Mostrar el registro sencillo del ítem

dc.contributor.authorSilva Oliveira, Luis Felipespa
dc.contributor.authorDotto, Guilherme Luizspa
dc.contributor.authorPinto, Dianaspa
dc.contributor.authorSilva Oliveira, Marcos Leandrospa
dc.date.accessioned2021-06-24T18:08:55Z
dc.date.available2021-06-24T18:08:55Z
dc.date.issued2021
dc.identifier.issn0025-326Xspa
dc.identifier.issn1879-3363spa
dc.identifier.urihttps://hdl.handle.net/11323/8409spa
dc.description.abstractStudies examining nanoparticles (NPs) and hazardous elements (HEs) contained in suspended sediments (SSs) are vital for watershed administration and ecological impact evaluation. The biochemical consequence of titanium-nanoparticles (Ti-NPs) from SSs in Colombia's Magdalena River was examined utilizing an innovative approach involving nanogeochemistry in this study. In general, the toxicity and the human health risk assessment associated with the presence of some Ti-NPs + HEs in SSs from riverine systems need to be determined with a robust analytical procedure. The mode of occurrence of Ti-NPs, total Ti and other elements contained within SSs of the Magdalena River were evaluated through advanced electron microscopy (field emission scanning electron microscope-FE-SEM and high resolution transmission electron microscope-HR-TEM) coupled with an energy dispersive X-ray microanalysis system (EDS); X-Ray Diffractions (XRD); and inductively coupled plasma-mass pectrometry (ICP-MS). This work showed that enormous quantities of Ti-NPs were present in the river studied and that they displayed diverse eochemical properties and posed various possible ecological dangers. Ti-NP contamination indices must be established for measuring the environmental magnitudes of NP contamination and determining contamination rank among rivers. Finally, SS contamination guidelines must be recommended on an international level. This study contributes to the scientific understanding of the relationship of HE and Ti-NP dynamics from SSs in riverine systems around the world.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherUniversidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceMarine Pollution Bulletinspa
dc.subjectTitanium-nanoparticlesspa
dc.subjectRutile and Anatase nano-mineralsspa
dc.subjectParticle mode of occurrencespa
dc.subjectSize-dependent propertiesspa
dc.subjectNanomineral–water interfacespa
dc.subjectSurface particle geochemistryspa
dc.titleNanoparticles and interfaces with toxic elements in fluvial suspended sedimentspa
dc.typePre-Publicaciónspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S0025326X21004392spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.marpolbul.2021.112405spa
dc.date.embargoEnd2023
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAllard et al., 2004 T. Allard, N. Menguy, J. Salomon, T. Calligaro, T. Weber, G. Calas, M.F. Benedeti Revealing forms of iron in river-borne material from major tropical rivers of the Amazon Basin (Brazil) Geochim. Cosmochim. Acta, 68 (2004), pp. 3079-3094spa
dc.relation.referencesBanfield and Zhang, 2001 J.F. Banfield, H. Zhang Nanoparticles in the environment Rev. Mineral. Geochem., 44 (2001), pp. 1-58spa
dc.relation.referencesCheng et al., 2021 Q. Cheng, H. Jiang, Z. Jin, Y. Zhao, L. Du Effects of Fe2O3 nanoparticles on extracellular polymeric substances and nonylphenol degradation in river sediment Sci. Total Environ., 770 (2021), p. 145210spa
dc.relation.referencesCiveira et al., 2016ª M. Civeira, R.N. Pinheiro, A. Gredilla, S. de Vallejuelo, M.L.S. Oliveira, C.G. Ramos, S.R. Taffarel, R.M. Kautzmann, J.M. Madariaga, L.F.O. Silva The properties of the nano-minerals and hazardous elements: potential environmental impacts of brazilian coal waste fire. Sci Total Environ, 544 (2016), pp. 892-900, 10.1016/j.scitotenv.2015.12.026spa
dc.relation.referencesCiveira et al., 2016b M. Civeira, C.G. Ramos, M.L.S. Oliveira, R.M. Kautzmann, Silvio R. Taffarel, E.C. Teixeira, L.F.O. Silva Nano-mineralogy of suspended sediment during the beginning of coal rejects spill Chemosphere, 145 (2016), pp. 142-147, 10.1016/j.chemosphere.2015.11.059spa
dc.relation.referencesDe Vallejuelo et al., 2017 S.F.O. De Vallejuelo, A. Gredilla, K. da Boit, E.C. Teixeira, C.H. Sampaio, J.M. Madariaga, L.F. Silva Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: environmental impact and risk assessment Chemosphere, 169 (2017), pp. 725-733, 10.1016/j.chemosphere.2016.09.125spa
dc.relation.referencesFernandez-Maestre et al., 2018 R. Fernandez-Maestre, B. Johnson-Restrepo, J. Olivero-Verbel Heavy metals in sediments and fish in the Caribbean coast of Colombia: assessing the environmental risk International Journal of Environmental Research, 12 (2018), pp. 289-301spa
dc.relation.referencesGredilla et al., 2017 A. Gredilla, S.F.O. de Vallejuelo, L. Gomez-Nubla, J.A. Carrero, F.B. de Leão, J.M. Madariaga, L.F. Silva Are children playgrounds safe play areas? Inorganic analysis and lead isotope ratios for contamination assessment in recreational (Brazilian) Parks Environ. Sci. Pollut. Res., 24 (2017), pp. 333-345, 10.1007/s11356-017-9831-6spa
dc.relation.referencesHuang et al., 2020 X. Huang, W. Kang, J. Guo, J. Hong, Q. Shen Highly reactive nanomineral assembly in soil colloids: implications for paddy soil carbon storage Sci. Total Environ., 703 (2020), p. 134728spa
dc.relation.referencesKaraouzas et al., 2021 I. Karaouzas, N. Kapetanaki, A. Mentzafou, T.D. Kanellopoulos, N. Skoulikidis Heavy metal contamination status in Greek surface waters: a review with application and evaluation of pollution índices Chemosphere, 263 (2021), p. 128192spa
dc.relation.referencesLi et al., 2020 D. Li, J.J. Zhang, G.Q. Wang, X.J. Wang, J.W. Wu Impact of changes in water management on hydrology and environment: a case study in North China J. Hydro-Environ. Res., 28 (2020), pp. 75-84spa
dc.relation.referencesLinley et al., 2020 S. Linley, N.R. Thomson, K. McVey, K. Sra, F.X. Gu Factors affecting pluronic-coated iron oxide nanoparticle binding to petroleum hydrocarbon-impacted sediments Chemosphere, 254 (2020), p. 126732spa
dc.relation.referencesLu et al., 2011 P. Lu, N.T. Nuhfer, S. Kelly, Q. Li, H. Konishi, E. Elswick, C. Zhu Lead coprecipitation with iron oxyhydroxide nano-particles Geochim. Cosmochim. Acta, 75 (2011), pp. 4547-4561spa
dc.relation.referencesOECD, 2012 OECD Environmental Outlook to 2050 (2012)spa
dc.relation.referencesOliveira et al., 2019 M.L.S. Oliveira, B.K. Saikia, K. da Boit, B.F. Tutikian, L.F.O. Silva River dynamics and nanopaticles formation: a comprehensive study on the nanoparticle geochemistry of suspended sediments in the Magdalena River, Caribbean Industrial Area J. Clean. Prod., 213 (2019), pp. 819-824spa
dc.relation.referencesOliveira et al., 2021ª M.L.S. Oliveira, A. Neckel, D. Pinto, L.S. Maculan, M.R.D. Zanchett, L.F.O. Silva Air pollutants and their degradation of a historic building in the largest metropolitan area in Latin America Chemosphere, 277 (2021), p. 130286, 10.1016/j.chemosphere.2021.130286spa
dc.relation.referencesOliveira et al., 2021b Oliveira, M.L.S., Neckel, A., Silva, L.F.O., Dotto, G.L., Maculan, L.S., 2021b. Environmental aspects of the depreciation of the culturally significant wall of Cartagena de Indias – Colombia. Chemosphere 265, 129119–1. https://doi.org/10.1016/j.chemosphere.2020.129119.spa
dc.relation.referencesPompermaier et al., 2021 A. Pompermaier, A.C.C. Varela, M. Fortuna, E.C. Bortoluzzi, L.J.G. Barcellos Water and suspended sediment runoff from vineyard watersheds affecting the behavior and physiology of zebrafish Sci. Total Environ., 757 (2021), p. 143794spa
dc.relation.referencesRaiswell et al., 2006 R. Raiswell, M. Tranter, L.G. Benning, M. Siegert, R. De'ath, P. Huybrechts, T. Payne Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: implications for iron delivery to the oceans Geochim. Cosmochim. Acta, 70 (2006), pp. 2765-2780spa
dc.relation.referencesRajaee and Jafari, 2020 T. Rajaee, H. Jafari Two decades on the artificial intelligence models advancement for modeling river sediment concentration: state-of-the-art J. Hydrol., 588 (2020), p. 125011spa
dc.relation.referencesRand et al., 2020 L.N. Rand, Y. Bi, A. Poustie, P. Westerhoff, J.F. Ranville Quantifying temporal and geographic variation in sunscreen and mineralogic titanium-containing nanoparticles in three recreational rivers Sci. Total Environ., 743 (2020), p. 140845spa
dc.relation.referencesRibeiro et al., 2010 J. Ribeiro, D. Flores, C. Ward, L.F.O. Silva Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal Sci. Total Environ., 408 (2010), pp. 6032-6041spa
dc.relation.referencesRibeiro et al., 2013ª J. Ribeiro, K.A. Daboit, D. Flores, M.A. Kronbauer, L.F.O. Silva Extensive fe-sem/eds, hr-tem/eds and tof-Sims studies of micron- to nano-particles in anthracite fly ash Sci. Total Environ., 452-453 (2013), pp. 98-107spa
dc.relation.referencesRibeiro et al., 2013b J. Ribeiro, S.R. Taffarel, C.H. Sampaio, D. Flores, L.F.O. Silva Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal Int. J. Coal Geol., 109-110 (2013), pp. 15-23spa
dc.relation.referencesSagan et al., 2020 V. Sagan, K.T. Peterson, M. Maimaitijiang, S. Maalouf, C. Adams Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing Earth Sci. Rev., 205 (2020), p. 103187spa
dc.relation.referencesSilva et al., 2009 L.F.O. Silva, T. Moreno, X. Querol An introductory TEM study of Fe-nanominerals within coal fly ash Sci. Total Environ., 407 (2009), pp. 4972-4974spa
dc.relation.referencesSilva et al., 2020 L.F.O. Silva, D. Pinto, A. Neckel, G.L. Dotto, M.L.S. Oliveira The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil Chemosphere, 251 (2020), p. 126838, 10.1016/j.chemosphere.2020.126838spa
dc.relation.referencesSilva et al., 2021 L.F.O. Silva, M. Santosh, M. Schindler, J. Gasparotto, G.L. Dotto, M.L.S. Oliveira, M.F. Hochella Jr. Nanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: a review and perspective Gondwana Res., 92 (184) (2021), p. 2021spa
dc.relation.referencesStreit et al., 2021 A.F.M. Streit, G.C. Collazzo, S.P. Druzian, L.F.S. Oliveira, G.L. Dotto Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry Chemosphere, 262 (2021), p. 128322spa
dc.relation.referencesTejeda-Benítez et al., 2016 L. Tejeda-Benítez, R. Flegal, K. Odigie, J. Olivero-Verbel Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia Environ. Pollut., 212 (2016), pp. 238-250spa
dc.relation.referencesTejeda-Benítez et al., 2018 L. Tejeda-Benítez, K. Noguera-Oviedo, D.S. Aga, J. Olivero-Verbel Toxicity profile of organic extracts from Magdalena River sediments Environ. Sci. Pollut. Res., 25 (2018), pp. 1519-1532spa
dc.relation.referencesTou et al., 2021 F. Tou, J. Wu, J. Fu, M. Liu, Y. Yang Titanium and zinc-containing nanoparticles in estuarine sediments: occurrence and their environmental implications Sci. Total Environ., 754 (2021), p. 142388spa
dc.relation.referencesVan der Zee et al., 2003 C. Van der Zee, D.R. Roberts, D.G. Rancourt, C.P. Slomp Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments Geology, 31 (2003), pp. 993-996spa
dc.relation.referencesWang, 2014 Y. Wang Nanogeochemistry: nanostructures, emergent properties and their control on geochemical reactions and mass transfers Chem. Geol., 378 (2014), pp. 1-23spa
dc.relation.referencesYin et al., 2020 Z. Yin, L. Song, Z. Lin, Z. Wang, W. Gao Granular activated carbon-supported titanium dioxide nanoparticles as an amendment for amending copper-contaminated sediments: effect on the pH in sediments and enzymatic activities Ecotoxicol. Environ. Saf., 206 (2020), p. 111325spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal