Show simple item record

dc.creatorSilva Oliveira, Luis Felipe
dc.creatorLozano, Liliana P.
dc.creatorSilva Oliveira, Marcos Leandro
dc.creatorda Boit, Kátia
dc.creatorGonçalves, Janaína
dc.creatorNeckel, Alcindo
dc.description.abstractThe deposition of remaining nanoparticles in the Caribbean Sea generates the formation of potentially dangerous elements, which influence at the imbalance of ecosystems. The detection of nanoparticles is not simple and the use of conventional methods is difficult application, which is why we highlight the immediacy and importance of this research for the areas of marine biology, urbanism, engineering and geosciences, applied in the Caribbean Sea. The general objective of this study is to evaluate the use of advanced methods for the determination of toxic nanoparticles, which can directly affect the development of marine organisms in the aquatic ecosystem in waters of the Caribbean Sea, favoring the construction of future international public policies with the elaboration of projects capable of mitigating these levels of contamination. The morphology and structure of nanoparticles were analyzed by emission scanning electron microscope with a high-resolution electron microscope. The nanoparticles smaller than 97 nm were identified in different proportions. The morphological analyses indicated nanoparticles' presence in the form of nanotubes, nanospheres, and nanofibers, which were shown in an agglomerated form. The presence of potentially hazardous elements, such as As, Cd, Pb, Mg, Ni and V were verified. In addition, the presence of asbestos in the form of minerals was confirmed, and that of titanium dioxide was found in large quantities. The results provide new data and emphasize the possible consequences to the in the Caribbean Sea, with the identification of dangerous elements (As, Cb, Pb, Hg, Ni and V), harmful to the marine ecosystem. Therefore, there is a need for strict control to reduce contamination of the Caribbean Sea and avoid risks to the ecosystem and public health, through suggestions of international public policies, through constant monitoring and the application of environmental recovery projects in this marine estuary.eng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.sourceMarine Pollution Bulletinspa
dc.subjectCaribbean seaeng
dc.subjectToxic elementseng
dc.titleIdentification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projectseng
dcterms.referencesAdams et al., 2006 L.K. Adams, D.Y. Lyon, P.J.J. Alvarez Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions Water Res., 40 (2006), pp. 3527-3532spa
dcterms.referencesAlnadhari et al., 2021 S. Alnadhari, N.M. Al-Enazi, F. Alshehrei, F. Ameen A review on biogenic synthesis of metal nanoparticles using marine algae and its applications Environ. Res., 194 (2021), p. 110672spa
dcterms.referencesArai et al., 2019 M. Arai, G.I. Uramoto, M. Asano, K. Uematsu, K. Uesugi, A. Takeuchi, Y. Morono, R. WagaiAn improved method to identify osmium-stained organic matter within soil aggregate structure by electron microscopy and synchrotron X-ray micro-computed tomography Soil Tillage Res., 191 (2019), pp. 275-281spa
dcterms.referencesATSDR, 2001 ATSDR Toxicological Profile for Asbestos (TP-61) US Dept. of Health & Human Services (2001)spa
dcterms.referencesBarreto et al., 2021 D.M. Barreto, A.E. Tonietto, A.T. Lombardi Environmental concentrations of copper nanoparticles affect vital functions in Ankistrodesmus densus Aquat. Toxicol., 231 (2021), p. 105720spa
dcterms.referencesBebie et al., 1998 J. Bebie, M.A. Schoonen, M. Fuhrmann, D.R. Strongin Surface charge development on transition metal sulfides: an electrokinetic study Geochim. Cosmochim. Ac., 62 (1998), pp. 633-642spa
dcterms.referencesBoesen and Postma, 1988 C. Boesen, D. Postma Pyrite formation in anoxic environments of the Baltic Am. J. Sci., 288 (1988), pp. 575-603spa
dcterms.referencesCao and He, 2013 Z.J. Cao, X.B. He Three-dimensional numerical simulation of flow field in a seperator for sampling the suspended sediment J. Sichuan. Univ. Eng. Sci., 45 (2013), pp. 55-60spa
dcterms.referencesCaspah et al., 2016 K. Caspah, M. Mathuthu, M. Madhuku Health risk assessment of heavy metals in soils from witwatersrand gold mining basin, South Africa Int. J. Environ. Res. Public Health, 13 (2016), p. 663spa
dcterms.referencesChen and Elimelech, 2007 K.L. Chen, M. Elimelech Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions J. Colloid Interface Sci., 309 (2007), pp. 126-134spa
dcterms.referencesCiveira et al., 2016 M.S. Civeira, C.G. Ramos, M.L.S. Oliveira, R.M. Kautzmann, S.R. Taffarel, E.C. Teixeira, L.F.O. Silva Nano-mineralogy of suspended sediment during the beginning of coal rejects spill Chemosphere., 145 (2016), pp. 142-147spa
dcterms.referencesDane. National Administrative Department of Statistics, 2021 Dane. National Administrative Department of Statistics, 2021. Cartagena statistical data. (Accessed 20 April 2021).spa
dcterms.referencesDems et al., 2021 D. Dems, R. Freeman, K.D. Riker, T. Coradin, S.I. Stupp, C. Aimé Multivalent clustering of adhesion ligands in nanofiber-nanoparticle composites Acta Biomater., 119 (2021), pp. 303-311spa
dcterms.referencesEPA, U, 1986 EPA, U, 1986. Definition and procedure for the determination of the method detection limit. Code of Federal Regulations, Title,
dcterms.referencesEspinel-Velasco et al., 2021 N. Espinel-Velasco, S.P. Tobias-Hünefeldt, S. Karelitz, L.J. Hoffmann, S.E. Morales, M.D. Lamare Reduced seawater pH alters marine biofilms with impacts for marine polychaete larval settlement Mar. Environ. Res., 167 (2021), p. 105291spa
dcterms.referencesFlanagan, 2016 D.M. Flanagan Minerals Yearbook Asbestos (Advance Release) US Geological Survey (USGS), Reston, VA (2016), pp. 1-5spa
dcterms.referencesFreitas et al., 2018 R. Freitas, F. Coppola, L. Marchi, V. Codella, C. Pretti, F. Chiellini, A.A. Morelli, G. Polese, A.M.V.M. Soares, E. Figueira The influence of arsenic on the toxicity of carbon nanoparticles in bivalves J. Hazard. Mater., 358 (2018), pp. 484-493spa
dcterms.referencesGallo et al., 2018 A. Gallo, L. Manfra, R. Boni, A. Rotini, L. Migliore, E. Tosti Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through oxidative stress Environ. Int., 118 (2018), pp. 325-333spa
dcterms.referencesGonçalves and Bebianno, 2021 J.M. Gonçalves, M.J. Bebianno Nanoplastics impact on marine biota: a review Environ. Pollut., 273 (2021), p. 116426spa
dcterms.referencesGraca et al., 2018 B. Graca, A. Zgrundo, D. Zakrzewska, M. Rzodkiewicz, J. Karczewski Origin and fate of nanoparticles in marine water e preliminary results Chemosphere., 206 (2018), pp. 359-368spa
dcterms.referencesHe et al., 2014 C. He, H. Salonen, X. Ling, L. Crilley, N. Jayasundara, H.C. Cheung, M. Hargreaves, F. Huygens, L.D. Knibbs, G.A. Ayoko, L. Morawska The impact of flood and post-flood cleaning on airborne microbiological and particle contamination in re- sidential houses Environ. Int., 69 (2014), pp. 9-17spa
dcterms.referencesHu et al., 2018 J. Hu, J. Wang, S. Liu, Z. Zhang, H. Zhang, X. Cai, J. Pan, J. Liu Effect of TiO2 nanoparticle aggregation on marine microalgae Isochrysis galbana J Environ. Sci., 66 (2018), pp. 208-215spa
dcterms.referencesHund-Rinke et al., 2010 K. Hund-Rinke, K. Schlich, A. Wenzel TiO2 nanoparticles-relationship between dispersion preparation method and ecotoxicity in the algal growth test Umweltwiss Schadst. Forsch., 22 (2010), pp. 517-528spa
dcterms.referencesJin et al., 2017 L. Jin, X.S. Luo, P.Q. Fu, X.D. Li Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts Natl. Sci. Rev., 4 (2017), pp. 593-610spa
dcterms.referencesKaegi, 2008 R. Kaegi Synthetic TiO2 nanoparticle emission from exterior facade into the aquatic environment Environ. Pollut., 156 (2008), pp. 233-239spa
dcterms.referencesLeón-Mejía et al., 2018 G. León- ejía, M.N. Machado, R.T. Okuro, L.F. Silva, C. Telles, J. Dias, L. Niekraszewicz, J. da Silva, J.A.P. Henriques, W.A. Zin Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues Sci. Total Environ., 625 (2018), pp. 589-599spa
dcterms.referencesLiu et al., 2018 G. Liu, H. Zheng, Z. Jiang, Z. Wang Effects of biochar input on the properties of soil nanoparticles and dispersion/sedimentation of natural mineral nanoparticles in aqueous pase Sci. Total Environ., 634 (2018), pp. 595-605spa
dcterms.referencesLovern and Klaper, 2006 S.B. Lovern, R. Klaper Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles Environ. Toxicol. Chem., 25 (2006), pp. 1132-1137spa
dcterms.referencesMacintyre et al., 2014 E.A. Macintyre, U. Gehring, A. Molter, E. Fuertes, C. Klumper, U. Kramer, U. Quass, B. Hoffmann, M. Gascon, B. Brunekreef, G.H. Koppelman, R. Beelen, G. Hoek, M. Birk, J.C. de Jongste, H.A. Smit, J. Cyrys, O. Gruzieva, M. Korek, A. Bergstrom, R.M. Agius, F. de Vocht, A. Simpson, D. Porta, F. Forastiere, C. Badaloni, G. Cesaroni, A. Esplugues, A. Fernandez- Somoano, A. Lerxundi, J. Sunyer, M. Cirach, M.J. Nieuwenhuijsen, G. Pershagen, J. Heinrich Air pollution and re- spiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project Environ. Health Perspect., 122 (2014), pp. 107-113spa
dcterms.referencesMassoudieh et al., 2012 A. Massoudieh, A. Gellis, W.S. Banks, M.E. Wieczorek Suspended sediment source apportionment in Chesapeake Bay watershed using Bayesian chemical mass balance receptor modelling Hydrol. Process., 27 (2012), pp. 3363-3374spa
dcterms.referencesNguyen et al., 2020 T.H. Nguyen, H.N.T. Hoang, N.Q. Bien Contamination of heavy metals in paddy soil in the vicinity of Nui Phao multi-metal mine, North Vietnam Environ. Geochem. Health. (2020), 10.1007/s10653-020-00611-5spa
dcterms.referencesNIOSH, 2013 NIOSH Current Strategies for Engineering Controls in Nanomaterial Production and Downstream Handling Processes US Department of Health and Hu- man Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH (2013) (DHHS (NIOSH) Publication No 2014-102)spa
dcterms.referencesNordin et al., 2018 A.P. Nordin, J. da Silva, C. de Souza, L.A.B. Niekraszewicz, J.F. Dias, K. da Boit, M.L.S. Oliveira, I. Grivicich, A.L. Garcia, L.F. Silva, F.R. da Silva In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage J. Hazard. Mater., 346 (2018), pp. 263-272spa
dcterms.referencesOliveira et al., 2019 M.L. Oliveira, M. Izquierdo, X. Querol, R.N. Lieberman, B.K. Saikia, L.F. Silva Nanoparticles from construction wastes: a problem to health and the environment J. Clean. Prod., 219 (2019), pp. 236-243spa
dcterms.referencesOliveira et al., 2021 M.L.S. Oliveira, A. Neckel, L.F.O. Silva, G.L. Dotto, L.S. Maculan Environmental aspects of the depreciation of the culturally significant wall of Cartagena de Indias – Colombia Chemosphere, 265 (2021), p. 129119spa
dcterms.referencesPeralta-Videa et al., 2011 J.R. Peralta-Videa, L. Zhao, M. Lopez-Moreno, G.L. Rosa, J. Hong, J.L. Gardea-Torresdey Nanomaterials and the environment: a review for the bi-ennium J. Hazard. Mater., 186 (2011), pp. 1-15spa
dcterms.referencesPetersen et al., 2016 E.J. Petersen, D.X. Flores-Cervantes, T.D. Bucheli, L.C. Elliott, J.A. Fagan, A. Gogos, S. Hanna, R. Kagi, E. Mansfield, A.R. Montoro Bustos, D.L. Plata, V. Reipa, P. Westerhoff, M.R. Winchester Quantification of carbon nanotubes in environmental matrices: current capabilities, case studies, and future prospects Environ. Sci. Technol., 50 (2016), pp. 4587-4605spa
dcterms.referencesPiccardo et al., 2020 M. Piccardo, M. Renzi, A. Terlizzi Nanoplastics in the oceans: theory, experimental evidence and real world Mar. Pollut. Bull., 157 (2020), p. 111317spa
dcterms.referencesRestrepo et al., 2012 J.C. Restrepo, L. Otero, A.C. Casas, A. Henao, J. Gutiérrez Shoreline changes between 1954 and 2007 in the marine protected area of the Rosario Island archipelago (Caribbean of Colombia) Ocean Coast. Manag., 69 (2012), pp. 133-142spa
dcterms.referencesRibeiro et al., 2010 J. Ribeiro, D. Flores, C. Ward, L.F.O. Silva Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal Sci. Total Environ., 408 (2010), pp. 6032-6041spa
dcterms.referencesRio-Cortina et al., 2020 J.D. Rio-Cortina, M. Ibarra-Fernández, C. Rodríguez-Arias, N. López-Espitia Competitiveness in insular regions: case of Isla Grande in the Archapelago of Islas Del Rosario, Cartagena, Colombia WSEAS Trans. Bus. Econ., 17 (2020), pp. 410-425spa
dcterms.referencesRojas et al., 2019 J.C. Rojas, N.E. Sanchez, I. Schneider, M.L.S. Oliveira, E.C. Teixeira, L.F.O. Silva Exposure to nanometric pollutants in primary schools: environmental implications Urban Clim., 27 (2019), pp. 412-419spa
dcterms.referencesRothen-Rutishauser et al., 2006 B.M. Rothen-Rutishauser, S. Schurch, B. Haenni, N. Kapp, P. Gehr Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques Environ. Sci. Technol., 40 (2006), pp. 4353-4359spa
dcterms.referencesSierra-Marquez et al., 2017 L. Sierra-Marquez, J. Sierra-Marquez, J. de Larosa, J. Olivero-Verbel Imposex in Stramonita haemastoma from coastal sites of Cartagena, Colombia Braz. J. Biol., 78 (2017), pp. 548-555spa
dcterms.referencesSilva et al., 2011a L.F.O. Silva, M. Izquierdo, X. Querol, R.B. Finkelman, M.L.S. Oliveira, M. Wollenschlager, M. Towler, R. Pérez-López, F. Macias Leaching of potential hazardous elements of coal cleaning rejects Environ. Monit. Assess., 175 (2011), pp. 109-126spa
dcterms.referencesSilva et al., 2011b L.F.O. Silva, F. Macias, M.L.S. Oliveira, K.M. da Boit, F. Waanders Coal cleaning residues and Fe-minerals implications Environ. Monit. Assess., 172 (2011), pp. 367-378spa
dcterms.referencesSilva et al., 2011c L.F.O. Silva, X. Querol, K.M. da Boit, S. Fdez-Ortiz Vallejuelo, J.M. Madariaga Brazilian coal mining residues and sulphide oxidation by Fenton’s reaction: an accelerated weathering procedure to evaluate possible environmental impact J. Hazard. Mater., 186 (2011), pp. 516-525spa
dcterms.referencesSilva et al., 2020a L.F.O. Silva, D. Pinto, A. Neckel, G.L. Dotto, M.L.S. Oliveira The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil Chemosphere, 251 (2020), p. 126838spa
dcterms.referencesSilva et al., 2020b L.F.O. Silva, C. Milanes, D. Pinto, O. Ramirez, B.D. Lima Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere Chemosphere., 239 (2020), p. 124776spa
dcterms.referencesSofi et al., 2021 H.S. Sofi, T. Akram, N. Shabir, R. Vasita, A.H. Jadhav, F.A. Sheikh Regenerated cellulose nanofibers from cellulose acetate: incorporating hydroxyapatite (HAP) and silver (AG) nanoparticles (NPs), as a scaffold for tissue engineering applications Mater. Sci. Eng. C, 118 (2021), p. 111547spa
dcterms.referencesThiagarajan et al., 2019 V. Thiagarajan, M. Pavani, S. Archanaa, R. Seenivasan, N. Chandrasekaran, G.K. Suraishkumar, A. Mukherjee Diminishing bioavailability and toxicity of P25 TiO2 NPs during continuous exposure to marine algae Chlorella SP Chemosphere, 233 (2019), pp. 363-372spa
dcterms.referencesUrrego et al., 2019 L.E. Urrego, M.A. Prado, G. Bernal, A. Galeano Mangrove responses to droughts since the little ice age in the Colombian Caribbean Estuar. Coast. Mar. Sci., 230 (2019), p. 106432spa
dcterms.referencesWang and Wang, 2014 J. Wang, W.X. Wang Low bioavailability of silver nanoparticles presents trophic toxicity to marine medaka (Oryzias melastigma) Environ. Sci. Technol., 48 (2014), pp. 8152-8161spa
dcterms.referencesWigginton et al., 2007 N.S. Wigginton, K.L. Haus, M.F. Hochella Jr. Aquatic environmental nanoparticles J. Environ. Monit., 9 (2007), pp. 1306-1316spa
dcterms.referencesWorld Health Organization (WHO), 2014 World Health Organization (WHO), 2014 Antimicrobial Resistance: Global Report on Surveillance. [cited 2017 Sep 16]. Accessed 6 May
dcterms.referencesWren et al., 2000 D.G. Wren, B.D. Barkdoll, R.A. Kuhnle, R.W. Derrow Field techniques for suspended-sediment measurement J. Hydraul. Eng., 126 (2000), pp. 97-104spa
dcterms.referencesXia et al., 2018 B. Xia, Q. Sui, X. Sun, Q. Han, B. Chena, L. Zhu, K. Qu Ocean acidification increases the toxic effects of TiO2 nanoparticles on the marine microalga Chlorella vulgari J. Hazard. Mater., 346 (2018), pp. 1-9spa
dcterms.referencesXiao et al., 2016 Y. Xiao, W.J. Peijnenburg, G. Chen, M.G. Vijver Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions Sci. Total Environ., 563–564 (2016), pp. 81-88spa
dcterms.referencesZhang et al., 2020 X. Zhang, S. Lv, X. Lu, H. Yu, T. Huang, Q. Zhang, M. Zhu Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation Nano Energy, 75 (2020), p. 104894spa
dcterms.referencesZhao et al., 2014 J. Zhao, Z. Wang, J.C. White, B. Xing Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation Environ. Sci. Technol., 48 (2014), pp. 9995-10009spa
dcterms.referencesZou et al., 2021 H. Zou, C. Liu, F. Evrendilek, Y. He, J. Liu Evaluation of reaction mechanisms and emissions of oily sludge and coal co-combustions in O2/CO2 and O2/N2 atmospheres Renew. Energy, 171 (2021), pp. 1327-1343spa

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal