Show simple item record


dc.creatorClemente-Suárez, Vicente Javier
dc.creatorRamos-Campo, Domingo Jesús
dc.creatorMielgo Ayuso, Juan
dc.creatorDalamitros, Athanasios
dc.creatorNikolaidis, Pantelis
dc.creatorHormeno-Holgado, Alberto Joaquin
dc.creatorTornero Aguilera, José Francisco
dc.date.accessioned2021-06-29T01:29:08Z
dc.date.available2021-06-29T01:29:08Z
dc.date.issued2021-06-03
dc.identifier.issn20726643
dc.identifier.urihttps://hdl.handle.net/11323/8425
dc.description.abstractThe pandemic of Coronavirus Disease 2019 (COVID-19) has shocked world health authorities generating a global health crisis. The present study discusses the main finding in nutrition sciences associated with COVID-19 in the literature. We conducted a consensus critical review using primary sources, scientific articles, and secondary bibliographic indexes, databases, and web pages. The method was a narrative literature review of the available literature regarding nutrition interventions and nutrition-related factors during the COVID-19 pandemic. The main search engines used in the present research were PubMed, SciELO, and Google Scholar. We found how the COVID-19 lockdown promoted unhealthy dietary changes and increases in body weight of the population, showing obesity and low physical activity levels as increased risk factors of COVID-19 affection and physiopathology. In addition, hospitalized COVID-19 patients presented malnutrition and deficiencies in vitamin C, D, B12 selenium, iron, omega-3, and medium and long-chain fatty acids highlighting the potential health effect of vitamin C and D interventions. Further investigations are needed to show the complete role and implications of nutrition both in the prevention and in the treatment of patients with COVID-19.spa
dc.description.abstractLa pandemia de la enfermedad del coronavirus 2019 (COVID-19) ha conmocionado a las autoridades sanitarias mundiales generando una crisis sanitaria mundial. El presente estudio analiza el principal hallazgo en nutrición ciencias asociadas con COVID-19 en la literatura. Realizamos una revisión crítica de consenso utilizando fuentes primarias, artículos científicos e índices bibliográficos secundarios, bases de datos y páginas web. El método fue una revisión de la literatura narrativa de la literatura disponible con respecto a las intervenciones nutricionales y los factores relacionados con la nutrición durante la pandemia de COVID-19. Los principales motores de búsqueda utilizados en la presente investigación fueron PubMed, SciELO y Google Scholar. Descubrimos cómo el COVID-19 el bloqueo promovió cambios dietéticos poco saludables y aumentos en el peso corporal de la población, mostrando la obesidad y los bajos niveles de actividad física como factores de riesgo incrementados de la afección COVID-19 y fisiopatología. Además, los pacientes hospitalizados por COVID-19 presentaban desnutrición y deficiencias de vitamina C, D, B12, selenio, hierro, omega-3 y ácidos grasos de cadena media y larga destacando el posible efecto sobre la salud de las intervenciones con vitamina C y D. Investigaciones adicionales son necesario para mostrar el papel completo y las implicaciones de la nutrición tanto en la prevención como en la tratamiento de pacientes con COVID-19.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherNutrientsspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourcehttps://www.mdpi.com/2072-6643/13/6/1924spa
dc.subjectCOVID-19spa
dc.subjectNutritionspa
dc.subjectLockdownspa
dc.subjectBody compositionspa
dc.subjectVitaminspa
dc.subjectDietary patternspa
dc.subjectImmunologyspa
dc.subjectPhysical activityspa
dc.subjectGutspa
dc.subjectNutriciónspa
dc.subjectAislamientospa
dc.subjectComposición corporalspa
dc.subjectVitaminaspa
dc.subjectPatrón dietéticospa
dc.subjectInmunologíaspa
dc.subjectActividad físicaspa
dc.subjectIntestinospa
dc.titleNutrition in the Actual COVID-19 Pandemic. A Narrative Reviewspa
dc.title.alternativeNutrición en la actual pandemia de COVID-19. Una revisión narrativaspa
dc.typearticlespa
dcterms.references1. Wu, Y.C.; Chen, C.S.; Chan, Y.J. The outbreak of COVID-19: An overview. J. Chin. Med. Assoc. 2020, 83, 217–220. [CrossRef] [PubMed]spa
dcterms.references2. Tornero-Aguilera, J.F.; Clemente-Suárez, V.J. Cognitive and psychophysiological impact of surgical mask use during university lessons. Physiol. Behav. 2021, 234. [CrossRef] [PubMed]spa
dcterms.references3. Clemente-Suárez, V.J.; Navarro-Jiménez, E.; Jimenez, M.; Hormeño-Holgado, A.; Martinez-Gonzalez, M.B.; Benitez-Agudelo, J.C.; Perez-Palencia, N.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. Impact of COVID-19 pandemic in public mental health: An extensive narrative review. Sustainability 2021, 13, 3221.spa
dcterms.references4. Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [CrossRef]spa
dcterms.references5. Zhao, Q.; Meng, M.; Kumar, R.; Wu, Y.; Huang, J.; Deng, Y.; Weng, Z.; Yang, L. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int. J. Infect. Dis. 2020, 96, 131–135. [CrossRef] [PubMed]spa
dcterms.references6. Clemente-Suárez, V.J.; Hormeño-Holgado, A.; Jiménez, M.; Benitez-Agudelo, J.C.; Navarro-Jiménez, E.; Perez-Palencia, N.; Maestre-Serrano, R.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. Dynamics of population immunity due to the herd effect in the COVID-19 pandemic. Vaccines 2020, 8, 236. [CrossRef]spa
dcterms.references7. Dastoli, S.; Bennardo, L.; Patruno, C.; Nisticò, S.P. Are erythema multiforme and urticaria related to a better outcome of COVID-19? Dermatol. Ther. 2020, 33, e13681. [CrossRef] [PubMed]spa
dcterms.references8. Clemente-Suárez, V.J.; Dalamitros, A.A.; Beltran-Velasco, A.I.; Mielgo-Ayuso, J.; Tornero-Aguilera, J.F. Social and psychophysiological consequences of the COVID-19 pandemic: An extensive literature review. Front. Psychol. 2020, 11. [CrossRef]spa
dcterms.references9. Golestaneh, L.; Neugarten, J.; Fisher, M.; Billett, H.H.; Gil, M.R.; Johns, T.; Yunes, M.; Mokrzycki, M.H.; Coco, M.; Norris, K.C. The association of race and COVID-19 mortality. EClinicalMedicine 2020, 25. [CrossRef]spa
dcterms.references10. Fuentes-García, J.P.; Patiño, M.J.M.; Villafaina, S.; Clemente-Suárez, V.J. The effect of COVID-19 confinement in behavioral, psychological, and training patterns of chess players. Front. Psychol. 2020, 11. [CrossRef]spa
dcterms.references11. Batlle-Bayer, L.; Aldaco, R.; Bala, A.; Puig, R.; Laso, J.; Margallo, M.; Vázquez-Rowe, I.; Antó, J.M.; Fullana-i-Palmer, P. Environmental and nutritional impacts of dietary changes in Spain during the COVID-19 lockdown. Sci. Total Environ. 2020, 748. [CrossRef]spa
dcterms.references12. Sidor, A.; Rzymski, P. Dietary choices and habits during COVID-19 lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [CrossRef]spa
dcterms.references13. Muscogiuri, G.; Barrea, L.; Savastano, S.; Colao, A. Nutritional recommendations for CoVID-19 quarantine. Eur. J. Clin. Nutr. 2020, 74, 850–851. [CrossRef] [PubMed]spa
dcterms.references14. Rundle, A.G.; Park, Y.; Herbstman, J.B.; Kinsey, E.W.; Wang, Y.C. COVID-19–related school closings and risk of weight gain among children. Obesity 2020, 28, 1008–1009. [CrossRef] [PubMed]spa
dcterms.references15. Rodriguez-Besteiro, S.; Tornero-Aguilera, J.F.; Fernández-Lucas, J.; Clemente-Suárez, V.J. Gender Differences in the COVID-19 Pandemic Risk Perception, Psychology, and Behaviors of Spanish University Students. Int. J. Environ. Res. Public Health 2021, 18, 3908. [CrossRef] [PubMed]spa
dcterms.references16. Jia, P.; Liu, L.; Xie, X.; Yuan, C.; Chen, H.; Guo, B.; Zhou, J.; Yang, S. Changes in dietary patterns among youths in China during COVID-19 epidemic: The COVID-19 impact on lifestyle change survey (COINLICS). Appetite 2021, 158. [CrossRef] [PubMed]spa
dcterms.references17. Ruiz-Roso, M.B.; de Carvalho Padilha, P.; Mantilla-Escalante, D.C.; Ulloa, N.; Brun, P.; Acevedo-Correa, D.; Arantes Ferreira Peres, W.; Martorell, M.; Aires, M.T.; de Oliveira Cardoso, L. Covid-19 confinement and changes of adolescent’s dietary trends in Italy, Spain, Chile, Colombia and Brazil. Nutrients 2020, 12, 1807. [CrossRef]spa
dcterms.references18. Opichka, K.; Smith, C.; Levine, A.S. Problematic eating behaviors are more prevalent in african american women who are overweight or obese than african american women who are lean or normal weight. Fam. Commun. Health 2019, 42, 81–89. [CrossRef]spa
dcterms.references19. Błaszczyk-B ˛ebenek, E.; Jagielski, P.; Bolesławska, I.; Jagielska, A.; Nitsch-Osuch, A.; Kawalec, P. Nutrition behaviors in Polish adults before and during COVID-19 lockdown. Nutrients 2020, 12, 3084. [CrossRef]spa
dcterms.references20. Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; Fearnbach, S.N.; Heymsfield, S.B. Effects of COVID-19 lockdown on lifestyle behaviors in children with obesity living in Verona, Italy: A longitudinal study. Obesity 2020, 28, 1382–1385. [CrossRef]spa
dcterms.references21. Larsen, S.C.; Heitmann, B.L. More frequent intake of regular meals and less frequent snacking are weakly associated with lower long-term gains in body mass index and fat mass in middle-aged men and women. J. Nutr. 2019, 149, 824–830. [CrossRef]spa
dcterms.references22. Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; Ngo de la Cruz, J.; Bach-Faig, A.; Donini, L.M.; Medina, F.-X.; Belahsen, R.; et al. Updating the Mediterranean diet pyramid towards sustainability: Focus on environmental concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [CrossRef] [PubMed]spa
dcterms.references23. Poobalan, A.S.; Aucott, L.S.; Clarke, A.; Smith, W.C.S. Diet behaviour among young people in transition to adulthood (18–25 year olds): A mixed method study. Health Psychol. Behav. Med. 2014, 2, 909–928. [CrossRef]spa
dcterms.references24. Araiza, A.M.; Lobel, M. Stress and eating: Definitions, findings, explanations, and implications. Soc. Pers. Psychol. Compass 2018, 12, e12378. [CrossRef]spa
dcterms.references25. Moynihan, A.B.; Van Tilburg, W.A.; Igou, E.R.; Wisman, A.; Donnelly, A.E.; Mulcaire, J.B. Eaten up by boredom: Consuming food to escape awareness of the bored self. Front. Psychol. 2015, 6. [CrossRef]spa
dcterms.references26. Gasmi, A.; Noor, S.; Tippairote, T.; Dadar, M.; Menzel, A.; Bjørklund, G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin. Immunol. 2020, 215. [CrossRef] [PubMed]spa
dcterms.references27. Fernandez, M.L.; Raheem, D.; Ramos, F.; Carrascosa, C.; Saraiva, A.; Raposo, A. Highlights of current dietary guidelines in five continents. Int. J. Environ. Res. Public Health 2021, 18, 2814. [CrossRef]spa
dcterms.references28. Bhaskaram, P. Micronutrient malnutrition, infection, and immunity: An overview. Nutr. Rev. 2002, 60, S40–S45. [CrossRef] [PubMed]spa
dcterms.references29. Cava, E.; Carbone, S. Coronavirus disease 2019 pandemic and alterations of body composition. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 229–235. [CrossRef] [PubMed]spa
dcterms.references30. Ding, D.; Cheng, M.; del Pozo Cruz, B.; Lin, T.; Sun, S.; Zhang, L.; Yang, Q.; Ma, Z.; Wang, J.; Jia, Y. How COVID-19 lockdown and reopening affected daily steps: Evidence based on 164,630 person-days of prospectively collected data from Shanghai, China. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 1–10. [CrossRef]spa
dcterms.references31. Neovius, M.; Linne, Y.; Rossner, S. BMI, waist-circumference and waist-hip-ratio as diagnostic tests for fatness in adolescents. Int. J. Obes. 2005, 29, 163–169. [CrossRef]spa
dcterms.references32. Menke, A.; Muntner, P.; Wildman, R.P.; Reynolds, K.; He, J. Measures of adiposity and cardiovascular disease risk factors. Obesity 2007, 15, 785–795. [CrossRef] [PubMed]spa
dcterms.references33. Freuer, D.; Linseisen, J.; Meisinger, C. Impact of body composition on COVID-19 susceptibility and severity: A two-sample multivariable mendelian randomization study. Metab. Clin. Exp. 2021, 118. [CrossRef] [PubMed]spa
dcterms.references34. Christensen, R.A.; Sturrock, S.L.; Arneja, J.; Brooks, J.D. Measures of adiposity and risk of testing positive for SARS-CoV-2 in the UK biobank study. J. Obes. 2021, 2021. [CrossRef] [PubMed]spa
dcterms.references35. Favre, G.; Legueult, K.; Pradier, C.; Raffaelli, C.; Ichai, C.; Iannelli, A.; Esnault, V. Visceral fat is associated to the severity of COVID-19. Metabolism 2021, 115, 154440. [CrossRef] [PubMed]spa
dcterms.references36. Petersen, A.; Bressem, K.; Albrecht, J.; Thieß, H.; Vahldiek, J.; Hamm, B.; Makowski, M.R.; Niehues, A.; Niehues, S.M.; Adams, L.C. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metab. Clin. Exp. 2020, 110. [CrossRef] [PubMed]spa
dcterms.references37. Kottlors, J.; Zopfs, D.; Fervers, P.; Bremm, J.; Abdullayev, N.; Maintz, D.; Tritt, S.; Persigehl, T. Body composition on low dose chest CT is a significant predictor of poor clinical outcome in COVID-19 disease-A multicenter feasibility study. Eur. J. Radiol. 2020, 132. [CrossRef]spa
dcterms.references38. Van Zelst, C.M.; Janssen, M.L.; Pouw, N.; Birnie, E.; Castro Cabezas, M.; Braunstahl, G.J. Analyses of abdominal adiposity and metabolic syndrome as risk factors for respiratory distress in COVID-19. BMJ Open Respir. Res. 2020, 7. [CrossRef]spa
dcterms.references39. De Faria Coelho-Ravagnani, C.; Corgosinho, F.C.; Sanches, F.L.F.Z.; Prado, C.M.M.; Laviano, A.; Mota, J.F. Dietary recommendations during the COVID-19 pandemic. Nutr. Rev. 2021, 79, 382–393. [CrossRef]spa
dcterms.references40. Rebello, C.J.; Kirwan, J.P.; Greenway, F.L. Obesity, the most common comorbidity in SARS-CoV-2: Is leptin the link? Int. J. Obes. 2020, 44, 1–8. [CrossRef]spa
dcterms.references41. Földi, M.; Farkas, N.; Kiss, S.; Zádori, N.; Váncsa, S.; Szakó, L.; Dembrovszky, F.; Solymár, M.; Bartalis, E.; Szakács, Z. Obesity is a risk factor for developing critical condition in COVID-19 patients: A systematic review and meta-analysis. Obes. Rev. 2020, 21, e13095. [CrossRef] [PubMed]spa
dcterms.references42. Chu, Y.; Yang, J.; Shi, J.; Zhang, P.; Wang, X. Obesity is associated with increased severity of disease in COVID-19 pneumonia: A systematic review and meta-analysis. Eur. J. Med. Res. 2020, 25, 1–15. [CrossRef] [PubMed]spa
dcterms.references43. Watanabe, M.; Caruso, D.; Tuccinardi, D.; Risi, R.; Zerunian, M.; Polici, M.; Pucciarelli, F.; Tarallo, M.; Strigari, L.; Manfrini, S. Visceral fat shows the strongest association with the need of intensive care in patients with COVID-19. Metab. Clin. Exp. 2020, 111. [CrossRef] [PubMed]spa
dcterms.references44. Zhao, X.; Gang, X.; He, G.; Li, Z.; Lv, Y.; Han, Q.; Wang, G. Obesity increases the severity and mortality of influenza and COVID-19: A systematic review and meta-analysis. Front. Endocrinol. 2020, 11. [CrossRef]spa
dcterms.references45. Tamara, A.; Tahapary, D.L. Obesity as a predictor for a poor prognosis of COVID-19: A systematic review. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 655–659. [CrossRef]spa
dcterms.references46. Yang, J.; Hu, J.; Zhu, C. Obesity aggravates COVID-19: A systematic review and meta-analysis. J. Med. Virol. 2021, 93, 257–261. [CrossRef] [PubMed]spa
dcterms.references47. Huber, B.C.; Steffen, J.; Schlichtiger, J.; Brunner, S. Altered nutrition behavior during COVID-19 pandemic lockdown in young adults. Eur. J. Nutr. 2020, 1–10. [CrossRef]spa
dcterms.references48. Banga, N.; Guss, P.; Banga, A.; Rosenman, K.D. Incidence and variables associated with inadequate antibody titers after pre-exposure rabies vaccination among veterinary medical students. Vaccine 2014, 32, 979–983. [CrossRef]spa
dcterms.references49. Liu, F.; Guo, Z.; Dong, C. Influences of obesity on the immunogenicity of Hepatitis B vaccine. Hum. Vaccin. Immunother. 2017, 13, 1014–1017. [CrossRef]spa
dcterms.references50. Neidich, S.D.; Green, W.D.; Rebeles, J.; Karlsson, E.A.; Schultz-Cherry, S.; Noah, T.L.; Chakladar, S.; Hudgens, M.G.; Weir, S.S.; Beck, M.A. Increased risk of influenza among vaccinated adults who are obese. Int. J. Obes. 2017, 41, 1324–1330. [CrossRef]spa
dcterms.references51. Eliakim, A.; Swindt, C.; Zaldivar, F.; Casali, P.; Cooper, D.M. Reduced tetanus antibody titers in overweight children. Autoimmunity 2006, 39, 137–141. [CrossRef]spa
dcterms.references52. Butler, M.J.; Barrientos, R.M. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav. Immun. 2021, 87, 53–54. [CrossRef] [PubMed]spa
dcterms.references53. Greene, M.W.; Roberts, A.P.; Frugé, A.D. Negative association between Mediterranean diet adherence and COVID-19 cases and related deaths in Spain and 25 OECD countries: An ecological study. Front. Nutr. 2021, 8. [CrossRef]spa
dcterms.references54. Richardson, D.P.; Lovegrove, J.A. Nutritional status of micronutrients as a possible and modifiable risk factor for COVID-19: A UK perspective. Br. J. Nutr. 2021, 125, 678–684. [CrossRef]spa
dcterms.references55. Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients 2018, 10, 1656. [CrossRef]spa
dcterms.references56. Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D deficiency aggravates COVID-19: Systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 1–9. [CrossRef]spa
dcterms.references57. Detopoulou, P.; Demopoulos, C.A.; Antonopoulou, S. Micronutrients, phytochemicals and mediterranean diet: A potential protective role against COVID-19 through modulation of PAF actions and metabolism. Nutrients 2021, 13, 462. [CrossRef]spa
dcterms.references58. Gasmi, A.; Tippairote, T.; Mujawdiya, P.K.; Peana, M.; Menzel, A.; Dadar, M.; Bjørklund, G. Micronutrients as immunomodulatory tools for COVID-19 management. Clin. Immunol. 2020, 220, 108545. [CrossRef] [PubMed]spa
dcterms.references59. Im, J.H.; Je, Y.S.; Baek, J.; Chung, M.; Kwon, H.Y.; Lee, J. Nutritional status of patients with COVID-19. Int. J. Infect. Dis. 2020, 100, 390–393. [CrossRef] [PubMed]spa
dcterms.references60. Saeed, F.; Nadeem, M.; Ahmed, R.S.; Tahir Nadeem, M.; Arshad, M.S.; Ullah, A. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compounds—A review. Food Agric. Immunol. 2016, 27, 205–229. [CrossRef]spa
dcterms.references61. Patterson, T.; Isales, C.M.; Fulzele, S. Low level of vitamin C and dysregulation of vitamin C transporter might be involved in the severity of COVID-19 infection. Aging Dis. 2021, 12. [CrossRef]spa
dcterms.references62. Carr, A.C. Vitamin C in pneumonia and sepsis. In Vitamin C: New Biochemical and Functional Insights. Oxidative Stress and Disease; Chen, Q., Vissers, M., Eds.; Taylor & Francis: Abingdon, UK, 2020; pp. 115–135.spa
dcterms.references63. Arvinte, C.; Singh, M.; Marik, P.E. Serum levels of vitamin C and vitamin D in a cohort of critically ill COVID-19 patients of a north american community hospital intensive care unit in May 2020: A pilot study. Med. Drug Discov. 2020, 8. [CrossRef] [PubMed]spa
dcterms.references64. Galmés, S.; Serra, F.; Palou, A. Current state of evidence: Influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework. Nutrients 2020, 12, 2738. [CrossRef]spa
dcterms.references65. Agoro, R.; Taleb, M.; Quesniaux, V.F.; Mura, C. Cell iron status influences macrophage polarization. PLoS ONE 2018, 13, e0196921. [CrossRef] [PubMed]spa
dcterms.references66. Mikkelsen, K.; Stojanovska, L.; Prakash, M.; Apostolopoulos, V. The effects of vitamin B on the immune/cytokine network and their involvement in depression. Maturitas 2017, 96, 58–71. [CrossRef]spa
dcterms.references67. Haraj, N.E.; El Aziz, S.; Chadli, A.; Dafir, A.; Mjabber, A.; Aissaoui, O.; Barrou, L.; El Hamidi, C.E.K.; Nsiri, A.; Harrar, R.A. Nutritional status assessment in patients with Covid-19 after discharge from the intensive care unit. Clin. Nutr. ESPEN 2021, 41, 423–428. [CrossRef]spa
dcterms.references68. Abate, S.M.; Chekole, Y.A.; Estifanos, M.B.; Abate, K.H.; Kabtyimer, R.H. Prevalence and outcomes of malnutrition among hospitalized COVID-19 patients: A systematic review and meta-analysis. Clin. Nutr. ESPEN 2021, 43. [CrossRef]spa
dcterms.references69. Anker, M.S.; Landmesser, U.; von Haehling, S.; Butler, J.; Coats, A.J.; Anker, S.D. Weight loss, malnutrition, and cachexia in COVID-19: Facts and numbers. J. Cachex Sarcopenia Muscle 2021, 12, 674. [CrossRef] [PubMed]spa
dcterms.references70. Van Aerde, N.; Van den Berghe, G.; Wilmer, A.; Gosselink, R.; Hermans, G. Intensive care unit acquired muscle weakness in COVID-19 patients. Intensive Care Med. 2020, 46, 2083–2085. [CrossRef]spa
dcterms.references71. Gröber, U.; Holick, M.F. The coronavirus disease (COVID-19)–A supportive approach with selected micronutrients. Int. J. Vitam. Nutr. Res. 2021, 1–22. [CrossRef] [PubMed]spa
dcterms.references72. Yang, P.; Lin, M.; Liu, Y.; Lee, C.; Chang, N. Effect of nutritional intervention programs on nutritional status and readmission rate in malnourished older adults with pneumonia: A randomized control trial. Int. J. Environ. Res. Public Health 2019, 16, 4758. [CrossRef]spa
dcterms.references73. Sahebnasagh, A.; Saghafi, F.; Avan, R.; Khoshi, A.; Khataminia, M.; Safdari, M.; Habtemariam, S.; Ghaleno, H.R.; Nabavi, S.M. The prophylaxis and treatment potential of supplements for COVID-19. Eur. J. Pharmacol. 2020, 887, 173530. [CrossRef] [PubMed]spa
dcterms.references74. Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Jeewandara, C.; Ranasinghe, P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 367–382. [CrossRef] [PubMed]spa
dcterms.references75. Dattola, A.; Silvestri, M.; Bennardo, L.; Passante, M.; Scali, E.; Patruno, C.; Nisticò, S.P. Role of vitamins in skin health: A Systematic review. Curr. Nutr. Rep. 2020, 9, 1–10. [CrossRef] [PubMed]spa
dcterms.references76. Annweiler, C.; Hanotte, B.; de l’Eprevier, C.G.; Sabatier, J.M.; Lafaie, L.; Célarier, T. Vitamin D and survival in COVID-19 patients: A quasi-experimental study. J. Steroid Biochem. Mol. Biol. 2020, 204, 105771. [CrossRef]spa
dcterms.references77. Mercola, J.; Grant, W.B.; Wagner, C.L. Evidence regarding Vitamin D and risk of COVID-19 and its severity. Nutrients 2020, 12, 3361. [CrossRef]spa
dcterms.references78. Shah, K.; Saxena, D. Vitamin D supplementation, COVID-19 & disease severity: A meta-analysis. QJM Int. J. Med. 2021, 114. [CrossRef]spa
dcterms.references79. Hamulka, J.; Jeruszka-Bielak, M.; Górnicka, M.; Drywie ´n, M.E.; Zielinska-Pukos, M.A. Dietary supplements during COVID-19 outbreak. Results of google trends analysis supported by PLifeCOVID-19 online studies. Nutrients 2021, 13, 54.spa
dcterms.references80. Lordan, R. Notable developments for vitamin D amid the COVID-19 pandemic, but caution warranted overall: A narrative review. Nutrients 2021, 13, 740. [CrossRef]spa
dcterms.references81. Vyas, N.; Kurian, S.J.; Bagchi, D.; Manu, M.K.; Saravu, K.; Unnikrishnan, M.K.; Mukhopadhyay, C.; Rao, M.; Miraj, S.S. Vitamin D in prevention and treatment of COVID-19: Current perspective and future prospects. J. Am. Coll. Nutr. 2020, 1–14. [CrossRef]spa
dcterms.references82. Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hyppönen, E.; Berry, J.; Vieth, R. comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [CrossRef] [PubMed]spa
dcterms.references83. Jain, S.K.; Parsanathan, R. Can vitamin D and L-cysteine co-supplementation reduce 25 (OH)-vitamin D deficiency and the mortality associated with COVID-19 in African Americans? J. Am. Coll. Nutr. 2020, 39, 694–699. [CrossRef] [PubMed]spa
dcterms.references84. Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; Teh, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chay, J.W.M.; Nagarajan, C. A cohort study to evaluate the effect of combination vitamin D, magnesium and vitamin B12 (DMB) on progression to severe outcome in older COVID-19 patients. MedRxiv 2020, 111017. [CrossRef]spa
dcterms.references85. Chakhtoura, M.; Napoli, N.; El Hajj Fuleihan, G. Commentary: Myths and facts on vitamin D amidst the COVID-19 pandemic. Metabolism 2020, 109. [CrossRef] [PubMed]spa
dcterms.references86. Griffin, G.; Hewison, M.; Hopkin, J.; Kenny, R.; Quinton, R.; Rhodes, J.; Subramanian, S.; Thickett, D. Vitamin D and COVID-19: Evidence and recommendations for supplementation. R. Soc. Open Sci. 2020, 7. [CrossRef] [PubMed]spa
dcterms.references87. Nikniaz, L.; Akbarzadeh, M.A.; Hosseinifard, H.; Hosseini, M. The impact of vitamin D supplementation on mortality rate and clinical outcomes of COVID-19 patients: A systematic review and meta-analysis. MedRxiv 2021, 9219. [CrossRef]spa
dcterms.references88. Hewison, M. An update on vitamin D and human immunity. Clin. Endocrinol. 2012, 76, 315–325. [CrossRef] [PubMed]spa
dcterms.references89. Lee, G.Y.; Han, S.N. The role of vitamin E in immunity. Nutrients 2018, 10, 1614. [CrossRef] [PubMed]spa
dcterms.references90. Holford, P.; Carr, A.C.; Jovic, T.H.; Ali, S.R.; Whitaker, I.S.; Marik, P.E.; Smith, A.D. Vitamin C—An adjunctive therapy for respiratory infection, sepsis and COVID-19. Nutrients 2020, 12, 3760. [CrossRef]spa
dcterms.references91. Hiedra, R.; Lo, K.B.; Elbashabsheh, M.; Gul, F.; Wright, R.M.; Albano, J.; Azmaiparashvili, Z.; Patarroyo Aponte, G. The use of IV vitamin C for patients with COVID-19: A case series. Exp. Rev. Anti. Infect. Ther. 2020, 18, 1259–1261. [CrossRef]spa
dcterms.references92. Gao, D.; Xu, M.; Wang, G.; Lv, J.; Ma, X.; Guo, Y.; Zhang, D.; Yang, H.; Jiang, W.; Deng, F. The efficiency and safety of high-dose vitamin C in patients with COVID-19: A retrospective cohort study. Aging 2021, 13. [CrossRef]spa
dcterms.references93. Li, R.; Wu, K.; Li, Y.; Liang, X.; Lai, K.P.; Chen, J. Integrative pharmacological mechanism of vitamin C combined with glycyrrhizic acid against COVID-19: Findings of bioinformatics analyses. Brief. Bioinform. 2020, 22. [CrossRef]spa
dcterms.references94. Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol. 2020, 11. [CrossRef] [PubMed]spa
dcterms.references95. Chaudhary, S.M.D.; Wright, R.M.; Patarroyo-Aponte, G. Role of vitamin C in critically ill patients with COVID-19: Is it effective? Acute Crit. Care 2020, 35, 307–308. [CrossRef] [PubMed]spa
dcterms.references96. JamaliMoghadamSiahkali, S.; Zarezade, B.; Koolaji, S.; SeyedAlinaghi, S.; Zendehdel, A.; Tabarestani, M.; Moghadam, E.S.; Abbasian, L.; Manshadi, S.A.D.; Salehi, M. Safety and effectiveness of high-dose vitamin C in patients with COVID-19: A randomized open-label clinical trial. Eur. J. Med. Res. 2021, 26, 1–9. [CrossRef] [PubMed]spa
dcterms.references97. Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E. Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: The COVID A to Z randomized clinical trial. JAMA Netw. Open 2021, 4. [CrossRef]spa
dcterms.references98. Zhou, J.; Ma, Y.; Liu, Y.; Xiang, Y.; Tao, C.; Yu, H.; Huang, J. A correlation analysis between the nutritional status and prognosis of COVID-19 patients. J. Nutr. Health Aging 2021, 25, 84–93. [CrossRef]spa
dcterms.references99. Bourke, C.D.; Berkley, J.A.; Prendergast, A.J. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol. 2016, 37, 386–398. [CrossRef]spa
dcterms.references100. Wang, R.; DeGruttola, V.; Lei, Q.; Mayer, K.H.; Redline, S.; Hazra, A.; Mora, S.; Willett, W.C.; Ganmaa, D.; Manson, J.E. The vitamin D for COVID-19 (VIVID) trial: A pragmatic cluster-randomized design. Contemp. Clin. Trials 2021, 100. [CrossRef]spa
dcterms.references101. Lange, K.W.; Nakamura, Y. Food bioactives, micronutrients, immune function and COVID-19. J. Food Bioact. 2020, 10. [CrossRef]spa
dcterms.references102. Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Krznaric, Z.; Nitzan, D.; Singer, P. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin. Nutr. 2020, 39, 1631–1638. [CrossRef]spa
dcterms.references103. Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020, 21, e13128. [CrossRef]spa
dcterms.references104. De Morais, C.M. Nutritional therapy in COVID-19 management. Kompass Nutr. Diet. 2021, 1, 1–3.spa
dcterms.references105. Romano, L.; Bilotta, F.; Dauri, M.; Macheda, S.; Pujia, A.; De Santis, G.; Tarsitano, M.; Merra, G.; Di Renzo, L.; Esposito, E. Short report-medical nutrition therapy for critically ill patients with COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4035–4039.spa
dcterms.references106. Pecora, F.; Persico, F.; Argentiero, A.; Neglia, C.; Esposito, S. The role of micronutrients in support of the immune response against viral infections. Nutrients 2020, 12, 3198. [CrossRef]spa
dcterms.references107. Gorji, A.; Ghadiri, M.K. The potential roles of micronutrient deficiency and immune system dysfunction in COVID-19 pandemic. Nutrition 2020, 111047. [CrossRef]spa
dcterms.references108. Junaid, K.; Ejaz, H.; Abdalla, A.E.; Abosalif, K.O.; Ullah, M.I.; Yasmeen, H.; Younas, S.; Hamam, S.S.; Rehman, A. Effective immune functions of micronutrients against Sars-Cov-2. Nutrients 2020, 12, 2992. [CrossRef] [PubMed]spa
dcterms.references109. McAuliffe, S.; Ray, S.; Fallon, E.; Bradfield, J.; Eden, T.; Kohlmeier, M. Dietary micronutrients in the wake of COVID-19: An appraisal of evidence with a focus on high-risk groups and preventative healthcare. BMJ Nutr. Prev. Health 2020, 3, 93. [CrossRef]spa
dcterms.references110. Xing, Y.; Zhao, B.; Yin, L.; Guo, M.; Shi, H.; Zhu, Z.; Zhang, L.; He, J.; Ling, Y.; Gao, M. Vitamin C supplementation is necessary for patients with coronavirus disease: An ultra-high-performance liquid chromatography-tandem mass spectrometry finding. J. Pharm. Biomed. Anal. 2021, 196. [CrossRef] [PubMed]spa
dcterms.references111. Fernández-Quintela, A.; Milton-Laskibar, I.; Trepiana, J.; Gómez-Zorita, S.; Kajarabille, N.; Léniz, A.; González, M.; Portillo, M.P. Key aspects in nutritional management of COVID-19 patients. J. Clin. Med. 2020, 9, 2589. [CrossRef]spa
dcterms.references112. Laviano, A.; Zanetti, M. Nutrition support in the time of SARS-CoV-2 (COVID-19). Nutrition 2020, 74. [CrossRef]spa
dcterms.references113. Tsamakis, K.; Triantafyllis, A.S.; Tsiptsios, D.; Spartalis, E.; Mueller, C.; Tsamakis, C.; Chaidou, S.; Spandidos, D.A.; Fotis, L.; Economou, M. COVID-19 related stress exacerbates common physical and mental pathologies and affects treatment. Exp. Ther. Med. 2020, 20, 159–162. [CrossRef] [PubMed]spa
dcterms.references114. Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020, 20, 355–362. [CrossRef] [PubMed]spa
dcterms.references115. Lange, K.W.; Nakamura, Y. Movement and nutrition in COVID-19. Mov. Nutr. Health Dis. 2020, 4. [CrossRef]spa
dcterms.references116. Clemente-Suárez, V.J.; Fuentes-García, J.P.; de la Vega Marcos, R.; Martínez Patiño, M.J. Modulators of the personal and professional threat perception of olympic athletes in the actual COVID-19 crisis. Front. Psychol. 2020, 11. [CrossRef] [PubMed]spa
dcterms.references117. Kumar, K.H.; Baruah, M. Nutritional endocrine disorders. J. Med. Nutr. Nutraceut. 2012, 1. [CrossRef]spa
dcterms.references118. Monneret, C. What is an endocrine disruptor? Comptes Rendus Biol. 2017, 340, 403–405. [CrossRef]spa
dcterms.references119. Plunk, E.C.; Richards, S.M. Epigenetic modifications due to environment, ageing, nutrition, and endocrine disrupting chemicals and their effects on the endocrine system. Int. J. Endocrinol. 2020, 2020. [CrossRef]spa
dcterms.references120. Abdel-Moneim, A.; Hosni, A. Insights into the possible impact of COVID-19 on the endocrine system. Arch. Physiol. Biochem. 2021, 1–9. [CrossRef]spa
dcterms.references121. Song, P.; Li, W.; Xie, J.; Hou, Y.; You, C. Cytokine storm induced by SARS-CoV-2. Clin. Chim. Acta 2020, 509, 280–287. [CrossRef]spa
dcterms.references122. Calder, P.C. Nutrition, immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3, 74–92. [CrossRef]spa
dcterms.references123. Yoshii, K.; Hosomi, K.; Sawane, K.; Kunisawa, J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front. Nutr. 2019, 6. [CrossRef] [PubMed]spa
dcterms.references124. Cerullo, G.; Negro, M.; Parimbelli, M.; Pecoraro, M.; Perna, S.; Liguori, G.; Rondanelli, M.; Cena, H.; D’Antona, G. the long history of vitamin C: From prevention of the common cold to potential aid in the treatment of COVID-19. Front. Immunol. 2020, 11. [CrossRef] [PubMed]spa
dcterms.references125. Ng, T.B.; Cheung, R.C.F.; Wong, J.H.; Wang, Y.; Ip, D.T.M.; Wan, D.C.C.; Xia, J. Antiviral activities of whey proteins. Appl. Microbiol. Biotechnol. 2015, 99, 6997–7008. [CrossRef]spa
dcterms.references126. Chowdhury, M.A.; Hossain, N.; Kashem, M.A.; Shahid, M.A.; Alam, A. Immune response in COVID-19: A review. Infect. Public Health 2020, 13. [CrossRef]spa
dcterms.references127. Herrera-Peco, I.; Jiménez-Gómez, B.; Peña-Deudero, J.J.; De Gracia, E.B. Comments on nutritional recommendations for CoVID-19 quarantine. Eur. J. Clin. Nutr. 2021, 1–2. [CrossRef]spa
dcterms.references128. Uversky, V.N.; Elrashdy, F.; Aljadawi, A.; Ali, S.M.; Khan, R.H.; Redwan, E.M. Severe acute respiratory syndrome coronavirus 2 infection reaches the human nervous system: How? J. Neurosci. Res. 2021, 99, 750–777. [CrossRef]spa
dcterms.references129. Campos-Bedolla, P.; Walter, F.R.; Veszelka, S.; Deli, M.A. Role of the blood–brain barrier in the nutrition of the central nervous system. Arch. Med. Res. 2014, 45, 610–638. [CrossRef]spa
dcterms.references130. Virmani, A.; Pinto, L.; Binienda, Z.; Ali, S. Food, nutrigenomics, and neurodegeneration–neuroprotection by what you eat! Mol. Neurobiol. 2013, 48, 353–362. [CrossRef]spa
dcterms.references131. Blondeau, N. The nutraceutical potential of omega-3 alpha-linolenic acid in reducing the consequences of stroke. Biochimie 2016, 120, 49–55. [CrossRef]spa
dcterms.references132. Ursell, L.K.; Metcalf, J.L.; Parfrey, L.W.; Knight, R. Defining the human microbiome. Nut. Rev. 2012, 70 (Suppl. 1), S38–S44. [CrossRef]spa
dcterms.references133. Vighi, G.; Marcucci, F.; Sensi, L.; Di Cara, G.; Frati, F. Allergy and the gastrointestinal system. Clin. Exp. Immunol. 2008, 153, 3–6. [CrossRef]spa
dcterms.references134. Zhang, T.; Cui, X.; Zhao, X.; Wang, J.; Zheng, J.; Zheng, G.; Guo, W.; Cai, C.; He, S.; Xu, Y. Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. J. Med. Virol. 2020, 92, 909–914. [CrossRef]spa
dcterms.references135. Finlay, B.B.; Amato, K.R.; Azad, M.; Blaser, M.J.; Bosch, T.C.; Chu, H.; Giles-Vernick, T. The hygiene hypothesis, the COVID pandemic, and consequences for the human microbiome. Proc. Natl. Acad. Sci. USA 2021, 118, e2010217118. [CrossRef] [PubMed]spa
dcterms.references136. Geva-Zatorsky, N.; Sefik, E.; Kua, L.; Pasman, L.; Tan, T.G.; Ortiz-Lopez, A.; Yanortsang, T.B.; Yang, L.; Jupp, R.; Mathis, D. Mining the human gut microbiota for immunomodulatory organisms. Cell 2017, 168, 928–943. [CrossRef]spa
dcterms.references137. Walton, G.E.; Gibson, G.R.; Hunter, K.A. Mechanisms linking the human gut microbiome to prophylactic and treatment strategies for COVID-19. Br. J. Nutr. 2020, 1–9. [CrossRef] [PubMed]spa
dcterms.references138. Gu, S.; Chen, Y.; Wu, Z.; Chen, Y.; Gao, H.; Lv, L.; Guo, F.; Zhang, X.; Luo, R.; Huang, C. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin. Infect. Dis. 2020, 71, 2669–2678. [CrossRef] [PubMed]spa
dcterms.references139. Yeoh, Y.K.; Zuo, T.; Lui, G.C.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021, 70, 698–706. [CrossRef] [PubMed]spa
dcterms.references140. Zuo, T.; Zhang, F.; Lui, G.C.; Yeoh, Y.K.; Li, A.Y.; Zhan, H.; Wan, Y.; Chung, A.C.; Cheung, C.P.; Chen, N. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 2020, 159, 944–955. [CrossRef] [PubMed]spa
dcterms.references141. Villapol, S. Gastrointestinal symptoms associated with COVID-19: Impact on the gut microbiome. Transl. Res. 2020, 226. [CrossRef]spa
dcterms.references142. Cerdá, B.; Pérez, M.; Pérez-Santiago, J.D.; Tornero-Aguilera, J.F.; González-Soltero, R.; Larrosa, M. Gut microbiota modification: Another piece in the puzzle of the benefits of physical exercise in health? Front. Physiol. 2016, 7. [CrossRef]spa
dcterms.references143. Xu, Z.; Knight, R. Dietary effects on human gut microbiome diversity. Br. J. Nutr. 2015, 113, S1–S5. [CrossRef]spa
dcterms.references144. Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474, 327–336. [CrossRef] [PubMed]spa
dcterms.references145. Flint, H.J. The impact of nutrition on the human microbiome. Nutr. Rev. 2012, 70, S10–S13. [CrossRef]spa
dcterms.references146. Tartof, S.Y.; Qian, L.; Hong, V.; Wei, R.; Nadjafi, R.F.; Fischer, H.; Li, Z.; Shaw, S.F.; Caparosa, S.L.; Nau, C.L. Obesity and mortality among patients diagnosed with COVID-19: Results from an integrated health care organization. Ann. Intern. Med. 2020, 173, 773–781. [CrossRef] [PubMed]spa
dcterms.references147. Bahrmann, A.; Benner, L.; Christ, M.; Bertsch, T.; Sieber, C.C.; Katus, H.; Bahrmann, P. The Charlson Comorbidity and Barthel Index predict length of hospital stay, mortality, cardiovascular mortality and rehospitalization in unselected older patients admitted to the emergency department. Aging Clin. Exp. Res. 2019, 31, 1233–1242. [CrossRef] [PubMed]spa
dcterms.references148. Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [CrossRef]spa
dcterms.references149. Shiroma, E.J.; Lee, I. Physical activity and cardiovascular health: Lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation 2010, 122, 743–752. [CrossRef] [PubMed]spa
dcterms.references150. McElvaney, O.J.; McEvoy, N.L.; McElvaney, O.F.; Carroll, T.P.; Murphy, M.P.; Dunlea, D.M.; Ní Choileáin, O.; Clarke, J.; O’Connor, E.; Hogan, G. Characterization of the inflammatory response to severe COVID-19 illness. Am. J. Respir. Crit. Care Med. 2020, 202, 812–821. [CrossRef] [PubMed]spa
dcterms.references151. Rodríguez-Llamazares, S.; Aguirre-Pérez, T.; Thirión-Romero, I.I.; Pérez-Padilla, J.R. How silent is hypoxemia in COVID-19? NCT Neumol. Cir. Tórax 2020, 79, 69–70.spa
dcterms.references152. Torres-Castro, R.; Vasconcello-Castillo, L.; Alsina-Restoy, X.; Solis-Navarro, L.; Burgos, F.; Puppo, H.; Vilaró, J. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology 2020. [CrossRef] [PubMed]spa
dcterms.references153. Xu, J.; Xu, X.; Jiang, L.; Dua, K.; Hansbro, P.M.; Liu, G. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir. Res. 2020, 21, 1–12. [CrossRef] [PubMed]spa
dcterms.references154. Aggio, D.; Papachristou, E.; Papacosta, O.; Lennon, L.T.; Ash, S.; Whincup, P.H.; Wannamethee, S.G.; Jefferis, B.J. Association between 20-year trajectories of nonoccupational physical activity from midlife to old age and biomarkers of cardiovascular disease: A 20-year longitudinal study of British men. Am. J. Epidemiol. 2018, 187, 2315–2323. [CrossRef] [PubMed]spa
dcterms.references155. Moreira, J.B.; Wohlwend, M.; Wisløff, U. Exercise and cardiac health: Physiological and molecular insights. Nat. Metabol. 2020, 2, 829–839. [CrossRef]spa
dcterms.references156. Proud, P.C.; Tsitoura, D.; Watson, R.J.; Chua, B.Y.; Aram, M.J.; Bewley, K.R.; Carroll, M.W. Prophylactic intranasal administration of a TLR2/6 agonist reduces upper respiratory tract viral shedding in a SARS-CoV-2 challenge ferret model. EBioMedicine 2021, 63, 103153. [CrossRef]spa
dcterms.references157. South, A.M.; Tomlinson, L.; Edmonston, D.; Hiremath, S.; Sparks, M.A. Controversies of renin–angiotensin system inhibition during the COVID-19 pandemic. Nat. Rev. Nephrol. 2020, 16, 305–307. [CrossRef]spa
dcterms.references158. The Lancet Diabetes & Endocrinology. COVID-19: Underlying metabolic health in the spotlight. Lancet Diabetes Endocrinol. 2020, 8. [CrossRef]spa
dcterms.references159. Cheval, B.; Sieber, S.; Maltagliati, S.; Millet, G.P.; Formánek, T.; Chalabaev, A.; Cullati, S.; Boisgontier, M.P. Muscle strength is associated with COVID-19 hospitalization in adults 50 years of age and older. MedRxiv 2021, 1–20. [CrossRef]spa
dcterms.references160. Laukkanen, J.A.; Voutilainen, A.; Kurl, S.; Araujo, C.G.S.; Jae, S.Y.; Kunutsor, S.K. Handgrip strength is inversely associated with fatal cardiovascular and all-cause mortality events. Ann. Med. 2020, 52, 109–119. [CrossRef]spa
dcterms.references161. Okazaki, T.; Ebihara, S.; Mori, T.; Izumi, S.; Ebihara, T. Association between sarcopenia and pneumonia in older people. Geriatr. Gerontol. Int. 2020, 20, 7–13. [CrossRef]spa
dcterms.references162. Wang, P.; Li, Y.; Wang, Q. Sarcopenia: An underlying treatment target during the COVID-19 pandemic. Nutrition 2021, 84. [CrossRef] [PubMed]spa
dcterms.references163. Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [CrossRef]spa
dcterms.references164. Zbinden-Foncea, H.; Francaux, M.; Deldicque, L.; Hawley, J.A. Does high cardiorespiratory fitness confer some protection against proinflammatory responses after infection by SARS-CoV-2? Obesity 2020, 28, 1378–1381. [CrossRef] [PubMed]spa
dcterms.references165. Brawner, C.; Ehrman, J.; Bole, S.; Kerrigan, D.; Parikh, S.; Lewis, B.; Gindi, R.; Keteyian, C.; Abdul-Nour, K.; Keteyian, S. Maximal exercise capacity is inversely related to hospitalization secondary to Coronavirus disease. Mayo Clin. Proc. 2020, 96. [CrossRef]spa
dcterms.references166. Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [CrossRef] [PubMed]spa
dcterms.references167. Salgado-Aranda, R.; Pérez-Castellano, N.; Núñez-Gil, I.; Orozco, A.J.; Torres-Esquivel, N.; Flores-Soler, J.; Chamaisse-Akari, A.; Mclnerney, A.; Vergara-Uzcategui, C.; Wang, L.; et al. Influence of baseline physical activity as a modifying factor on COVID-19 mortality: A single-center, retrospective study. Infect. Dis. Ther. 2021, 10, 1–14. [CrossRef]spa
dcterms.references168. Yates, T.; Razieh, C.; Zaccardi, F.; Rowlands, A.V.; Seidu, S.; Davies, M.J.; Khunti, K. Obesity, walking pace and risk of severe COVID-19 and mortality: Analysis of UK biobank. Int. J. Obes. 2021, 45, 1–5. [CrossRef]spa
dcterms.references169. Burtscher, J.; Millet, G.P.; Burtscher, M. Low cardiorespiratory and mitochondrial fitness as risk factors in viral infections: Implications for COVID-19. Br. J. Sports Med. 2020, 55. [CrossRef]spa
dcterms.references170. Silberman, D.M.; Wald, M.R.; Genaro, A.M. Acute and chronic stress exert opposing effects on antibody responses associated with changes in stress hormone regulation of T-lymphocyte reactivity. J. Neuroimmunol. 2003, 144, 53–60. [CrossRef]spa
dcterms.references171. Edwards, K.M.; Burns, V.E.; Allen, L.M.; McPhee, J.S.; Bosch, J.A.; Carroll, D.; Drayson, M.; Ring, C. Eccentric exercise as an adjuvant to influenza vaccination in humans. Brain Behav. Immun. 2007, 21, 209–217. [CrossRef]spa
dcterms.references172. Edwards, K.M.; Burns, V.E.; Reynolds, T.; Carroll, D.; Drayson, M.; Ring, C. Acute stress exposure prior to influenza vaccination enhances antibody response in women. Brain Behav. Immun. 2006, 20, 159–168. [CrossRef] [PubMed]spa
dcterms.references173. Valenzuela, P.L.; Simpson, R.J.; Castillo-García, A.; Lucia, A. Physical activity: A coadjuvant treatment to COVID-19 vaccination? Brain Behav. Immun. 2021, 94. [CrossRef] [PubMed]spa
dcterms.references174. McGrath, R.; Carson, P.; Jurivich, D. It is important to examine physical functioning and inflammatory responses during post-hospitalization COVID-19 recovery. J. Frailty Aging 2021, 1–2. [CrossRef]spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.3390/nu13061924
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal