Show simple item record

dc.contributor.authorOrtiz-Barrios, Miguelspa
dc.contributor.authorBorrego-Areyanes, Arlen Alainespa
dc.contributor.authorGómez-Villar, Iván Daríospa
dc.contributor.authorDe Felice, Fabiospa
dc.contributor.authorPetrillo, Antonellaspa
dc.contributor.authorGul, Muhammetspa
dc.contributor.authorYUCESAN, Melihspa
dc.description.abstractThe impact of the pandemic and the lockdown has been more devastating than expected on the world economy. It is essential to formulate strategies in real-time. In this research, a multicriteria decision-making model for increasing the preparedness level of sales departments when facing COVID-19 waves and future pandemics is proposed. The model is comprised of 8 criteria, 29 sub-criteria, and 7 alternatives. The study is based on the integration of the AHP and TOPSIS techniques. AHP is used for calculating the criteria and sub-criteria weights. While, TOPSIS is used for calculating the preparedness level, ranking the companies, and identifying the weaknesses that should be addressed for increasing their effectiveness in the current market scenario. The model is developed with the aid of an experts’ group from the electrical appliance sector and studies from the reported literature. This application is completely novel in the literature and has been applied in the wild with remarkable companies in Colombia. A case study in the electrical appliance sector is presented as a pilot study but it should be noted that the methodology is flexible and scalable in any
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.sourceInternational Journal of Disaster Risk Reductionspa
dc.subjectMultiple criteria analysisspa
dc.subjectOperational researchspa
dc.subjectDisaster preparednessspa
dc.titleA multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world casespa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.relation.references[1] P. Amariles, J. Granados, M. Ceballos, C.J. Montoya COVID-19 in Colombia endpoints. Are we different, like Europe? Res. Soc. Adm. Pharm., 17 (1) (2020), pp. 2036-2039spa
dc.relation.references[2] W. Novoa, H. Miller, S. Mattar, Á.A. Faccini-Martínez, R. Rivero, H. Serrano-Coll A first probable case of SARS-CoV-2 reinfection in Colombia Ann. Clin. Microbiol. Antimicrob., 20 (1) (2021), p. 7spa
dc.relation.references[3] J. Arellana, L. Márquez, V. Cantillo COVID-19 outbreak in Colombia: an analysis of its impacts on transport systems J. Adv. Transport., 2020 (2020), p. 8867316spa
dc.relation.references[4] S.A. Meo, A.A. Abukhalaf, A.A. Alomar, A.M. Usmani, D.C. Klonoff Impact of lockdown on COVID-19 prevalence and mortality during 2020 pandemic: observational analysis of 27 countries Eur. J. Med. Res., 25 (1) (2020), p. 56spa
dc.relation.references[5] E.E. Ramírez de la Cruz, E.J. Grin, P. Sanabria-Pulido, D. Cravacuore, A. Orellana The transaction costs of government responses to the COVID-19 emergency in Latin America Publ. Adm. Rev., 80 (4) (2020), pp. 683-695spa
dc.relation.references[6] J.A. Rodríguez Economic situation, fiscal policy and pandemic in Colombia Rev. Econ. Inst., 23 (44) (2020), pp. 249-263spa
dc.relation.references[7] Chicaíza Becerra, L., García Molina, M., Urrea, I.L., Economy or health? A global analysis of the covid-19 pandemic. Rev. Econ. Inst., 23(44), pp.
dc.relation.references[8] A. Tarki, P. Levy, J. Weiss The coronavirus crisis doesn't have to lead to layoffs Harv. Bus. Rev. (2020) March 2020spa
dc.relation.references[9] J.I. González Planning and uncertainty Rev. Econ. Inst., 23 (44) (2020), pp. 233-248spa
dc.relation.references[10] A. Ferrannini, E. Barbieri, M. Biggeri, M.R. Di Tommaso Industrial policy for sustainable human development in the post-Covid19 era World Dev., 137 (2021), p. 105215spa
dc.relation.references[11] M. Ortiz-Barrios, C. Miranda-De la Hoz, P. López-Meza, A. Petrillo, F. De Felice A case of food supply chain management with AHP, DEMATEL, and TOPSIS J. Multi-Criteria Decis. Anal., 27 (1–2) (2020), pp. 104-128, 10.1002/mcda.1693spa
dc.relation.references[12] T.L. Saaty, L.G. Vargas The analytic hierarchy process: wash citeria should not be ignored Int. J. Manag. Decis. Making, 7 (2–3) (2006), pp. 180-188, 10.1504/IJMDM.2006.009142spa
dc.relation.references[13] J.P. Pastor-Ferrando, P. Aragonés-Beltrán, A. Hospitaler-Pérez, M. García-Melón An ANP- and AHP-based approach for weighting criteria in public works bidding J. Oper. Res. Soc., 61 (6) (2010), pp. 905-916, 10.1057/jors.2010.13spa
dc.relation.references[14] J. Sarkis Supply chain sustainability: learning from the COVID-19 pandemic Int. J. Oper. Prod. Manag., 41 (1) (2020), pp. 63-73, 10.1108/IJOPM-08-2020-0568spa
dc.relation.references[15] M.P. Basilio, V. Pereira, H.G. Costa Classifying the integrated public safety areas (IPSAs): a multi-criteria based approach J. Model. Manag., 14 (1) (2019), pp. 106-133, 10.1108/JM2-01-2018-0001spa
dc.relation.references[16] E.G. Carayannis, J.J.M. Ferreira, M.S. Jalali, F.A.F. Ferreira MCDA in knowledge-based economies: methodological developments and real world applications Technol. Forecast. Soc. Change, 131 (2018), pp. 1-3, 10.1016/j.techfore.2018.01.028spa
dc.relation.references[17] S.H. Zyoud, D. Fuchs-Hanusch A bibliometric-based survey on AHP and TOPSIS techniques Expert Syst. Appl., 78 (2017), pp. 158-181, 10.1016/j.eswa.2017.02.016spa
dc.relation.references[18] G. Riz, E.A.P. Santos, E. de Freitas Rocha Loures Interoperability Assessment in Health Systems Based on Process Mining and MCDA Methods (2017), 10.1007/978-3-319-56535-4_44spa
dc.relation.references[19] M. Rajak, K. Shaw Evaluation and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS Technol. Soc. (2019), p. 59, 10.1016/j.techsoc.2019.101186spa
dc.relation.references[20] T.L. Saaty Applications of analytical hierarchies Math. Comput. Simulat., 21 (1) (1979), pp. 1-20, 10.1016/0378-4754(79)90101-0spa
dc.relation.references[21] C.L. Hwang, K. Yoon Multiple Attribute Decision Making Methods and Applications: A State-Of-The-Art Survey Springer, Berlin, Heidelberg (1981)spa
dc.relation.references[22] G. Kumar, N. Parimala An integration of sentiment analysis and MCDM approach for smartphone recommendation Int. J. Inf. Technol. Decis. Making, 19 (4) (2020), pp. 1037-1063, 10.1142/S021962202050025Xspa
dc.relation.references[23] R. Bhattacharya, R.D. Raut, B.B. Gardas, S.S. Kamble Sustainable partner selection: an integrated AHP-TOPSIS approach Int. J. Oper. Res., 39 (2) (2020), pp. 205-236, 10.1504/IJOR.2020.109755spa
dc.relation.references[24] I.B. Huang, J. Keisler, I. Linkov Multi-criteria decision analysis in environmental sciences: ten years of applications and trends Sci. Total Environ., 409 (19) (2011), pp. 3578-3594, 10.1016/j.scitotenv.2011.06.022spa
dc.relation.references[25] K. Nikolopoulos, S. Punia, A. Schäfers, C. Tsinopoulos, C. Vasilakis Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions Eur. J. Oper. Res., 290 (1) (2021), pp. 99-115spa
