Mostrar el registro sencillo del ítem

dc.contributor.authorAcevedo-Chedid, Jaimespa
dc.contributor.authorGrice-Reyes, Jenniferspa
dc.contributor.authorOspina Mateus, Holmanspa
dc.contributor.authorSalas-Navarro, Katherinnespa
dc.contributor.authorSantander-Mercado, Alcides Rspa
dc.contributor.authorSankar Sana, Shibspa
dc.date.accessioned2021-07-14T13:04:26Z
dc.date.available2021-07-14T13:04:26Z
dc.date.issued2021-03-02
dc.identifier.issn0399-0559spa
dc.identifier.issn1290-3868spa
dc.identifier.urihttps://hdl.handle.net/11323/8465spa
dc.description.abstractFlexible manufacturing systems as technological and automated structures have a high complexity for scheduling. The decision-making process is made difficult with interruptions that may occur in the system and these problems increase the complexity to define an optimal schedule. The research proposes a three-stage hybrid algorithm that allows the rescheduling of operations in an FMS. The novelty of the research is presented in two approaches: first is the integration of the techniques of Petri nets, discrete simulation, and memetic algorithms and second is the rescheduling environment with machine failures to optimize the makespan and Total Weighted Tardiness. The effectiveness of the proposed Soft computing approaches was validated with the bottleneck of heuristics and the dispatch rules. The results of the proposed algorithm show significant findings with the contrasting techniques. In the first stage (scheduling), improvements are obtained between 50 and 70% on performance indicators. In the second stage (failure), four scenarios are developed that improve the variability, flexibility, and robustness of the schedules. In the final stage (rescheduling), the results show that 78% of the instances have variations of less than 10% for the initial schedule. Furthermore, 88% of the instances support rescheduling with variations of less than 2% compared to the heuristics.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceRAIRO - Operations Researchspa
dc.subjectFlexible manufacturing systemspa
dc.subjectSchedulingspa
dc.subjectReactive schedulingspa
dc.subjectPetri netspa
dc.subjectMemetics algorithmspa
dc.titleSoft-computing approaches for rescheduling problems in a manufacturing industryspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.rairo-ro.org/articles/ro/abs/2021/01/ro200107/ro200107.htmlspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1051/ro/2020077spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] J. Acevedo and G. Mej´ıa, Programaci´on reactiva y robusta de la producci´on en un ambiente sistema de manufactura flexible: llegada de nuevas ´ordenes y cambios en la prioridad de las ´ordenes de trabajo. Maestria, Departamento de Ingenier´ıa Industrial, Universidad de los Andes (2006).spa
dc.relation.references[2] N. Al-Hinai and T. El-Mekkawy, An efficient hybridized genetic algorithm architecture for the flexible job shop scheduling problem. Flexible Serv. Manuf. J. 23 (2011) 64–85.spa
dc.relation.references[3] O. Ba¸sak and Y.E. Albayrak, Petri net based decision system modeling in real-time scheduling and control of flexible automotive ¨ manufacturing systems. Comput. Ind. Eng. 86 (2015) 116–126.spa
dc.relation.references[4] O.T. Baruwa, M.A. Piera and A. Guasch, Deadlock-free scheduling method for flexible manufacturing systems based on timed colored Petri nets and anytime heuristic search. IEEE Trans. Syst. Man Cybern. 45 (2014) 831–846.spa
dc.relation.references[5] J.A. Chedid, K.S. Navarro, H.O. Mateus and A.S. Mercado, Reprogramaci´on de producci´on en cadenas de suministro colaborativas: Una revisi´on de la literatura. Espacio 38 (2017) 23.spa
dc.relation.references[6] F. Chen and J. Chen, Performance modelling and evaluation of dynamic tool allocation in flexible manufacturing systems using coloured Petri nets: an object-oriented approach. Int. J. Adv. Manuf. Technol. 21 (2003) 98–109.spa
dc.relation.references[7] J. Chen and F.F. Chen, Adaptive scheduling in random flexible manufacturing systems subject to machine breakdowns. Int. J. Prod. Res. 41 (2003) 1927–1951.spa
dc.relation.references[8] H. Cho, Petri net models for message manipulation and event monitoring in an FMS cell. Int. J. Prod. Res. 36 (1998) 231–250.spa
dc.relation.references[9] C. Cotta, L. Mathieson and P. Moscato, Memetic algorithms. In: Handbook of Heuristics edited by R. Mart´ı, P. M. Pardalos, M. G. C. Resende. Springer, Cham (2018) 607–638.spa
dc.relation.references[10] B.K. Dey, S. Pareek, M. Tayyab and B. Sarkar, Autonomation policy to control work-in-process inventory in a smart production system. Int. J. Prod. Res. (2020) 1–23. DOI: 10.1080/00207543.2020.1722325.spa
dc.relation.references[11] J. Dorn, R. Kerr and G. Thalhammer, Reactive scheduling: improving the robustness of schedules and restricting the effects of shop floor disturbances by fuzzy reasoning. Int. J. Human-Comput. Stud. 42 (1995) 687–704.spa
dc.relation.references[12] H.A. Elmaraghy and T.Y. Elmekkawy, Deadlock-free rescheduling in flexible manufacturing systems. CIRP Ann. 51 (2002) 371–374.spa
dc.relation.references[13] M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1 (1976) 117–129.spa
dc.relation.references[14] P. Garg, A comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of simplified data encryption standard algorithm. Int. J. Network Secur. App. 1 (2009) 34–42.spa
dc.relation.references[15] A. Gholami, R. Sheikh, N. Mizani and S.S. Sana, ABC analysis of the customers using axiomatic design and incomplete rough set. RAIRO:OR 52 (2018) 1219–1232.spa
dc.relation.references[16] R. Guchhait, B.K. Dey, S. Bhuniya, B. Ganguly, B. Mandal, R.K. Bachar, B. Sarkar, H.M. Wee and K. Chaudhuri, Investment for process quality improvement and setup cost reduction in an imperfect production process with warranty policy and shortages. RAIRO:OR 54 (2020) 251–266.spa
dc.relation.references[17] L. Han, K. Xing, X. Chen, H. Lei and F. Wang, Deadlock-free genetic scheduling for flexible manufacturing systems using Petri nets and deadlock controllers. Int. J. Prod. Res. 52 (2014) 1557-1572.spa
dc.relation.references[18] L. Han, K. Xing, X. Chen and F. Xiong, A Petri net-based particle swarm optimization approach for scheduling deadlock-prone flexible manufacturing systems. J. Intel. Manuf. 29 (2018) 1083–1096.spa
dc.relation.references[19] S.K. Hasan, R. Sarker and D. Essam, Genetic algorithm for job-shop scheduling with machine unavailability and breakdowns. Int. J. Prod. Res. 49 (2011) 4999–5015.spa
dc.relation.references[20] I. Hatono, K. Yamagata and H. Tamura, Modeling and online scheduling of flexible manufacturing systems using stochastic Petri nets. IEEE Trans. Softw. Eng. 17 (1991) 126–132.spa
dc.relation.references[21] H. Hoos and T. Stutzle, Stochastic Local Search: Foundations and Applications. Morgan Kaufmann Publishers, San Francisco, CA (2005).spa
dc.relation.references[22] B. Huang, Z. Cai, M. Zhou and J. Hao, Scheduling of FMS based on binary decision diagram and Petri net. In: IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). (2018) 1–6.spa
dc.relation.references[23] G. Jamali, S.S. Sana and R. Moghdani, Hybrid improved cuckoo search algorithm and genetic algorithm for solving markovmodulated demand. RAIRO:OR 52 (2018) 473–497.spa
dc.relation.references[24] A. Khanna, P. Gautam, B. Sarkar and C.K. Jaggi, Integrated vendor–buyer strategies for imperfect production systems with maintenance and warranty policy. RAIRO:OR 54 (2020) 435–450.spa
dc.relation.references[25] Y.W. Kim, T. Suzuki and T. Narikiyo, FMS scheduling based on timed Petri Net model and reactive graph search. Appl. Math. Modell. 31 (2007) 955–970.spa
dc.relation.references[26] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680.spa
dc.relation.references[27] R.R. Kumar, A.K. Singh and M. Tiwari, A fuzzy based algorithm to solve the machine-loading problems of a FMS and its neuro fuzzy Petri net model. Int. J. Adv. Manuf. Technol. 23 (2004) 318–341.spa
dc.relation.references[28] B.S. Kumar, G.J. Raju and G.R. Janardhana, Production planning in flexible manufacturing system by considering the multiobjective functions. In: Advances in Materials and Manufacturing Engineering. Lecture Notes in Mechanical Engineering. (ICAMME 2019) Springer, Singapore (2020) 343–352.spa
dc.relation.references[29] H. Lei, K. Xing, L. Han and Z. Gao, Hybrid heuristic search approach for deadlock-free scheduling of flexible manufacturing systems using Petri nets. Appl. Soft Comput. 55 (2017) 413–423.spa
dc.relation.references[30] C. Li, W. Wu, Y. Feng and G. Rong, Scheduling FMS problems with heuristic search function and transition-timed Petri nets. J. Intell. Manuf. 26 (2015) 933–944.spa
dc.relation.references[31] C. Low and T.H. Wu, Mathematical modelling and heuristic approaches to operation scheduling problems in an FMS environment. Int. Jo. Prod. Res. 39 (2001) 689–708.spa
dc.relation.references[32] D.R. Mahapatra, S. Panda and S.S. Sana, Multi-choice and stochastic programming for transportation problem involved in supply of foods and medicines to hospitals with consideration of logistic distribution. RAIRO:OR 54 (2020) 1119–1132.spa
dc.relation.references[33] S.V. Mehta, Predictable scheduling of a single machine subject to breakdowns. Int. J. Comput. Integr. Manuf. 12 (1999) 15–38.spa
dc.relation.references[34] G. Mejia and J. Acevedo, Reactive scheduling in FMS: an integrated approach based on petri nets, genetic algorithms and simulation. In: Third International Conference on Production Research, Americas’ Region (2006).spa
dc.relation.references[35] G. Mej´ıa and K. Ni˜no, A new Hybrid Filtered Beam Search algorithm for deadlock-free scheduling of flexible manufacturing systems using Petri Nets. Comput. Ind. Eng. 108 (2017) 165–176.spa
dc.relation.references[36] U. Mishra, J.Z. Wu and B. Sarkar, A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Cleaner Prod. 256 (2020) 120268.spa
dc.relation.references[37] P. Moscato and C. Cotta, Una introducci´on a los algoritmos mem´eticos. Intel. Artif. Rev. Iberoamericana Intel. Artif. 7 (2003) 131–148.spa
dc.relation.references[38] T. Murata, Petri nets: properties, analysis and applications. Proc. IEEE 77 (1989) 541–580.spa
dc.relation.references[39] H.Z. Nabi and T. Aized, Performance evaluation of a carousel configured multiple products flexible manufacturing system using Petri net. Oper. Manag. Res. 13 (2020) 109–129.spa
dc.relation.references[40] K.S. Navarro, J.A. Chedid, G.M. Arquez, W.F. Florez, H.O. Mateus, S.S. Sana and L.E. C´ardenas-Barr´on, An EPQ inventory model considering an imperfect production system with probabilistic demand and collaborative approach. J. Adv. Manage. Res. 17 (2019) 282–304.spa
dc.relation.references[41] K.S. Navarro, J.A. Chedid, W.F. Florez, H.O. Mateus, L.E. C´ardenas-Barr´on and S.S. Sana, A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. J. Ind. Manage. Optim. 16 (2020) 1613–1633.spa
dc.relation.references[42] P.S. Pachpor, R. Shrivastava, D. Seth and S. Pokharel, Application of Petri nets towards improved utilization of machines in job shop manufacturing environments. J. Manuf. Technol. Manage. 28 (2017) 169–188.spa
dc.relation.references[43] A.M. Patel and A.Y. Joshi, Modeling and analysis of a manufacturing system with deadlocks to generate the reachability tree using Petri net system. Proc. Eng. 64 (2013) 775–784.spa
dc.relation.references[44] M. Pinedo, Scheduling. Springer, Cham (2012).spa
dc.relation.references[45] M. Pinedo, Planning and Scheduling in Manufacturing and Services. Springer, New York, NY (2005).spa
dc.relation.references[46] S.S. Sana, H. Ospina-Mateus, F.G. Arrieta and J.A. Chedid, Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry. J. Ambient Intell. Humanized Comput. 10 (2019) 2063–2090.spa
dc.relation.references[47] S.S. Sankar, S. Ponnanbalam and C. Rajendran, A multiobjective genetic algorithm for scheduling a flexible manufacturing system. Int. J. Adv. Manuf. Technol. 22 (2003) 229–236.spa
dc.relation.references[48] S.S. Sankar, S. Ponnambalam and M. Gurumarimuthu, Scheduling flexible manufacturing systems using parallelization of multi-objective evolutionary algorithms. Int. J. Adv. Manuf. Technol. 30 (2006) 279–285.spa
dc.relation.references[49] B. Santosa, R. Damayanti and B. Sarkar, Solving multi-product inventory ship routing with a heterogeneous fleet model using a hybrid cross entropy-genetic algorithm: a case study in Indonesia Prod. Manuf. Res. 4 (2016) 90–113.spa
dc.relation.references[50] N. Saxena, B. Sarkar and S. Singh, Selection of remanufacturing/production cycles with an alternative market: a perspective on waste management. J. Cleaner Prod. 245 (2020) 118935.spa
dc.relation.references[51] B.K. Sett, S. Sarkar and B. Sarkar, Optimal buffer inventory and inspection errors in an imperfect production system with preventive maintenance. Int. J. Adv. Manuf. Technol. 90 (2017) 545–560.spa
dc.relation.references[52] M. Souier, M. Dahane and F. Maliki, An NSGA-II-based multiobjective approach for real-time routing selection in a flexible manufacturing system under uncertainty and reliability constraints. Int. J. Adv. Manuf. Technol. 100 (2019) 2813–2829.spa
dc.relation.references[53] A.A. Taleizadeh, L.E. C´ardenas-Barr´on and B. Mohammadi, A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process. Int. J. Prod. Econ. 150 (2014) 9–27.spa
dc.relation.references[54] Y. Tanimizu, T. Sakaguchi, K. Iwamura and N. Sugimura, Evolutional reactive scheduling for agile manufacturing systems. Int. J. Prod. Res. 44 (2006) 3727–3742.spa
dc.relation.references[55] E.S. Tashnizi, S. Farahani and A.F. Nahrekhalaji, Production process optimization in flexible manufacturing system using Petri nets. In: Proceedings of the World Congress on Engineering and Computer Science (2008) 22–24.spa
dc.relation.references[56] M. Tayyab, J. Jemai, H. Lim and B. Sarkar, A sustainable development framework for a cleaner multi-item multi-stage textile production system with a process improvement initiative. J. Cleaner Prod. 246 (2020) 119055.spa
dc.relation.references[57] S. Tian, T. Wang, L. Zhang and X. Wu, Real-time shop floor scheduling method based on virtual queue adaptive control: algorithm and experimental results. Measurement 147 (2019) 106689.spa
dc.relation.references[58] F. T¨uys¨uz and C. Kahraman, Modeling a flexible manufacturing cell using stochastic Petri nets with fuzzy parameters. Expert Syst. App. 37 (2010) 3910–3920.spa
dc.relation.references[59] M. Ullah and B. Sarkar, Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality. Int. J. Prod. Econ. 219 (2020) 360–374.spa
dc.relation.references[60] G.E. Vieira, J.W. Herrmann and E. Lin, Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J. Schedul. 6 (2003) 39–62.spa
dc.relation.references[61] Z. Zhao, G. Zhang and Z. Bing, Scheduling optimization for FMS based on Petri net modeling and GA. In: IEEE International Conference on Automation and Logistics (ICAL) (2011) 422–427.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal