Mostrar el registro sencillo del ítem

dc.contributor.authorVieira, Yasminspa
dc.contributor.authorA. Pereira, Hérculesspa
dc.contributor.authorLeichtweis, Jandiraspa
dc.contributor.authorMistura, Clóvia M.spa
dc.contributor.authorFoletto, Edsonspa
dc.contributor.authorS. Oliveira, Luis F.spa
dc.contributor.authorDotto, Guilherme Luizspa
dc.date.accessioned2021-06-03T18:37:51Z
dc.date.available2021-06-03T18:37:51Z
dc.date.issued2021-04-02
dc.identifier.issn00489697spa
dc.identifier.urihttps://hdl.handle.net/11323/8349spa
dc.description.abstractReal hospital wastewater was effectively treated by a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation in this work. Fe0 powders were synthesized and characterized by different techniques, resulting in a single-phase sample with spherical particles. Optimum experimental conditions were determined by a central composite rotatable design combined with a response surface methodology, resulting in 96.8% of chemical oxygen demand reduction and 100% organic carbon removal, after applying MW power of 780 W and Fe0 dosage of 0.36 g L−1 for 60 min. Amongst the several organic compounds identified in the wastewater sample, diclofenac and ibuprofen were present in higher concentrations; therefore, they were set as target pollutants. Both compounds were completely degraded in 35 min of reaction time. Their plausible degradation pathways were investigated and proposed. Overall, the method developed in this work effectively removed high concentrations of pharmaceuticals in hospital wastewatereng
dc.description.abstractEn este trabajo, las aguas residuales hospitalarias reales fueron tratadas eficazmente mediante una tecnología prometedora basada en la reacción de degradación catalizada por Fe0 bajo irradiación de microondas. Los polvos de Fe0 se sintetizaron y caracterizaron mediante diferentes técnicas, dando como resultado una muestra monofásica con partículas esféricas. Las condiciones experimentales óptimas se determinaron mediante un diseño central compuesto giratorio combinado con una metodología de superficie de respuesta, lo que resultó en una reducción del 96,8% de la demanda química de oxígeno y una eliminación del 100% de carbono orgánico, después de aplicar una potencia de MW de 780 W y una dosis de Fe0 de 0,36 g L − 1. durante 60 min. Entre los varios compuestos orgánicos identificados en la muestra de aguas residuales, el diclofenaco y el ibuprofeno estaban presentes en concentraciones más altas; por lo tanto, se establecieron como contaminantes objetivo. Ambos compuestos se degradaron completamente en 35 min de tiempo de reacción. Se investigaron y propusieron sus posibles vías de degradación. En general, el método desarrollado en este trabajo eliminó de manera efectiva las altas concentraciones de productos farmacéuticos en las aguas residuales de los hospitales.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherScience of the Total Environmentspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subjectHospital wastewatereng
dc.subjectIbuprofeneng
dc.subjectDiclofenaceng
dc.subjectDegradationeng
dc.subjectMicrowaveeng
dc.subjectZero-valent ironeng
dc.subjectAguas residuales hospitalariasspa
dc.subjectIbuprofenospa
dc.subjectDiclofenacospa
dc.subjectDegradaciónspa
dc.subjectMicroondasspa
dc.subjectHierro de valencia ceroMicroondaspa
dc.subjectHierro de valencia cerospa
dc.titleEffective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiationspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/abs/pii/S0048969721020611spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.scitotenv.2021.146991spa
dc.date.embargoEnd2023-04-02
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAhmadpour, N., Sayadi, M.H., Sobhani, S., Hajiani, M., 2020. Photocatalytic degradation of model pharmaceutical pollutant by novel magnetic TiO2@ZnFe2O4/Pd nanocomposite with enhanced photocatalytic activity and stability under solar light irradiation. J. Environ. Manag. 271. https://doi.org/10.1016/j.jenvman.2020.110964.spa
dc.relation.referencesAl Hakim, S., Baalbaki, A., Tantawi, O., Ghauch, A., 2019. Chemically and thermally activated persulfate for theophylline degradation and application to pharmaceutical factory effluent. RSC Adv. 9, 33472–33485. https://doi.org/10.1039/c9ra05362j.spa
dc.relation.referencesAlvarez, H.M., Barbosa, D.P., Fricks, A.T., Aranda, D.A.G., Valdés, R.H., Antunes, O.A.C., 2006. Production of piperonal, vanillin, and p-anisaldehyde via solventless supported iodobenzene diacetate oxidation of isosafrol, isoeugenol, and anethol under microwave irradiation. Org. Process. Res. Dev. 10, 941–943. https://doi.org/10.1021/ op060117t.spa
dc.relation.referencesde Andrade, J.R., Vieira, M.G.A., da Silva, M.G.C., Wang, S., 2020. Oxidative degradation of pharmaceutical losartan potassium with N-doped hierarchical porous carbon and peroxymonosulfate. Chem. Eng. J. 382. https://doi.org/10.1016/j.cej.2019.122971.spa
dc.relation.referencesArmaković, S.J., Armaković, S., Šibul, F., Četojević-Simin, D.D., Tubić, A., Abramović, B.F., 2020. Kinetics, mechanism and toxicity of intermediates of solar light induced photocatalytic degradation of pindolol: experimental and computational modeling approach. J. Hazard. Mater. 393. https://doi.org/10.1016/j.jhazmat.2020.122490.spa
dc.relation.referencesArthur, R.B., Bonin, J.L., Ardill, L.P., Rourk, E.J., Patterson, H.H., Stemmler, E.A., 2018. Photocatalytic degradation of ibuprofen over BiOCl nanosheets with identification of intermediates. J. Hazard. Mater. 358, 1–9. https://doi.org/10.1016/j.jhazmat.2018.06.018.spa
dc.relation.referencesBabuponnusami, A., Muthukumar, K., 2012. Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Sep. Purif. Technol. 98, 130–135. https://doi.org/10.1016/j.seppur.2012.04.034.spa
dc.relation.referencesBahrami, H., Eslami, A., Nabizadeh, R., Mohseni-Bandpi, A., Asadi, A., Sillanpää, M., 2018. Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: optimization using response surface methodology. J. Clean. Prod. 198, 1210–1218. https://doi.org/10.1016/j.jclepro.2018.07.100.spa
dc.relation.referencesBalta, Z., Simsek, E.B., 2020. Insights into the photocatalytic behavior of carbon-rich shungite-based WO3/TiO2 catalysts for enhanced dye and pharmaceutical degradation. Xinxing Tan Cailiao/New Carbon Mater. 35, 371–383. https://doi.org/10.1016/ S1872-5805(20)60495-4.spa
dc.relation.referencesBautitz, I.R., Velosa, A.C., Nogueira, R.F.P., 2012. Zero valent iron mediated degradation of the pharmaceutical diazepam. Chemosphere 88, 688–692. https://doi.org/10.1016/j. chemosphere.2012.03.077spa
dc.relation.referencesBeheshti, F., Tehrani, M.A., R, Khadir, A., 2019. Sulfamethoxazole removal by photocatalytic degradation utilizing TiO2 and WO3 nanoparticles as catalysts: analysis of various operational parameters. Int. J. Environ. Sci. Technol. 16, 7987–7996. https://doi. org/10.1007/s13762-019-02212-x.spa
dc.relation.referencesBi, X., Wang, P., Jiang, H., 2008. Catalytic activity of CuOn–La2O3/γ-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater. J. Hazard. Mater. 154, 543–549. https://doi.org/10.1016/J.JHAZMAT.2007.10.069.spa
dc.relation.referencesBing, J., Hu, C., Nie, Y., Yang, M., Qu, J., 2015. Mechanism of catalytic ozonation in Fe2O3/ Al2O3@SBA-15 aqueous suspension for destruction of ibuprofen. Environ. Sci. Technol. 49, 1690–1697. https://doi.org/10.1021/es503729h.spa
dc.relation.referencesCaddick, S., 1995. Microwave assisted organic reactions. Tetrahedron 51, 10403–10432. https://doi.org/10.1016/0040-4020(95)00662-Rspa
dc.relation.referencesCao, J., Xiong, Z., Lai, B., 2018. Effect of initial pH on the tetracycline (TC) removal by zerovalent iron: adsorption, oxidation and reduction. Chem. Eng. J. 343, 492–499. https:// doi.org/10.1016/j.cej.2018.03.036spa
dc.relation.referencesCarvalho, N.M.F., Alvarez, H.M., Horn, A., Antunes, O.A.C., 2008. Influence of microwave irradiation in the cyclohexane oxidation catalyzed by Fe(III) complexes. Catal. Today 133–135, 689–694. https://doi.org/10.1016/j.cattod.2007.12.106.spa
dc.relation.referencesChong, S., Zhang, G., Zhang, N., Liu, Y., Huang, T., Chang, H., 2017. Diclofenac degradation in water by FeCeOx catalyzed H2O2: influencing factors, mechanism and pathways. J. Hazard. Mater. 334, 150–159. https://doi.org/10.1016/j.jhazmat.2017.04.008.spa
dc.relation.referencesCuervo Lumbaque, E., Salmoria Araújo, D., Moreira Klein, T., Lopes Tiburtius, E.R., Argüello, J., Sirtori, C., 2019a. Solar photo-Fenton-like process at neutral pH: Fe(III)-EDDS complex formation and optimization of experimental conditions for degradation of pharmaceuticals. Catal. Today 328, 259–266. https://doi.org/10.1016/j.cattod.2019.01.006spa
dc.relation.referencesCuervo Lumbaque, E., Wielens Becker, R., Salmoria Araújo, D., Dallegrave, A., Ost Fracari, T., Lavayen, V., Sirtori, C., 2019b. Degradation of pharmaceuticals in different water matrices by a solar homo/heterogeneous photo-Fenton process over modified alginate spheres. Environ. Sci. Pollut. Res. 26, 6532–6544. https://doi.org/10.1007/ s11356-018-04092-z.spa
dc.relation.referencesDaneshkhah, M., Hossaini, H., Malakootian, M., 2017. Removal of metoprolol from water by sepiolite-supported nanoscale zero-valent iron. J. Environ. Chem. Eng. 5, 3490–3499. https://doi.org/10.1016/j.jece.2017.06.040.spa
dc.relation.referencesDehghani, M.H., Karri, R.R., Alimohammadi, M., Nazmara, S., Zarei, A., Saeedi, Z., 2020. Insights into endocrine-disrupting Bisphenol-A adsorption from pharmaceutical effluent by chitosan immobilized nanoscale zero-valent iron nanoparticles. J. Mol. Liq. 311, 113317. https://doi.org/10.1016/j.molliq.2020.113317.spa
dc.relation.referencesDeng, J., Shao, Y., Gao, N., Deng, Y., Tan, C., Zhou, S., 2014. Zero-valent iron/persulfate(Fe0/ PS) oxidation acetaminophen in water. Int. J. Environ. Sci. Technol. 11, 881–890. https://doi.org/10.1007/s13762-013-0284-2.spa
dc.relation.referencesDeng, J., Dong, H., Zhang, C., Jiang, Z., Cheng, Y., Hou, K., Zhang, L., Fan, C., 2018. Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine. Sep. Purif. Technol. 202, 130–137. https://doi.org/10.1016/j.seppur.2018.03.048.spa
dc.relation.referencesDolatabadi, M., Ahmadzadeh, S., 2019. A rapid and efficient removal approach for degradation of metformin in pharmaceutical wastewater using electro-Fenton process; optimization by response surface methodology. Water Sci. Technol. 80, 685–694. https://doi.org/10.2166/wst.2019.312.spa
dc.relation.referencesDong, Z., Zhang, Q., Hong, J., Chen, B.Y., Xu, Q., 2018. Deciphering acetaminophen degradation using novel microporous beads reactor activate persulfate process with minimum iron leachate for sustainable treatment. Catal. Lett. 148, 2095–2108. https://doi. org/10.1007/s10562-018-2418-0.spa
dc.relation.referencesDong, W., Jin, Y., Zhou, K., Sun, S.P., Li, Y., Chen, X.D., 2019. Efficient degradation of pharmaceutical micropollutants in water and wastewater by FeIII-NTA-catalyzed neutral photo-Fenton process. Sci. Total Environ. 688, 513–520. https://doi.org/10.1016/j. scitotenv.2019.06.315.spa
dc.relation.referencesDu, J., Guo, W., Li, X., Li, Q., Wang, B., Huang, Y., Ren, N., 2017. Degradation of sulfamethoxazole by a heterogeneous Fenton-like system with microscale zero-valent iron: kinetics, effect factors, and pathways. J. Taiwan Inst. Chem. Eng. 81, 232–238. https:// doi.org/10.1016/j.jtice.2017.10.017.spa
dc.relation.referencesDu, Y., Dai, M., Cao, J., Peng, C., 2019. Fabrication of a low-cost adsorbent supported zerovalent iron by using red mud for remoVIng Pb(II) and Cr(VI) from aqueous solutions. RSC Adv. 9, 33486–33496. https://doi.org/10.1039/c9ra06978j.spa
dc.relation.referencesFurlong, E.T., Batt, A.L., Glassmeyer, S.T., Noriega, M.C., Kolpin, D.W., Mash, H., Schenck, K.M., 2017. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: pharmaceuticals EPA public access. Sci. Total Environ. 579, 1629–1642. https://doi.org/10.1016/j.scitotenv.2016.03.128.spa
dc.relation.referencesGallego-Schmid, A., Tarpani, R.R.Z., Miralles-Cuevas, S., Cabrera-Reina, A., Malato, S., Azapagic, A., 2019. Environmental assessment of solar photo-Fenton processes in combination with nanofiltration for the removal of micro-contaminants from real wastewaters. Sci. Total Environ. 650, 2210–2220. https://doi.org/10.1016/j.scitotenv.2018.09.361.spa
dc.relation.referencesGao, Qiong, Y., Gao, N. Yun, Wang, W., Kang, S. Fei, Xu, J. Hong, Xiang, H. Ming, Yin, D. Qiang, 2018. Ultrasound-assisted heterogeneous activation of persulfate by nano zero-valent iron (nZVI) for the propranolol degradation in water. Ultrason. Sonochem. 49, 33–40. https://doi.org/10.1016/j.ultsonch.2018.07.001.spa
dc.relation.referencesGao, Y.Q., Zhang, J., Zhou, J.Q., Li, C., Gao, N.Y., Yin, D.Q., 2020. Persulfate activation by nano zero-valent iron for the degradation of metoprolol in water: influencing factors, degradation pathways and toxicity analysis. RSC Adv. 10, 20991–20999. https://doi.org/ 10.1039/d0ra01273d.spa
dc.relation.referencesGavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., Fava, F., 2015. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 32, 147–156. https://doi.org/10.1016/J. NBT.2014.01.001.spa
dc.relation.referencesGhenaatgar, A., Tehrani, M.A., R, Khadir, A., 2019. Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: optimization of operational parameters and kinetic studies. J. Water Process Eng. 32. https://doi.org/ 10.1016/j.jwpe.2019.100969.spa
dc.relation.referencesGilPavas, E., Correa-Sánchez, S., 2019. Optimization of the heterogeneous electro-Fenton process assisted by scrap zero-valent iron for treating textile wastewater: assessment of toxicity and biodegradability. J. Water Process Eng. 32. https://doi.org/10.1016/j. jwpe.2019.100924.spa
dc.relation.referencesGómez, M.J., Petrović, M., Fernández-Alba, A.R., Barceló, D., 2006a. Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters. J. Chromatogr. A 1114, 224–233. https://doi.org/10.1016/j.chroma.2006.02.038.spa
dc.relation.referencesGómez, M.J., Petrović, M., Fernández-Alba, A.R., Barceló, D., 2006b. Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters. J. Chromatogr. A 1114, 224–233. https://doi.org/10.1016/j.chroma.2006.02.038.spa
dc.relation.referencesGomez, V., Wright, K., Esquenazi, G.L., Barron, A.R., 2019. Microwave treatment of a hot mill sludge from the steel industry: en route to recycling an industrial waste. J. Clean. Prod. 207, 182–189. https://doi.org/10.1016/J.JCLEPRO.2018.08.294.spa
dc.relation.referencesHan, S.T., Li, J., Xi, H.L., Xu, D.N., Zuo, Y., Zhang, J.H., 2009. Photocatalytic decomposition of acephate in irradiated TiO2 suspensions. J. Hazard. Mater. 163, 1165–1172. https:// doi.org/10.1016/j.jhazmat.2008.07.077.spa
dc.relation.referencesHe, Z., Yang, S., Ju, Y., Sun, C., 2009. Microwave photocatalytic degradation of Rhodamine B using TiO2supported on activated carbon: mechanism implication. J. Environ. Sci. 21, 268–272. https://doi.org/10.1016/S1001-0742(08)62262-7.spa
dc.relation.referencesHe, Z., Mahmud, S., Yang, Y., Zhu, L., Zhao, Y., Zeng, Q., Xiong, Z., Zhao, S., 2020. Polyvinylidene fluoride membrane functionalized with zero valent iron for highly efficient degradation of organic contaminants. Sep. Purif. Technol. 250, 117266. https:// doi.org/10.1016/j.seppur.2020.117266.spa
dc.relation.referencesHernando, M.D., Heath, E., Petrovic, M., Barceló, D., 2006. Trace-level determination of pharmaceutical residues by LC-MS/MS in natural and treated waters. A pilot-survey study. Analytical and Bioanalytical Chemistry, pp. 985–991 https://doi.org/10.1007/ s00216-006-0394-5.spa
dc.relation.referencesHomem, V., Alves, A., Santos, L., 2013. Microwave-assisted Fenton’s Oxidation of Amoxicillin. 220, pp. 35–44. https://doi.org/10.1016/j.cej.2013.01.047.spa
dc.relation.referencesHorikoshi, S., Serpone, N., 2014. Coupled microwave/photoassisted methods for environmental remediation. Molecules 19, 18102–18128. https://doi.org/10.3390/ molecules191118102.spa
dc.relation.referencesHorikoshi, S., Osawa, A., Abe, M., Serpone, N., 2011. On the generation of hot-spots by microwave electric and magnetic fields and their impact on a microwave-assisted heterogeneous reaction in the presence of metallic Pd nanoparticles on an activated carbon support. J. Phys. Chem. C 115, 23030–23035. https://doi.org/10.1021/jp2076269.spa
dc.relation.referencesHuddersman, K., Palitsin, A.V., 2017. Modelling and simulation of a novel pilot-scale microwave assisted catalytic reactor for continuous flow treatment of wastewaters. Lecture Notes in Civil Engineering. Springer, pp. 644–649 https://doi.org/10.1007/978-3- 319-58421-8_101.spa
dc.relation.referencesISO, 1989. Water Quality Determination of the Chemical Oxygen Demand. Genevaspa
dc.relation.referencesJanssens, R., Cristóvão, B.M., Bronze, M.R., Crespo, J.G., Pereira, V.J., Luis, P., 2020. Photocatalysis using UV-A and UV-C light sources for advanced oxidation of anticancer drugs spiked in laboratory-grade water and synthetic urine. Ind. Eng. Chem. Res. 59, 647–653. https://doi.org/10.1021/acs.iecr.9b04608.spa
dc.relation.referencesJu, Y.M., Yang, S.G., Ding, Y.C., Sun, C., Gu, C.G., He, Z., Qin, C., He, H., Xu, B., 2009. Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions: intermediates and degradation mechanism. J. Hazard. Mater. 171, 123–132. https://doi.org/10.1016/j.jhazmat.2009.05.120.spa
dc.relation.referencesKappe, C.O., 2004. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.200400655.spa
dc.relation.referencesKarim, S., Bae, S., Greenwood, D., Hanna, K., Singhal, N., 2017. Degradation of 17Αethinylestradiol by nano zero valent iron under different pH and dissolved oxygen levels. Water Res. 125, 32–41. https://doi.org/10.1016/j.watres.2017.08.029.spa
dc.relation.referencesKhan, S.J., Ongerth, J.E., 2002. Estimation of pharmaceutical residues in primary and secondary sewage sludge based on quantities of use and fugacity modelling. Water Science and Technology. IWA Publishing, pp. 105–113 https://doi.org/10.2166/ wst.2002.0065.spa
dc.relation.referencesKim, D.G., Ko, S.O., 2020. Effects of thermal modification of a biochar on persulfate activation and mechanisms of catalytic degradation of a pharmaceutical. Chem. Eng. J. 399. https://doi.org/10.1016/j.cej.2020.125377.spa
dc.relation.referencesKonstas, P.S., Kosma, C., Konstantinou, I., Albanis, T., 2019. Photocatalytic treatment of pharmaceuticals in real hospital wastewaters for effluent quality amelioration. Water (Switzerland) 11. https://doi.org/10.3390/w11102165.spa
dc.relation.referencesKovalova, L., Siegrist, H., Singer, H., Wittmer, A., McArdell, C.S., 2012. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ. Sci. Technol. 46, 1536–1545. https://doi.org/ 10.1021/es203495d.spa
dc.relation.referencesKumar, A., Rana, A., Sharma, G., Naushad, M., Dhiman, P., Kumari, A., Stadler, F.J., 2019. Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants. J. Mol. Liq. https://doi.org/10.1016/j.molliq.2019.111177.spa
dc.relation.referencesLan, Y., Barthe, L., Antonin, A., Causserand, C., 2020. Feasibility of a heterogeneous Fenton membrane reactor containing a Fe-ZSM5 catalyst for pharmaceuticals degradation: membrane fouling control and long-term stability. Sep. Purif. Technol. 231. https:// doi.org/10.1016/j.seppur.2019.115920spa
dc.relation.referencesLienert, J., Bürki, T., Escher, B.I., 2007. Reducing micropollutants with source control: substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Science and Technology, pp. 87–96 https://doi.org/10.2166/wst.2007.560.spa
dc.relation.referencesde Lima Perini, J.A., Fernandes Pupo Nogueira, R., 2016. Zero-valent iron mediated degradation of sertraline - effect of H2O2 addition and application to sewage treatment plant effluent. J. Chem. Technol. Biotechnol. 91, 276–282. https://doi.org/10.1002/ jctb.4705.spa
dc.relation.referencesLin, A.Y.C., Tsai, Y.T., 2009. Occurrence of pharmaceuticals in Taiwan’s surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci. Total Environ. 407, 3793–3802. https://doi.org/10.1016/j.scitotenv.2009.03.009.spa
dc.relation.referencesLiu, Z., Lei, H., Bai, T., Wang, W., Chen, K., Chen, J., Hu, Q., 2015a. Microwave-assisted arsenic removal and the magnetic effects of typical arsenopyrite-bearing mine tailings. Chem. Eng. J. 272, 1–11. https://doi.org/10.1016/j.cej.2015.02.084.spa
dc.relation.referencesLiu, Z., Lei, Yi, H., Bai, T., Wang, W. Zheng, Chen, K., Chen, J. Jian, Hu, Q. Wen, 2015b. Microwave-assisted arsenic removal and the magnetic effects of typical arsenopyritebearing mine tailings. Chem. Eng. J. 272, 1–11. https://doi.org/10.1016/j.cej.2015.02.084spa
dc.relation.referencesLiu, X., Cao, Z., Yuan, Z., Zhang, J., Guo, X., Yang, Y., He, F., Zhao, Y., Xu, J., 2018. Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chem. Eng. J. 334, 508–518. https://doi.org/10.1016/j.cej.2017.10.060.spa
dc.relation.referencesMa, X., Cheng, Y., Ge, Y.,Wu, H., Li, Q., Gao, N., Deng, J., 2018. Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrason. Sonochem. 40, 763–772. https://doi.org/10.1016/j.ultsonch.2017.08.025.spa
dc.relation.referencesMachado, S., Pacheco, J.G., Nouws, H.P.A., Albergaria, J.T., Delerue-Matos, C., 2017. Green zero-valent iron nanoparticles for the degradation of amoxicillin. Int. J. Environ. Sci. Technol. 14, 1109–1118. https://doi.org/10.1007/s13762-016-1197-7.spa
dc.relation.referencesMawioo, P.M., Garcia, H.A., Hooijmans, C.M., Velkushanova, K., Simonič, M., Mijatović, I., Brdjanovic, D., 2017. A pilot-scale microwave technology for sludge sanitization and drying. Sci. Total Environ. 601–602, 1437–1448. https://doi.org/10.1016/j. scitotenv.2017.06.004.spa
dc.relation.referencesMichael, I., Achilleos, A., Lambropoulou, D., Torrens, V.O., Pérez, S., Petrović, M., Barceló, D., Fatta-Kassinos, D., 2014. Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Appl. Catal. B Environ. 147, 1015–1027. https://doi.org/10.1016/j.apcatb.2013.10.035spa
dc.relation.referencesMohammadi, H., Bina, B., Ebrahimi, A., 2018. A novel three-dimensional electro-Fenton system and its application for degradation of anti-inflammatory pharmaceuticals: modeling and degradation pathways. Process. Saf. Environ. Prot. 117, 200–213. https://doi.org/10.1016/j.psep.2018.05.001.spa
dc.relation.referencesMondal, S.K., Saha, A.K., Sinha, A., 2018. Removal of ciprofloxacin using modified advanced oxidation processes: kinetics, pathways and process optimization. J. Clean. Prod. 171, 1203–1214. https://doi.org/10.1016/j.jclepro.2017.10.091.spa
dc.relation.referencesMoseley, J.D., Lenden, P., Lockwood, M., Ruda, K., Sherlock, J.P., Thomson, A.D., Gilday, J.P., 2008. A comparison of commercial microwave reactors for scale-up within process chemistry. Org. Process. Res. Dev. 12, 30–40. https://doi.org/10.1021/op700186zspa
dc.relation.referencesMossmann, A., Dotto, G.L., Hotza, D., Jahn, S.L., Foletto, E.L., 2019. Preparation of polyethylene–supported zero–valent iron buoyant catalyst and its performance for Ponceau 4R decolorization by photo–Fenton process. J. Environ. Chem. Eng. 7, 102963. https://doi.org/10.1016/j.jece.2019.102963.spa
dc.relation.referencesMüller, P., Klán, P., Ćrkva, V., 2003. The electrodeless discharge lamp: a prospective tool for photochemistry part 4. Temperature- and envelope material-dependent emission characteristics. J. Photochem. Photobiol. A Chem. 158, 1–5. https://doi.org/10.1016/ S1010-6030(03)00101-1.spa
dc.relation.referencesPan, X., Lv, N., Li, C., Ning, J., Wang, T., Wang, R., Zhou, M., Zhu, G., 2019. Impact of nano zero valent iron on tetracycline degradation and microbial community succession during anaerobic digestion. Chem. Eng. J. 359, 662–671. https://doi.org/10.1016/j. cej.2018.11.135.spa
dc.relation.referencesParra, L.R., Pantoja, L.G., Mena, N.L., Machuca-Martínez, F., Urresta, J., 2020. Evaluation of TiO2 and SnO supported on graphene oxide (TiO2-GO and SnO-GO) photocatalysts for treatment of hospital wastewater. Water (Switzerland) 12. https://doi.org/ 10.3390/w12051438.spa
dc.relation.referencesPirsaheb, M., Moradi, S., Shahlaei, M., Wang, X., Farhadian, N., 2019. A new composite of nano zero-valent iron encapsulated in carbon dots for oxidative removal of bio-refractory antibiotics from water. J. Clean. Prod. 209, 1523–1532. https://doi. org/10.1016/j.jclepro.2018.11.175spa
dc.relation.referencesQuesada, H.B., Baptista, A.T.A., Cusioli, L.F., Seibert, D., de Oliveira Bezerra, C., Bergamasco, R., 2019. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere. https://doi.org/ 10.1016/j.chemosphere.2019.02.009.spa
dc.relation.referencesRahmani, H., Gholami, M., Mahvi, A.H., Ali-Mohammadi, M., Rahmani, K., 2014. Tinidazol antibiotic degradation in aqueous solution by zero valent iron nanoparticles and hydrogen peroxide in the presence of ultrasound radiation. J. Water Chem. Technol. 36, 317–324. https://doi.org/10.3103/S1063455X14060101.spa
dc.relation.referencesRana, A., Kumari, N., Tyagi, M., Jagadevan, S., 2018. Leaf-extract mediated zero-valent iron for oxidation of arsenic (III): preparation, characterization and kinetics. Chem. Eng. J. 347, 91–100. https://doi.org/10.1016/j.cej.2018.04.075.spa
dc.relation.referencesRemya, N., Lin, J.G., 2011. Current status of microwave application in wastewater treatmenta review. Chem. Eng. J. 166, 797–813. https://doi.org/10.1016/j.cej.2010.11.100.spa
dc.relation.referencesRivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.Á., Prados-Joya, G., Ocampo-Pérez, R., 2013. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2013.07.059spa
dc.relation.referencesRogowska, J., Zimmermann, A., Muszyńska, A., Ratajczyk, W., Wolska, L., 2019. Pharmaceutical household waste practices: preliminary findings from a case study in Poland. Environ. Manag. 64, 97–106. https://doi.org/10.1007/s00267-019-01174-7.spa
dc.relation.referencesRuiz-Torres, C.A., Araujo-Martínez, R.F., Martínez-Castañón, G.A., Morales-Sánchez, J.E., Lee, T.J., Shin, H.S., Hwang, Y., Hurtado-Macías, A., Ruiz, F., 2019. A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction. Environ. Eng. Res. 24, 463–473. https://doi.org/10.4491/EER.2018.320.spa
dc.relation.referencesSantos, L.H.M.L.M., Gros, M., Rodriguez-Mozaz, S., Delerue-Matos, C., Pena, A., Barceló, D., Montenegro, M.C.B.S.M., 2013. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci. Total Environ. 461–462, 302–316. https://doi.org/10.1016/j.scitotenv.2013.04.077.spa
dc.relation.referencesSchmink, J.R., Leadbeater, N.E., 2010. Microwave heating as a tool for sustainable chemistry: an introduction. Microwave Heating as a Tool for Sustainable Chemistry. CRC Press, pp. 1–24 https://doi.org/10.1201/9781439812709.spa
dc.relation.referencesSchuster, A., Hädrich, C., Kümmerer, K., 2008. Flows of active pharmaceutical ingredients originating from health care practices on a local, regional, and nationwide level in Germany-is hospital effluent treatment an effective approach for risk reduction? Water Air Soil Pollut. Focus 8, 457–471. https://doi.org/10.1007/s11267-008-9183-9.spa
dc.relation.referencesScott, T.M., Phillips, P.J., Kolpin, D.W., Colella, K.M., Furlong, E.T., Foreman, W.T., Gray, J.L., 2018. Pharmaceutical manufacturing facility discharges can substantially increase the pharmaceutical load to U.S. wastewaters. Sci. Total Environ. 636, 69–79. https://doi. org/10.1016/j.scitotenv.2018.04.160.spa
dc.relation.referencesSegura, Y., Martínez, F., Melero, J.A., 2013. Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron. Appl. Catal. B Environ. 136–137, 64–69. https://doi.org/10.1016/j.apcatb.2013.01.036.spa
dc.relation.referencesSerpone, N., Horikoshi, S., Emeline, A.V., 2010. Microwaves in advanced oxidation processes for environmental applications. A brief review. J Photochem Photobiol C: Photochem Rev 11, 114–131. https://doi.org/10.1016/j.jphotochemrev.2010.07.003.spa
dc.relation.referencesShao, Y., Zhao, P., Yue, Q., Wu, Y., Gao, B., Kong, W., 2018. Preparation of wheat strawsupported nanoscale zero-valent iron and its removal performance on ciprofloxacin. Ecotoxicol. Environ. Saf. 158, 100–107. https://doi.org/10.1016/j.ecoenv.2018.04.020spa
dc.relation.referencesSim, W.J., Lee, J.W., Lee, E.S., Shin, S.K., Hwang, S.R., Oh, J.E., 2011a. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82, 179–186. https://doi.org/ 10.1016/j.chemosphere.2010.10.026.spa
dc.relation.referencesSim, W.J., Lee, J.W., Lee, E.S., Shin, S.K., Hwang, S.R., Oh, J.E., 2011b. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82, 179–186. https://doi.org/ 10.1016/j.chemosphere.2010.10.026.spa
dc.relation.referencesSingh, K.P., Singh, A.K., Gupta, S., Rai, P., 2012. Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles. Environ. Sci. Pollut. Res. 19, 2063–2078. https://doi.org/10.1007/s11356- 011-0700-4.spa
dc.relation.referencesSnyder, S., Vanderford, B., Pearson, R., Quiñones, O., Yoon, Y., 2003a. Analytical methods used to measure endocrine disrupting compounds in water. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 7, 224–234. https://doi.org/10.1061/(ASCE)1090- 025X(2003)7:4(224).spa
dc.relation.referencesSnyder, S.A., Westerhoff, P., Yoon, Y., Sedlak, D.L., 2003b. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ. Eng. Sci. https://doi.org/10.1089/109287503768335931.spa
dc.relation.referencesStieber, M., Putschew, A., Jekel, M., 2011. Treatment of pharmaceuticals and diagnostic agents using zero-valent iron - kinetic studies and assessment of transformation products assay. Environ. Sci. Technol. 45, 4944–4950. https://doi.org/10.1021/ es200034j.spa
dc.relation.referencesStraub, J.O., 2016. Reduction in the environmental exposure of pharmaceuticals through diagnostics, personalised healthcare and other approaches. A mini review and discussion paper. Sustain. Chem. Pharm. https://doi.org/10.1016/j. scp.2015.12.001.spa
dc.relation.referencesStrauss, C.R., Trainor, R.W., 1995. Developments in microwave-assisted organic chemistry. Aust. J. Chem. 48, 1665–1692. https://doi.org/10.1071/CH9951665.spa
dc.relation.referencesTan, C., Dong, Y., Fu, D., Gao, N., Ma, J., Liu, X., 2018. Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: kinetics and mechanism of radical generation. Chem. Eng. J. 334, 1006–1015. https://doi.org/10.1016/j. cej.2017.10.020.spa
dc.relation.referencesVedenyapina, M.D., Kurmysheva, A.Y., Rakishev, A.K., Kryazhev, Y.G., 2019. Activated carbon as sorbents for treatment of pharmaceutical wastewater (review). Solid Fuel Chem. 53, 382–394. https://doi.org/10.3103/S0361521919070061.spa
dc.relation.referencesVerlicchi, P., Galletti, A., Petrovic, M., BarcelÓ, D., 2010. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2010.06.005.spa
dc.relation.referencesVerlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M., Barceló, D., 2012. Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci. Total Environ. 430, 109–118. https://doi.org/10.1016/j. scitotenv.2012.04.055.spa
dc.relation.referencesVieira, Y., Ceretta, M.B., Foletto, E.L., Wolski, E.A., Silvestri, S., 2020a. Application of a novel rGO-CuFeS2 composite catalyst conjugated to microwave irradiation for ultra-fast real textile wastewater treatment. J. Water Process Eng. 36, 101397. https://doi.org/ 10.1016/j.jwpe.2020.101397.spa
dc.relation.referencesVieira, Y., Silvestri, S., Leichtweis, J., Jahn, S.L., de Moraes Flores, É.M., Dotto, G.L., Foletto, E.L., 2020b. New insights into the mechanism of heterogeneous activation of nano– magnetite by microwave irradiation for use as Fenton catalyst. J. Environ. Chem. Eng. 8, 103787. https://doi.org/10.1016/j.jece.2020.103787.spa
dc.relation.referencesWang, N., Wang, P., 2016. Study and application status of microwave in organic wastewater treatment - a review. Chem. Eng. J. 283, 193–214. https://doi.org/10.1016/j. cej.2015.07.046.spa
dc.relation.referencesWang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X., Dai, Y., 2012. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030. https://doi.org/10.1021/ am300835p.spa
dc.relation.referencesWang, N., Zheng, T., Jiang, J., Lung, Seng, W., Miao, X., Wang, P., 2014. Pilot-scale treatment of p-nitrophenol wastewater by microwave-enhanced Fenton oxidation process: effects of system parameters and kinetics study. Chem. Eng. J. 239, 351–359. https:// doi.org/10.1016/j.cej.2013.11.038.spa
dc.relation.referencesWen, Z., Zhang, Y., Dai, C., 2014. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf. A Physicochem. Eng. Asp. 457, 433–440. https://doi.org/10.1016/j.colsurfa.2014.06.017.spa
dc.relation.referencesWeng, X., Cai, W., Lin, S., Chen, Z., 2017. Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron. Appl. Clay Sci. 147, 137–142. https://doi.org/ 10.1016/j.clay.2017.07.023.spa
dc.relation.referencesWennmalm, Å., Gunnarsson, B.O., 2005. Public health care management of water pollution with pharmaceuticals: environmental classification and analysis of pharmaceutical residues in sewage water. Ther. Innov. Regul. Sci. 39, 291–297. https://doi.org/ 10.1177/009286150503900307.spa
dc.relation.referencesWesterhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 39, 6649–6663. https://doi.org/10.1021/ es0484799.spa
dc.relation.referencesWielens Becker, R., Ibáñez, M., Cuervo Lumbaque, E., Wilde, M.L., Flores da Rosa, T., Hernández, F., Sirtori, C., 2020. Investigation of pharmaceuticals and their metabolites in Brazilian hospital wastewater by LC-QTOF MS screening combined with a preliminary exposure and in silico risk assessment. Sci. Total Environ. 699, 134218. https:// doi.org/10.1016/j.scitotenv.2019.134218spa
dc.relation.referencesWu, Y., Yue, Q., Gao, Y., Ren, Z., Gao, B., 2018. Performance of bimetallic nanoscale zerovalent iron particles for removal of oxytetracycline. J. Environ. Sci. (China) 69, 173–182. https://doi.org/10.1016/j.jes.2017.10.006.spa
dc.relation.referencesWu, J., Wang, B., Cagnetta, G., Huang, J., Wang, Y., Deng, S., Yu, G., 2020. Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. Sep. Purif. Technol. 239. https://doi.org/10.1016/j.seppur.2020.116534.spa
dc.relation.referencesXue, C., Mao, Y., Wang, W., Song, Z., Zhao, X., Sun, J., Wang, Y., 2019. Current status of applying microwave-associated catalysis for the degradation of organics in aqueous phase – a review. J. Environ. Sci. (China) https://doi.org/10.1016/j.jes.2019.01.019.spa
dc.relation.referencesZhang, Y., 2009. Model selection: a Lagrange optimization approach. J. Stat. Plan. Inference 139, 3142–3159. https://doi.org/10.1016/j.jspi.2009.02.016.spa
dc.relation.referencesZhang, X., Hayward, D.O., Mingos, D.M.P., 1999. Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chem. Commun. 0, 975–976. https://doi.org/10.1039/a901245a.spa
dc.relation.referencesZhang, Q., Peng, Y., Deng, F., Wang, M., Chen, D., 2020. Porous Z-scheme MnO2/Mnmodified alkalinized g-C3N4 heterojunction with excellent Fenton-like photocatalytic activity for efficient degradation of pharmaceutical pollutants. Sep. Purif. Technol. 246. https://doi.org/10.1016/j.seppur.2020.116890.spa
dc.relation.referencesZhu, S., Wang, W., Xu, Y., Zhu, Z., Liu, Z., Cui, F., 2019. Iron sludge-derived magnetic Fe0/ Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation. Chem. Eng. J. 365, 99–110. https://doi.org/10.1016/j.cej.2019.02.011.spa
dc.relation.referencesZou, R., Angelidaki, I., Yang, X., Tang, K., Andersen, H.R., Zhang, Y., 2020. Degradation of pharmaceuticals from wastewater in a 20-L continuous flow bioelectro-Fenton (BEF) system. Sci. Total Environ. 727. https://doi.org/10.1016/ j.scitotenv.2020.138684.spa
dc.title.translatedTratamiento eficaz de aguas residuales hospitalarias con diclofenaco e ibuprofeno en alta concentración utilizando una tecnología prometedora basada en una reacción de degradación catalizada por Fe0 bajo irradiación de microondas.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International