dc.relation.references[26] R. Romero-Silva, S. de Leeuw Learning from the past to shape the future: a comprehensive text mining analysis of OR/MS reviews Omega (United Kingdom), 100 (2021), p. 102388spa
dc.relation.references[27] M. Brunelli A study on the anonymity of pairwise comparisons in group decision making Eur. J. Oper. Res., 279 (2) (2019), pp. 502-510spa
dc.relation.references[28] M. Abdel-Basset, M. Gunasekaran, M. Mohamed, N. Chilamkurti A framework for risk assessment, management and evaluation: economic tool for quantifying risks in supply chain Future Generat. Comput. Syst., 90 (2019), pp. 489-502, 10.1016/j.future.2018.08.035spa
dc.relation.references[29] J. Freeman, T. Chen Green supplier selection using an AHP-entropy-TOPSIS framework Supply Chain Manag., 20 (3) (2015), pp. 327-340, 10.1108/SCM-04-2014-0142spa
dc.relation.references[30] D. Jothimani, S.P. Sarmah Supply chain performance measurement for third party logistics Benchmark, 21 (6) (2014), pp. 944-963, 10.1108/BIJ-09-2012-0064spa
dc.relation.references[31] S. Carpitella, A. Certa, J. Izquierdo, C.M. La Fata A combined multi-criteria approach to support FMECA analyses: a real-world case Reliab. Eng. Syst. Saf., 169 (2018), pp. 394-402, 10.1016/j.ress.2017.09.017spa
dc.relation.references[32] O.E. Demesouka, A.P. Vavatsikos, K.P. Anagnostopoulos Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: method, implementation and case study Waste Manag., 33 (5) (2013), pp. 1190-1206, 10.1016/j.wasman.2013.01.030spa
dc.relation.references[33] I. Kaliszewski, D. Podkopaev Simple additive weighting - a metamodel for multiple criteria decision analysis methods Expert Syst. Appl., 54 (2016), pp. 155-161, 10.1016/j.eswa.2016.01.042spa
dc.relation.references[34] H. Zhao, N. Li Performance evaluation for sustainability of strong smart grid by using stochastic AHP and fuzzy TOPSIS methods Sustainability, 8 (2) (2016), 10.3390/su8020129spa
dc.relation.references[35] C.-N. Wang, N.-A.-T. Nguyen, T.-T. Dang, C.-M. Lu A compromised decision-making approach to third-party logistics selection in sustainable supply chain using fuzzy ahp and fuzzy vikor methods Mathematics, 9 (8) (2021), p. 886, 10.3390/math9080886spa
dc.relation.references[36] A. Tošović-Stevanović, V. Ristanović, D. Ćalović, M. Žuža, G. Cvijanović Small farm business analysis using the ahp model for efficient assessment of distribution channels Sustainability, 12 (24) (2020), pp. 1-15, 10.3390/su12241047910479spa
dc.relation.references[37] V. Ristanović, D. Primorac, G. Kozina Operational risk management using multi-criteria assessment (Ahp model) Teh. Vjesn., 28 (2) (2021), pp. 678-683, 10.17559/TV-20200907112351spa
dc.relation.references[38] S. Yao Fuzzy-based multi-criteria decision analysis of environmental regulation and green economic efficiency in a post-COVID-19 scenario: the case of China Article in Press10 Environ. Sci. Pollut. Control Ser. (2021) 1007/s11356-021-12647-wspa
dc.relation.references[39] G.D. Batur Sir, E. Sir Pain treatment evaluation in COVID-19 patients with hesitant fuzzy linguistic multicriteria decision-making Journal of Healthcare Engineering (2021), p. 8831114, 10.1155/2021/8831114spa
dc.relation.references[40] T.J. Mohammed, A.S. Albahri, A.A. Zaidan, R.T. Mohammed, S.M. Hadi Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component Appl. Intell. (2021), 10.1007/s10489-020-02169-2spa
dc.relation.references[41] F. Samanlioglu, B.E. Kaya Evaluation of the COVID-19 pandemic intervention strategies with hesitant F-ahp Journal of Healthcare Engineering (2020), 10.1155/2020/8835258 Article in Press 8835258spa
dc.relation.references[42] R.S. Bharsakade, P. Acharya, L. Ganapathy, M.K. Tiwari A lean approach to healthcare management using multi criteria decision making Opsearch (2021), 10.1007/s12597-020-00490-5 Article in Pressspa
dc.relation.references[43] A.S. Albahri, J.R. Al-Obaidi, A.A. Zaidan, A.H. Alamoodi, M. Hashim Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR methods Int. J. Inf. Technol. Decis. Making, 19 (5) (2020), pp. 1247-1269, 10.1142/S0219622020500285spa
dc.relation.references[44] S. Ghosh, A. Das, T.K. Hembram, B. Pradhan, A.M. Alamri Impact of COVID-19 induced lockdown on environmental quality in four Indian megacities Using Landsat 8 OLI and TIRS-derived data and Mamdani fuzzy logic modelling approach Sustainability, 12 (13) (2020), p. 5464, 10.3390/su12135464spa
dc.relation.references[45] P. Amenta, A. Ishizaka, A. Lucadamo, G. Marcarelli, V. Vyas Computing a common preference vector in a complex multi-actor and multi-group decision system in analytic hierarchy process context Ann. Oper. Res., 284 (1) (2020), pp. 33-62, 10.1007/s10479-019-03258-3spa
dc.relation.references[46] A. Lombardi Netto, V.A.P. Salomon, M.A. Ortiz-Barrios, A.K. Florek-Paszkowska, A. Petrillo, O.J. De Oliveira Multiple criteria assessment of sustainability programs in the textile industry Int. Trans. Oper. Res., 28 (3) (2021), pp. 1550-1572, 10.1111/itor.12871spa
dc.relation.references[47] M. Ortiz-Barrios, C. Nugent, I. Cleland, M. Donnelly, A. Verikas Selecting the most suitable classification algorithm for supporting assistive technology adoption for people with dementia: a multicriteria framework J. Multi-Criteria Decis. Anal., 27 (1–2) (2020), pp. 20-38, 10.1002/mcda.1678spa
dc.relation.references[48] R. Kumar, K. Singh, S.K. Jain A combined AHP and TOPSIS approach for prioritizing the attributes for successful implementation of agile manufacturing Int. J. Prod. Perform. Manag., 69 (7) (2020), pp. 1395-1417, 10.1108/IJPPM-05-2019-0221spa
dc.relation.references[49] T.L. Saaty The Analytic Hierarchy Process McGraw-Hill, New York, USA (1980)spa
dc.relation.references[50] T.L. Saaty Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process, vol. 6, RWS publications (2000)spa
dc.relation.references[51] A. Ishizaka, M. Tasiou, L. Martínez Analytic hierarchy process-fuzzy sorting: an analytic hierarchy process–based method for fuzzy classification in sorting problems J. Oper. Res. Soc., 71 (6) (2020), pp. 928-947, 10.1080/01605682.2019.1595188spa
dc.relation.references[52] M. Ortiz-Barrios, J. Cabarcas-Reyes, A. Ishizaka, M. Barbati, N. Jaramillo-Rueda, G. de Jesús Carrascal-Zambrano A hybrid fuzzy multi-criteria decision making model for selecting a sustainable supplier of forklift filters: a case study from the mining industry Ann. Oper. Res. (2020), 10.1007/s10479-020-03737-yspa
dc.relation.references[53] M. Ortiz-Barrios, M. Gul, P. López-Meza, M. Yucesan, E. Navarro-Jiménez Evaluation of hospital disaster preparedness by a multi-criteria decision making approach: the case of Turkish hospitals International Journal of Disaster Risk Reduction, 49 (2020), 10.1016/j.ijdrr.2020.101748spa
dc.relation.references[54] L. Pecchia, J.L. Martin, A. Ragozzino, C. Vanzanella, A. Scognamiglio, L. Mirarchi, S.P. Morgan User needs elicitation via analytic hierarchy process (AHP). A case study on a computed tomography (CT) scanner BMC Med. Inf. Decis. Making, 13 (1) (2013), 10.1186/1472-6947-13-2spa
dc.relation.references[55] G.H. Tzeng, J.J. Huang Multiple Attribute Decision Making: Methods and Applications CRC press, Boca Raton, FL, USA (2011)spa
dc.relation.references[56] V. Lahri, K. Shaw, A. Ishizaka Sustainable supply chain network design problem: using the integrated BWM, TOPSIS, possibilistic programming, and ε-constrained methods Expert Syst. Appl. (2021), p. 168, 10.1016/j.eswa.2020.114373spa
dc.relation.references[57] Y. Çelikbilek, F. Tüysüz An in-depth review of theory of the TOPSIS method: an experimental analysis Journal of Management Analytics, 7 (2) (2020), pp. 281-300, 10.1080/23270012.2020.1748528spa
dc.relation.references[58] Confecámaras Encuesta Nacional Impacto Económico Covid-19 (2020), Accessed 12th Feb 2021spa
dc.relation.references[59] Dane Tasa global de participación, ocupación y desempleo (2020), Accessed 12th Feb 2021spa
dc.relation.references[60] N.N. Hartmann, B. Lussier Managing the sales force through the unexpected exogenous COVID-19 crisis Ind. Market. Manag., 88 (2020), pp. 101-111, 10.1016/j.indmarman.2020.05.005spa
dc.relation.references[61] B. Avdiu, G. Nayyar When face-to-face interactions become an occupational hazard: jobs in the time of COVID-19 Econ. Lett., 197 (2020), 10.1016/j.econlet.2020.109648spa
dc.relation.references[62] Y. Wang, A. Hong, X. Li, J. Gao Marketing innovations during a global crisis: a study of China firms' response to COVID-19 J. Bus. Res., 116 (2020), pp. 214-220, 10.1016/j.jbusres.2020.05.029spa
dc.relation.references[63] M.A. Ortíz, L.E. Betancourt, K.P. Negrete, F. De Felice, A. Petrillo Dispatching algorithm for production programming of flexible job-shop systems in the smart factory industry Ann. Oper. Res., 264 (1–2) (2018), pp. 409-433, 10.1007/s10479-017-2678-xspa
dc.relation.references[64] S.Y. Chou, Y.H. Chang, C.Y. Shen A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes Eur. J. Oper. Res., 189 (1) (2008), pp. 132-145spa
dc.relation.references[65] Y.J. Wang A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation Appl. Soft Comput., 30 (2015), pp. 412-420spa
dc.relation.references[66] E. Boltürk, A. Karaşan, C. Kahraman Simple additive weighting and weighted product methods using neutrosophic sets Fuzzy Multi-Criteria Decision-Making Using Neutrosophic Sets, Springer, Cham (2019), pp. 647-676spa
dc.relation.references[67] M. Yazdani, P. Zarate, E.K. Zavadskas, Z. Turskis A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems Manag. Decis. (2019)spa
dc.relation.references[68] A.E. Torkayesh, D. Pamucar, F. Ecer, P. Chatterjee An integrated BWM-LBWA-CoCoSo framework for evaluation of healt hcare sectors in Eastern Europe Soc. Econ. Plann. Sci. (2021), p. 101052spa
dc.relation.references[69] Z. Zhang, Y. Gao, Z. Li Consensus reaching for social network group decision making by considering leadership and bounded confidence Knowl. Base Syst., 204 (2020), p. 106240spa
dc.relation.references[70] Z. Zhang, Z. Li, Y. Gao Consensus reaching for group decision making with multi-granular unbalanced linguistic information: a bounded confidence and minimum adjustment-based approach Inf. Fusion, 74 (2021), pp. 96-110spa
dc.relation.references[71] W. Yu, Z. Zhang, Q. Zhong Consensus reaching for MAGDM with multi-granular hesitant fuzzy linguistic term sets: a minimum adjustment-based approach Ann. Oper. Res. (2019), pp. 1-24spa

Files in this item


This item appears in the following Collection(s)

  • Artículos científicos [2775]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal