Mostrar el registro sencillo del ítem

dc.contributor.advisorAcosta Coll, Melisa Andreaspa
dc.contributor.advisorPiñeres Espitia, Gabriel Dariospa
dc.contributor.authorOrtega González, Lilia Rosaspa
dc.date.accessioned2021-07-19T20:05:43Z
dc.date.available2021-07-19T20:05:43Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/11323/8471spa
dc.description.abstractRainfall monitoring networks are key elements in the development of warnings and predictive models for communities at risk of flooding during high intensity rainfall events. Currently, most of these networks send the rainfall measurement to a data center in real time using wireless communication protocols, thus avoiding travel to the measurement site. An application case of this is an Early Warning System (EWS) for pluvial flash floods developed in Barranquilla, which used the GPRS protocol to send real-time rain gauge measurement data to a web server for further processing; however, this protocol has high energy consumption and high maintenance costs. In the present work, an evaluation of three low power wireless communication protocols, Zigbee, LoRaWAN and Sigfox, is carried out to determine which one is the most suitable to be applied to an early warning system that monitors rainfall in the city of Barranquilla. The stipulated evaluation metrics are the characteristics of the link profile, energy consumption and costs of the devices for the implementation of the system. To perform the evaluation, a wireless sensor network was designed and characterized, which was analyzed using the free software tool Radio Mobile; this tool allowed determining the performance for each communication protocol, taking into account the measurement points implemented with the GPRS network of the previous SAT. The final results of the simulation show the LoRaWAN protocol as a viable alternative with good performance.spa
dc.description.abstractLas redes de monitoreo de precipitaciones son elementos claves para la elaboración de alertas y modelos de predicción para las comunidades que corren el riesgo de sufrir inundaciones durante los episodios de precipitaciones de alta intensidad. Actualmente, la mayoría de estas redes envían la medición de las precipitaciones a un centro de datos en tiempo real utilizando protocolos de comunicación inalámbrica, evitando así los desplazamientos al lugar de la medición. Un caso de aplicación de esto es un Sistema de Alerta Temprana (SAT) para inundaciones repentinas pluviales desarrollado en Barranquilla, el cual utilizaba el protocolo GPRS para enviar datos en tiempo real de medición de pluviómetros a un servidor web para su posterior procesamiento; sin embargo, este protocolo presenta alto consumo energético y también elevados costos de mantenimiento. En el presente trabajo se realiza una evaluación de tres protocolos de comunicación inalámbrica de baja potencia, Zigbee, LoRaWAN y Sigfox, para determinar cuál es el más adecuado para aplicar a un sistema de alerta temprana que monitorea precipitaciones en la ciudad de Barranquilla. Las métricas estipuladas de evaluación son las características del perfil de enlace, consumo energético y costos de los dispositivos para la implementación del sistema. Para realizar la evaluación se diseñó y caracterizó una red de sensores inalámbricos, la cual se analizó haciendo uso de la herramienta de software libre Radio Mobile; esta herramienta permitió determinar el rendimiento para cada protocolo de comunicación, teniendo en cuenta los puntos de medición implementados con la red GPRS del anterior SAT. Los resultados finales de la simulación muestran al protocolo LoRaWAN como una alternativa viable y de buen rendimiento.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subjectRainfall monitoringspa
dc.subjectLoRaWANspa
dc.subjectZigbeespa
dc.subjectSigfoxspa
dc.subjectRadio mobilespa
dc.subjectMonitoreo de precipitacionesspa
dc.titleEvaluación de protocolos de comunicación para una red inalámbrica de monitoreo de precipitaciones en zonas urbanasspa
dc.typeTrabajo de grado - Pregradospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.programIngeniería Electrónicaspa
dc.relation.referencesAcosta-Coll, M., Ballester-Merelo, F., & Martínez-Peiró, M. (2018). Early warning system for detection of urban pluvial flooding hazard levels in an ungauged basin. Natural Hazards, 92(2), 1237–1265. https://doi.org/10.1007/s11069-018-3249-4spa
dc.relation.referencesAcosta Coll, M. (2013). Sistemas de Alerta Temprana (S.A.T) para la Reducción del Riesgo de Inundaciones Súbitas y Fenómenos Atmosféricos en el Área Metropolitana de Barranquilla. Scientia et Technica, 18(2), 303–308. https://doi.org/10.22517/23447214.8661spa
dc.relation.referencesAlbero, T., Sempere, V., Silvestre, J., & Dabbas, P. (2005). Environmental control system based on mobile devices. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 1 2 VOLS(November 2015), 831–838. https://doi.org/10.1109/etfa.2005.1612612spa
dc.relation.referencesAlliance, L. (2020). LoRaWAN® L2 1.0.4 Specification. 1–75.spa
dc.relation.referencesÁvila, H. (2012). Perspectiva del manejo del drenaje pluvial frente al cambio climático - caso de estudio: ciudad de Barranquilla, Colombia*. Revista de Ingeniería, (36), 54–59. https://doi.org/10.16924/revinge.36.10spa
dc.relation.referencesAvila, L., Ávila, H., & Sisa, A. (2017). A reactive early warning model for urban flash flood management. World Environmental and Water Resources Congress 2017: Water, Wastewater, and Stormwater; Urban Watershed Management; and Municipal Water Infrastructure - Selected Papers from the World Environmental and Water Resources Congress 2017, (August), 372–382. https://doi.org/10.1061/9780784480632.030spa
dc.relation.referencesBalmaceda, J., Aubert, J., & Arias, M. R. (2018). Performance analysis of radio link implementation for low cost deployed WiMAX networks. 2017 IEEE 37th Central America and Panama Convention, CONCAPAN 2017, 2018-Janua, 1–5. https://doi.org/10.1109/CONCAPAN.2017.8278516spa
dc.relation.referencesBernal, H. A. T. (2020). Análisis De Tecnologías De Comunicaciones Inalámbricas Para Determinar La Mejor Opción a Implementar Para Los Servicios Que Presta La DitgEaab. Retrieved from http://www.elsevier.com/locate/scpspa
dc.relation.referencesBhoyar, P., Sahare, P., Dhok, S. B., & Deshmukh, R. B. (2019). Communication technologies and security challenges for internet of things: A comprehensive review. AEU - International Journal of Electronics and Communications, 99, 81–99. https://doi.org/10.1016/j.aeue.2018.11.031spa
dc.relation.referencesBonilla, I., Arturo, T., & Morles, M. (2016). Iot, El Internet De Las Cosas Y La Innovación De Sus Aplicaciones. VInculaTégica EFAN, (1), 2313–2340. Retrieved from http://www.web.facpya.uanl.mx/Vinculategica/Revistas/R2/2313-2340 - Iot, El Internet De Las Cosas Y La Innovacion De Sus Aplicaciones.pdfspa
dc.relation.referencesBuettrich, S. (2007). Unidad 06 Unidad 06: : Cálculo de Radioenlace Cálculo de Radioenlace Tabla de contenido. 1–22. Retrieved from http://www.itrainonline.org/itrainonline/mmtk/wireless_es/files/06_es_calculo-deradioenlace_guia_v02.pdfspa
dc.relation.referencesCAE S.p.A. (2021). PRECIPITACIONES INTENSAS. Retrieved April 19, 2020, from https://www.cae.it/esp/soluciones/sistemas-de-monitoreo-para-eventosmeteorológicos-extremos/precipitaciones-intensas-sl-10.htmlspa
dc.relation.referencesCaicedo Ortiz, J. G. (2015). Modelo de despliegue de una WSN para la medición de las variables climáticas que causan fuertes precipitaciones. Prospectiva, 13(1), 106. https://doi.org/10.15665/rp.v13i1.365spa
dc.relation.referencesCama-Pinto, A., Acosta-Coll, M., Piñeres-Espitia, G., Caicedo-Ortiz, J., Zamora-Musa, R., & Sepulveda-Ojeda, J. (2016). Diseño de una red de sensores inalámbricos para la monitorización de inundaciones repentinas en la ciudad de Barranquilla, Colombia. Ingeniare. Revista Chilena de Ingeniería, 24(4), 581–599. https://doi.org/10.4067/s0718-33052016000400005spa
dc.relation.referencesDigi International Inc. (2020). ConnectPort® X2 - Digi International. Retrieved from http://www.digi.com/products/xbee-rf-solutions/gateways/connectportx2gatewaysspa
dc.relation.referencesDragino. (2020). Lora Shield. Retrieved from Wiki for Dragino Project website: http://wiki.dragino.com/index.php?title=Lora_Shieldspa
dc.relation.referencesDRAGINO. (2020). Outdoor LoRaWAN Gateway OVERVIEW : 1.0(8), 86647123.spa
dc.relation.referencesDulman, S., Chatterjea, S., & Havinga, P. (2005). Introduction to wireless sensor networks. Embedded Systems: Handbook, (c), 31-1-31–10. https://doi.org/10.1201/9781420038163spa
dc.relation.referencesEast, B. R. (2008). 9XTend TM OEM RF Module. 1–2.spa
dc.relation.referencesGarcia, F. C. C., Retamar, A. E., & Javier, J. C. (2016). A real time urban flood monitoring system for metro Manila. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2016-Janua, 3–7. https://doi.org/10.1109/TENCON.2015.7372990spa
dc.relation.referencesGarcía Garrancho, P. (2006). Manuel de uso de Radio Mobile. 31. Retrieved from https://upcommons.upc.edu/bitstream/handle/2099.1/6989/anexos/Anexo 16.pdf Guide, I. (2018). XKIT INSTRUCTION. (April).spa
dc.relation.referencesHua, J., & Shunwuritu, N. (2021). Research on term extraction technology in computer field based on wireless network technology. Microprocessors and Microsystems, 80(September 2020), 103336. https://doi.org/10.1016/j.micpro.2020.103336spa
dc.relation.referencesIP Europe. (2019). What are cellular communication standards ? Retrieved April 26, 2021, from IP-Europe-Factsheet website: https://www.iptalks.eu/policy-priorities/supportthe-open-standards-development-model/what-are-cellular-communication-standards/spa
dc.relation.referencesITU-T. (2014). Applications of Wireless Sensor Networks in Next Generation Networks. Series T.2000: Next Generation Networks, (February), 1–94.spa
dc.relation.referencesJavier, F., Pisón, M. De, Marcos, A. G., & Elías, F. A. (2009). Redes inalámbricas de sensores : teoría y aplicación práctica Roberto Fernández Martínez , Joaquín Ordieres Meré ,.spa
dc.relation.referencesKadhim, L. A., & Salih, S. M. (2014). Indoor Distributed Antenna System for the University of Baghdad Building. IEEE Transactions on Antennas and Propagation, 5(4), 57–68.spa
dc.relation.referencesKama, A., Diallo, M., & Drame, M. S. (2018). Low cost connected and autonomous rain gauge for real time rainfall monitoring in Dakar. 2018 25th International Conference on Telecommunications, ICT 2018, 660–664. https://doi.org/10.1109/ICT.2018.8464854spa
dc.relation.referencesKoucheryavy, A., & Salim, A. (2009). Cluster head selection for homogeneous wireless sensor networks. International Conference on Advanced Communication Technology, ICACT, 3(3), 2141–2146.spa
dc.relation.referencesLavric, A., Petrariu, A. I., & Popa, V. (2019). SigFox Communication Protocol: The New Era of IoT? 2019 International Conference on Sensing and Instrumentation in IoT Era, ISSI 2019, 2019–2022. https://doi.org/10.1109/ISSI47111.2019.9043727spa
dc.relation.referencesLee, J. S., Su, Y. W., & Shen, C. C. (2007). A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. IECON Proceedings (Industrial Electronics Conference), (September 2014), 46–51. https://doi.org/10.1109/IECON.2007.4460126spa
dc.relation.referencesLi, W., & Kara, S. (2017). Methodology for Monitoring Manufacturing Environment by Using Wireless Sensor Networks (WSN) and the Internet of Things (IoT). Procedia CIRP, 61, 323–328. https://doi.org/10.1016/j.procir.2016.11.182spa
dc.relation.referencesLoRa Alliance. (2015). A technical overview of LoRa and LoRaWAN. (November), 1–20. Retrieved from https://www.loraalliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdfspa
dc.relation.referencesMangundu, E. M., Mateus, J. N., Zodi, G. A. L., & Johson, J. (2018). A wireless sensor network for rainfall monitoring, using cellular network: A case for Namibia. 2017 Global Wireless Summit, GWS 2017, 2018-Janua, 240–244. https://doi.org/10.1109/GWS.2017.8300469spa
dc.relation.referencesMekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express, 5(1), 1–7. https://doi.org/10.1016/j.icte.2017.12.005spa
dc.relation.referencesMendoza, A., González, H., Buelvas, J., & Rueda, S. L. M. (2016). Guía para la Implementación de Sistemas de alerta temprana. Retrieved from https://repositorio.gestiondelriesgo.gov.co/bitstream/handle/20.500.11762/18505/VOL -9-GUIA-PARA-LA-IMPLEMENTACION-DE SISTEMAS-DE-ALETATEMPRANA.pdf?sequence=18spa
dc.relation.referencesMonachesi, E., Gómez López, F. A., Carrasco, A., Frenzel, A. M., Chaile, G., & Tucumán, F. R. (2016). Estudio de viabilidad de un enlace WiFi. Retrieved from http://www.edutecne.utn.edu.arspa
dc.relation.referencesNoaa. (2012). Guía de referencia para sistemas de alerta temprana de crecidas repentinas. Retrieved from http://www.meted.ucar.edu/communities/hazwarnsys/ffewsrg_es/FFG_completa_es.pdfspa
dc.relation.referencesOrganización Meteorológica Mundial. (1994). GUÍA DE PRACTICAS HIDROLÓGICAS. Retrieved from https://www.wmo.int/pages/prog/hwrp/publications/guide/spanish/168_Vol_I_es.pdfspa
dc.relation.referencesRueda, J. S., & Talavera Portocarrero, J. M. (2017). Similitudes y diferencias entre Redes de Sensores Inalámbricas e Internet de las Cosas: Hacia una postura clarificadora. Revista Colombiana de Computación, 18(2), 58–74. https://doi.org/10.29375/25392115.3218spa
dc.relation.referencesSadowski, S., & Spachos, P. (2020). Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities. Computers and Electronics in Agriculture, 172(September 2019), 105338. https://doi.org/10.1016/j.compag.2020.105338spa
dc.relation.referencesSantos, S. C., Firmino, R. M., Mattos, D. M. F., & Medeiros, D. S. V. (2020). An IoT Rainfall Monitoring Application based on Wireless Communication Technologies. 53–56. https://doi.org/10.1109/ciot50422.2020.9244293spa
dc.relation.referencesSeybold, J. S. (2005). Introduction to RF Propagation. In Introduction to RF Propagation. https://doi.org/10.1002/0471743690spa
dc.relation.referencesSigfox. (2017). Sigfox Technical Overview. 1(May), 26. Retrieved from https://www.disk91.com/wp-content/uploads/2017/05/4967675830228422064.pdfspa
dc.relation.referencesSohraby, K., Minoli, D., & Znati, T. (2007). Basic Wireless Sensor Technology. In Wireless Sensor Networks. https://doi.org/10.1002/9780470112762.ch3spa
dc.relation.referencesTalavera, J. M., Tobón, L. E., Gómez, J. A., Culman, M. A., Aranda, J. M., Parra, D. T., … Garreta, L. E. (2017). Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture, 142(September), 283–297. https://doi.org/10.1016/j.compag.2017.09.015spa
dc.relation.referencesTrandafir, B., Fratu, O., & Halunga, S. (2010). Simulation and analysis of a Wi-Fi public network using the radio mobile software. 2010 9th International Symposium on Electronics and Telecommunications, ISETC’10 - Conference Proceedings, 281–284. https://doi.org/10.1109/ISETC.2010.5679309spa
dc.relation.referencesVitadhani, A., Alief, F., Haryanto, B., Harwahyu, R., & Fitri Sari, R. (2020). Simulating LoRaWAN for flood early warning system in ciliwung river, bogor-Jakarta. Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, ISemantic 2020, 274–279. https://doi.org/10.1109/iSemantic50169.2020.9234221spa
dc.relation.referencesYuwono, T., Ruzardi, & Ismail, M. (2011). Rain gauge development employing bluetooth and RF modem. 2011 IEEE International Conference on Space Science and Communication: “Towards Exploring the Equatorial Phenomena”, IconSpace 2011 - Proceedings, (July), 320–323. https://doi.org/10.1109/IConSpace.2011.6015909spa
dc.relation.referencesZand, P., Chatterjea, S., Ketema, J., & Havinga, P. (2012). A distributed scheduling algorithm for real-time (D-SAR) industrial wireless sensor and actuator networks. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA. https://doi.org/10.1109/ETFA.2012.6489719spa
dc.relation.referencesZennaro, M., Bagula, A., Gascon, D., & Noveleta, A. B. (2010). Long distance wireless sensor networks: Simulation vs reality. Proceedings of the 4th ACM Workshop on Networked Systems for Developing Regions, NSDR ’10, (June 2014). https://doi.org/10.1145/1836001.1836013spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International