Show simple item record

dc.contributor.authorMansour, Romany
dc.contributor.authorEscorcia-García, Joséspa
dc.contributor.authorGamarra, Margaritaspa
dc.contributor.authorVILLANUEVA, JAIR ASIRspa
dc.contributor.authorLeal, Nalligspa
dc.description.abstractRecently, intelligent video surveillance applications have become essential in public security by the use of computer vision technologies to investigate and understand long video streams. Anomaly detection and classification are considered a major element of intelligent video surveillance. The aim of anomaly detection is to automatically determine the existence of abnormalities in a short time period. Deep reinforcement learning (DRL) techniques can be employed for anomaly detection, which integrates the concepts of reinforcement learning and deep learning enabling the artificial agents in learning the knowledge and experience from actual data directly. With this motivation, this paper presents an Intelligent Video Anomaly Detection and Classification using Faster RCNN with Deep Reinforcement Learning Model, called IVADC-FDRL model. The presented IVADC-FDRL model operates on two major stages namely anomaly detection and classification. Firstly, Faster RCNN model is applied as an object detector with Residual Network as a baseline model, which detects the anomalies as objects. Besides, deep Q-learning (DQL) based DRL model is employed for the classification of detected anomalies. In order to validate the effective anomaly detection and classification performance of the IVADC-FDRL model, an extensive set of experimentations were carried out on the benchmark UCSD anomaly dataset. The experimental results showcased the better performance of the IVADC-FDRL model over the other compared methods with the maximum accuracy of 98.50% and 94.80% on the applied Test004 and Test007 dataset respectively.eng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.sourceImage and Vision Computingspa
dc.subjectVideo surveillanceeng
dc.subjectIntelligent systemseng
dc.subjectAnomaly detectioneng
dc.subjectDeep reinforcement learningeng
dc.subjectUCSD dataseteng
dc.titleIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning modeleng
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.relation.references[1] X. Zhang, S. Yang, J. Zhang, W. Zhang Video anomaly detection and localization using motion-field shape description and homogeneity testing Pattern Recogn., 105 (2020), p. 107394spa
dc.relation.references[2] S. Veluchamy, L.R. Karlmarx, K.M. Mahesh Detection and localization of abnormalities in surveillance video using timerider-based neural network Comput. J. (2021), Article bxab002, 10.1093/comjnl/bxab002spa
dc.relation.references[3] Y. Fan, G. Wen, D. Li, S. Qiu, M.D. Levine, F. Xiao Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder Comput. Vis. Image Underst., 195 (2020), p. 102920spa
dc.relation.references[4] A. Alam, M.N. Khan, J. Khan, Y.K. Lee Intellibvr-intelligent large-scale video retrieval for objects and events utilizing distributed deep-learning and semantic approaches 2020 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 28-35), IEEE (2020, February)spa
dc.relation.references[5] S. Liu, J. Tang Modified deep reinforcement learning with efficient convolution feature for small target detection in vhr remote sensing imagery ISPRS International Journal of Geo-Information, 10 (3) (2021), p. 170 CrossRefView Record in ScopusGoogle Scholarspa
dc.relation.references[6] S.K. Lakshmanaprabu, S.N. Mohanty, S. Krishnamoorthy, J. Uthayakumar, K. Shankar Online clinical decision support system using optimal deep neural networks Appl. Soft Comput., 81 (2019), p. 105487spa
dc.relation.references[7] J. Uthayakumar, N. Metawa, K. Shankar, S.K. Lakshmanaprabu Intelligent hybrid model for financial crisis prediction using machine learning techniques Information Systems and e-Business Management, pp. (2018), pp. 1-29 View Record in ScopusGoogle Scholarspa
dc.relation.references[8] R. Hinami, T. Mei, S. Satoh Joint detection and recounting of abnormal events by learning deep generic knowledge IEEE International Conference on Computer Vision (ICCV) (2017)spa
dc.relation.references[9] R.T. Ionescu, F.S. Khan, M.-I. Georgescu, L. Shao Object-centric auto-encoders and dummy anomalies for abnormal event detection in video The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)spa
dc.relation.references[10] W. Luo, W. Liu, S. Gao A revisit of sparse coding based anomaly detection in stacked RNN framework 2017 IEEE International Conference on Computer Vision (ICCV) (2017), pp. 341-349spa
dc.relation.references[11] M. Sabokrou, M. Fathy, M. Hoseini Video anomaly detection and localization based on the sparsity and reconstruction error of auto-encoder Electron. Lett., 52 (13) (2016), pp. 1122-1124spa
dc.relation.references[12] M. Ravanbakhsh, M. Nabi, H. Mousavi, E. Sangineto, N. Sebe Plug-and-play CNN for crowd motion analysis: An application in anomalous event detection WACV (2017)spa
dc.relation.references[13] Mohammad Sabokrou, Mohsen Fayyaz, Mahmood Fathy, Reinhard Klette Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes Comp. Vision Image Underst., 172 (2018), pp. 88-97spa
dc.relation.references[14] M. Hasan, J. Choi, J. Neumanny, A.K. Roy-Chowdhury, L.S. Davis Learning Temporal Regularity in Video Sequences CVPR (2016)spa
dc.relation.references[15] D. Xu, E. Ricci, Y. Yan, J. Song, N. Sebe Learning Deep Representations of Appearance and Motion for Anomalous Event Detection BMVC (2015), pp. 1-12spa
dc.relation.references[16] M. Bellver, X. Giro-i-Nieto, F. Marques, J. Torres Hierarchical Object Detection with Deep Reinforcement Learning Proceedings of the Conference on Neural Information Processing Systems, Barcelona, Spain (December 2016), pp. 5-20spa
dc.relation.references[17] X. Kong, B. Xin, Y. Wang, G. Hua Collaborative deep reinforcement learning for joint object search Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA (21–26 July 2017), pp. 7072-7081spa
dc.relation.references[18] B. Uzkent, C. Yeh, S. Ermon Efficient object detection in large images using deep reinforcement learning Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA (1–5 March 2020), pp. 1824-1833spa
dc.relation.references[19] S. Liu, D. Huang, Y. Wang Pay attention to them: deep reinforcement learning-based Cascade object detection IEEE Trans Neural Netw. Learn Syst., 31 (2020), pp. 2544-2556spa
dc.relation.references[20] S. Ren, K. He, R. Girshick, J. Sun Faster R-CNN: towards real-time object detection with region proposal networks IEEE Trans. Pattern Anal. Mach. Intell., 39 (6) (2015), pp. 1137-1149spa
dc.relation.references[21] A.A. Micheal, K. Vani Automatic object tracking in optimized UAV video J. Supercomput., 75 (8) (2019), pp. 4986-4999spa
dc.relation.references[22] X. Lei, Z. Sui Intelligent fault detection of high voltage line based on the faster R-CNN Measurement, 138 (2019), pp. 379-385spa
dc.relation.references[23] Y. Ding, L. Ma, J. Ma, M. Suo, L. Tao, Y. Cheng, C. Lu Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: a deep reinforcement learning approach Adv. Eng. Inform., 42 (2019), p. 100977spa
dc.relation.references[24] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis Human-level control through deep reinforcement learning Nature, 518 (2015), pp. 529-533spa
dc.relation.references[26] B.S. Murugan, M. Elhoseny, K. Shankar, J. Uthayakumar Region-based scalable smart system for anomaly detection in pedestrian walkways Computers & Electrical Engineering, 75 (2019), pp. 146-160spa

Files in this item


This item appears in the following Collection(s)

  • Artículos científicos [2753]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal