, Wisconsinspa
dc.relation.referencesMehrpooya, M., Ansarinasab, H., Sharifzadeh, M.M.M., Rosen, M.A. Conventional and advanced exergoeconomic assessments of a new air separation unit integrated with a carbon dioxide electrical power cycle and a liquefied natural gas regasification unit (2018) Energy Conversion and Management, 163, pp. 151-168. Cited 19 times. doi: 10.1016/j.enconman.2018.02.016spa
dc.relation.referencesShirazi, A., Aminyavari, M., Najafi, B., Rinaldi, F., Razaghi, M. Thermal-economic-environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system (2012) International Journal of Hydrogen Energy, 37 (24), pp. 19111-19124. Cited 126 times. doi: 10.1016/j.ijhydene.2012.09.143spa
dc.relation.referencesAhmadi, P., Dincer, I. Exergoeconomics (2018) Comprehensive Energy Systems, 1-5, pp. 340-376. Cited 7 times. http://ezproxy.cuc.edu.co:2053/science/book/9780128149256 ISBN: 978-012809597-3; 978-012814925-6 doi: 10.1016/B978-0-12-809597-3.00107-3spa
dc.relation.referencesAlashkar, A., Gadalla, M. Thermo-economic analysis of an integrated solar power generation system using nanofluids (2017) Applied Energy, 191, pp. 469-491. Cited 55 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.01.084spa
dc.relation.referencesMohammadkhani, F., Shokati, N., Mahmoudi, S.M.S., Yari, M., Rosen, M.A. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles (2014) Energy, 65, pp. 533-543. Cited 111 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.11.002spa
dc.relation.referencesShokati, N., Khanahmadzadeh, S. The effect of different combinations of ammonia-water Rankine and absorption refrigeration cycles on the exergoeconomic performance of the cogeneration cycle (2018) Applied Thermal Engineering, 141, pp. 1141-1160. Cited 9 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.06.052spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International