Mostrar el registro sencillo del ítem

dc.contributor.authorVidal Tovar, Carlosspa
dc.contributor.authorCorrea Turizo, Rafaelspa
dc.contributor.authorSeveriche Sierra, Carlos Albertospa
dc.contributor.authorCabrera Lafaurie, Wilmanspa
dc.date.accessioned2021-07-27T13:18:59Z
dc.date.available2021-07-27T13:18:59Z
dc.date.issued2019
dc.identifier.issn18196608spa
dc.identifier.urihttps://hdl.handle.net/11323/8485spa
dc.description.abstractAmong the persistent chemical compoundsin the residual discharges are the highly toxic cyanides used in the industrial sector and in particular the mining industry for the extraction of gold, frequently appearing in low concentrations in the water, deteriorating its quality. Bemg of vital importance the treatment of the cyanide effluent, to reduce the concentration of cyanide before its final discharge, thus producing less toxic effluents, to achieve this several studies have been carried out and developed methods for its treatment, chemical, physical and biological An alternative to improve the quality of wastewater is the heterogeneous photocatalysis mediated by different semiconductors such as TiO,, considering this a simple technology and economical in relation to bioremediation treatments, effective and innovative in our environment for aqueous effluents.spa
dc.description.abstractEntre los compuestos químicos persistentes en las descargas residuales se encuentran los cianuros altamente tóxicos. utilizado en el sector industrial y en particular la industria minera para la extracción de oro, apareciendo frecuentemente en bajas concentraciones en el agua, deteriorando su calidad. Siendo de vital importancia el tratamiento de la efluente de cianuro, para reducir la concentración de cianuro antes de su descarga final, produciendo así menos tóxicos efluentes, para lograrlo se han realizado varios estudios y se han desarrollado métodos para su tratamiento, química, física y biológica Una alternativa para mejorar la calidad de las aguas residuales es la heterogeneidad fotocatálisis mediada por diferentes semiconductores como el TiO, considerando esta una tecnología simple y económico en relación a los tratamientos de biorremediación, eficaz e innovador en nuestro medio para acuosos efluentes.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherARPN Journal of Engineering and Applied Sciencesspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectCyanized watersspa
dc.subjectEnvironmental pollutionspa
dc.subjectGold miningspa
dc.subjectLiquid spillsspa
dc.subjectQualityspa
dc.subjectToxic effluentsspa
dc.subjectAguas cianizadasspa
dc.subjectContaminación ambientalspa
dc.subjectMinería de orospa
dc.subjectDerrames de líquidosspa
dc.subjectCalidadspa
dc.subjectEfluentes tóxicosspa
dc.titleDegradation of cyanides in wastewater from gold mining: A review of literaturespa
dc.typeArtículo de revistaspa
dc.source.urlhttps://medwelljournals.com/abstract/?doi=jeasci.2019.1475.1485spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.36478/jeasci.2019.1475.1485spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAcheampong, M.A. and P.N. Lens, 2014. Treatment of gold mining effluent in pilot fixed bed sorption system. Hydrometallurgy, 141: 1-7.spa
dc.relation.referencesAguldelo, R., J. Betancur and C. Jaramillo, 2010. [Biotreatment of cyanide waste and its relation to public health (In Spanish)]. Rev. Fac. Nac. Salud Publica, 28: 7-20.spa
dc.relation.referencesAhmed, M.S. and Y.A. Attia, 1995. Aerogel materials for photocatalytic detoxification of cyanide wastes in water. J. Non Cryst. Solids, 186: 402-407.spa
dc.relation.referencesAl-Ekabi, H. and N. Serpone, 1988. Kinetics studies in heterogeneous photocatalysis,I photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO, supported on a glass matrix. J. Phys. Chem., 92: 5726-5731.spa
dc.relation.referencesAlrousan, D.M.A., MI. Polo-Lopez, P.S.M. Dunlop, P. Fernandez-Ibanez and J.A. Byrne, 2012. Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Applied Catal. B: Environ., 128: 126-134.spa
dc.relation.referencesAnonymous, 1984. [Decree 1594 of 1984. through which the uses of water and liquid waste are regulated]. Ministry of Health and Social Protection, Bogota, Colombia. (In Spanish)spa
dc.relation.referencesArias-Lafargue, T., D. Fernandez-Compta, Y. SanchezRodriguez and <A. Lasserra-Portuondo, 2017. [Influence of leaching on the recovery of gold at the Oro-Barita mine in Santiago de Cuba (In Spanish)]. Chem. Technol., 37: 461-476.spa
dc.relation.referencesAugugliaro, V., V. Loddo, G. Marci, L. Palmisano and M.J. Lopez-Munoz, 1997. Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions. J. Catal., 166: 272-283.Augugliaro, V., V. Loddo, G. Marci, L. Palmisano and M.J. Lopez-Munoz, 1997. Photocatalytic oxidation of cyanides in aqueoustitanium dioxide suspensions. J. Catal., 166: 272-283.spa
dc.relation.referencesBaeissa, E.S., 2015. Synthesis and characterization of sulfur-titantum dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation. Chin. J. Catal., 36: 698-704.spa
dc.relation.referencesBarakat, M.A., Y.T. Chen and C.P. Huang, 2004. Removal of toxic cyanide and Cu (I) ions from water by illuminated TiO, catalyst. J. Applied Catalysis B: Environ., 53: 13-20.spa
dc.relation.referencesBarrios, R.L.A., C.A.S. Sierra and J.D.C.J. Morales, 2017. [Toxic effects of paracetamol on human health and the environment (In Spanish)]. Agrar. Res. Magaz., 8: 139-149.spa
dc.relation.referencesBruger, A., G. Fafilek and L. Rojas-Mendoza, 2018. On the volatilisation and decomposition of cyanide contaminations from gold mining. Sci. Total Environ., 627: 1167-1173.spa
dc.relation.referencesCardona, 8.P.P., 2001. Coupling of photocatalytic and biological processes as a contribution to the detoxification of water. PhD Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.spa
dc.relation.referencesCarey, JH, J. Lawrence and Y.H.M. Tosine, 1976. Photodechlorination of PCBs in the presence of titanium dioxide im aqueous suspensions. Bull. Environ. Contam. Toxicol., 16: 697-701.spa
dc.relation.referencesChiang, K., R. Amal and T. Tran, 2002. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv. Environ. Res., 6: 471-485.spa
dc.relation.referencesChiang, K., R. Amal and T. Tran, 2003. Photocatalytic oxidation of cyanide: Kinetic and mechanistic studies. J. Mol. Catal. Chem., 193: 285-297.spa
dc.relation.referencesChoi, W.Y., A. Termin and M.R. Hoffmann, 1994. Romote bleaching of methylene blue by UV irradiated TiO, in the gas phase. J. Phys. Chem., 98: 13669-13679.spa
dc.relation.referencesDash, R.R., A. Gaur and C. Balomajumder, 2009a. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazardous Mater., 163: 1-11.spa
dc.relation.referencesDash, R.R., C. Balomajyumder and A. Kumar, 2009b. Removal of cyanide from water and wastewater using granular activated carbon. Chem. Eng. J., 146: 408-41 3.spa
dc.relation.referencesDavit, P., G. Martra, 8. Coluccia, V. Augugliaro and E.G. Lopez et al, 2003. Adsorption and photocatalytic degradation of acetonitrile: FT-IR investigation. J. Mol. Catal. Chem., 204: 693-701.spa
dc.relation.referencesDomenech, X., W.F. Jardim and MJ. Litter, 2001. [Advanced Oxidation Processes for the Elimination of Pollutants]. In: [Elimination of Contaminants by Heterogeneous Photocatalysis], CYTED. (Ed.). National Atomic Energy Commission, Buenos Aires, Argentina, pp: 3-25 (In Spanish).spa
dc.relation.referencesDonato, D.B., O. Nichols, H. Possingham, M. Moore and PF. Ricci et al., 2007. A critical review of the effects ofgold cyanide-bearing tailings solutions on wildlife. Environ.Intl., 33: 974-984.spa
dc.relation.referencesDuran, A., J.M. Monteagudo, I. San Martin and R. Sanchez-Romero, 2009. Photocatalytic treatment of IGCC powerstation effluents in a UV-pilot plant. J. Hazard. Mater., 167: 885-891.spa
dc.relation.referencesDwivedi, N., C. Balomajumder and P. Mondal, 2016. Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents. Water Resour. Ind., 15: 28-40.spa
dc.relation.referencesFajardo, J.A., D.C. Burbano, E.J. Burbano, N.J. Apraez and M.I.L.T.O.N. Rosero Moreano, 2010. [Study of chemical methods of cyanide removal present in cyanide residues from the vein gold extraction process in the Department of Narino (In Spanish)]. Revista Luna Azul, 31: 8-16.spa
dc.relation.referencesFeng, C., C. Aldrich, J.J. Eksteen and D.W.M. Arrigan, 2018. Removal of arsenic from gold cyanidation process waters by use of cerium-based magnetic adsorbents. Miner. Eng., 122: 84-90.spa
dc.relation.referencesFortuna, D., A. Rahimsyah and Y. Puspitasri, 2015. Degradation of acid cyanide poison in rubber seed (Hevea brasiliensis) after treatment with rice husk ash. Intl. J. Adv. Sci. Eng. Inf. Technol., 5: 291-293.spa
dc.relation.referencesGarces Giraldo, L.F., M. Franco, E. Alejandro and J.J. Santamaria Arango, 2004. [Photocatalysis as an alternative for wastewater treatment (In Spanish)]. Lasallista Magaz. Invest., 1: 83-92.spa
dc.relation.referencesGarcia, D.E.G., 2015. [Assessment of ecological impacts due to gold miming in the Guabas River, Valle del Cauca, Colombia (In Spanish)]. Magaz. Agrar. Environ. Res., 6: 243-254.spa
dc.relation.referencesGarcia-Ochoa, F. and A. Santos, 2001. [Catalytic Oxidation of Phenolic Compounds in Wastewater]. In: Catalysts and Adsorbents for Environmental Protection in the Ibero-American Region, Jesus Blanco, P.A. (Ed.). Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo, Madrid, Spain, pp: 275-284.spa
dc.relation.referencesGebresemati, M., N. Gabbiye and O. Sahu, 2017. Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology. J. Applied Res. Technol., 15: 27-35.spa
dc.relation.referencesGimenez, J., D. Curco and M.A. Queral, 1999. Photocatalytic treatment of phenol and 2, 4- dichlorophenol in a solar plant in the way to scaling-up. Catal. Today, 54: 229-243.spa
dc.relation.referencesGomez, L., A. Urkiaga, M. Gutierrez and L. De las Fuentes, 2000. [Photooxidation for chemical spills: Review and experiences of advanced oxidation processes (In Spamsh)]. Chem. Eng. Magaz., 32: 211-216.spa
dc.relation.referencesGordo, D.A.M., 2018. [Phenolic compounds, an approach to your biosynthesis, synthesis and biological activity (In Spanish)]. Magaz. Agrar. Environ. Res., 9: 81-104.spa
dc.relation.referencesGuadalima, M.P.G. and D.A.N. Monteros, 2018. Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor. J. Water Proc. Eng., 23: 84-90.spa
dc.relation.referencesHernandez-Alonso, M.D., J.M. Coronado, A.J. Maira, J. Soria and V. Loddo et a/., 2002. Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions. Appl. Catal. Environ., 39: 257-267.spa
dc.relation.referencesHidaka, H., T. Nakamura, A. Ishizaka, M. Tsuchiya and J. Zhao, 1992. Heterogeneous photocatalytic degradation of cyanide on Ti0, surfaces. J. Photochem. Photobiol. Chem., 66: 367-374.spa
dc.relation.referencesIrfan, U.R., I. Nur and M. Kasim, 2017. Hydrothermal alteration mineralogy associated with gold mineralization in Buladu Area, Gorontalo, Northern Sulawesi, Indonesia. Intl. J. Adv. Sci. Eng. Inf. Technol., 7: 2244-2250.spa
dc.relation.referencesJaramillo, G., J.A. Pabon and E.G. Pavas, 2002. [Photodegradation of phenols in industrial wastewater (In Spanish)]. Chem. Eng., 386: 117-122.spa
dc.relation.referencesJohnson, C.A., 2015. The fate of cyanide in leach wastes at gold mines: An environmental perspective. Appl. Geochem., 57: 194-205.spa
dc.relation.referencesKim, T.K., T. Kim, A. Jo, 8. Park and K.H. Choi et ai, 2018. Degradation mechanism of cyanide in water using a UV-LED/H,O,/Cu™ system. Chemosphere, 208: 441-449.spa
dc.relation.referencesKopytko, M., S.N.C. Torres and M.J.E. Gomez, 2017. [Stimulated biodegradation of soils contaminated with organochlorine pesticides (In Spanish)]. Agrar. Environ. Res. J., 8: 119-130.spa
dc.relation.referencesKuyucak, N. and A. Akcil, 2013. Cyamde and removal options from effluents in gold mining and metallurgical processes. Miner. Eng., 50: 13-29.spa
dc.relation.referencesLaliberte, M., 2015. Reducing the toxicity of gold-mine effluent using biological reactors and precipitation. Miner. Metall. Proc., 32: 1-5.spa
dc.relation.referencesLiu, W., W. Sun, A.G. Borthwick and J. Ni, 2013. Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-T10,: Influence of pH, ionic strength and natural organic matter. Colloids Surf. Physicochemical Eng. Aspec., 434: 319-328.spa
dc.relation.referencesLopez, A.L.B. and I.M.C. Sierra, 2012. [Comparative catalytic study of the TiO, and Nb,O, systemsin the degradation of cyanide according to the type of oxidant (In Spanish)]. Eng. Sci., 8: 257-280.spa
dc.relation.referencesMalato, A., J. Blanco, A. Vidal and C. Richter, 2002. Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environ., 37: 1-15.spa
dc.relation.referencesMekuto, L., S.K. Ntwampe and A. Akcil, 2016. An integrated biological approach for treatment of cyanidation wastewater. Sci. Total Environ, 571: 711-720.spa
dc.relation.referencesMesa, G.A.P., 1998. [Photolysis and photodegradation sensitized with Fe,, and TiO, ofpesticides in natural waters (In Spanish)]. Ph.D Thesis, Universidad de Barcelona, Barcelona, Spain.spa
dc.relation.referencesMoussavi, G., M. Pourakbar, E. Aghayami and M. Mahdavianpour, 2018. Investigating the aerated VUV/PSprocess simultaneously generating hydroxyl and sulfate radicals for the oxidation of cyanide in aqueous solution and industrial wastewater. Chem. Eng. J., 350: 673-680.spa
dc.relation.referencesOh, Y.C. and W.S. Jenks, 2004. Photocatalytic degradation of a cyanuric acid, a recalcitrant species. J. Photochem. Photobiol. Chem., 162: 323-328.spa
dc.relation.referencesOlivero-Verbel, J., Negrete-Marrugo, K. Caballero-Gallardo and J. 2011. Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia.Biol. Trace Element Res., 144: 118-132.spa
dc.relation.referencesOsathaphan, K., B. Chucherdwatanasak, P. Rachdawong and V.K. Sharma, 2008. Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: Effect of ethylenediaminetetraacetate. Solar Energy, 82: 1031-1036.spa
dc.relation.referencesPala, A. R.R. Politi, G. Kursun, M. Erol and F. Bakal et ai, 2015. Photocatalytic degradation of cyanide in wastewater using new generated nanothin film photocatalyst. Surf. Coat. Technol, 271: 207-216.spa
dc.relation.referencesParmon, V., A.V. Emeline and N. Serpone, 2002. Glossary of terms in photocatalysis and radiocatalysis. Intl. J. Photoenergy, 4: 91-131.spa
dc.relation.referencesPeral, J., J. Munoz and X. Domenech, 1990. Photosensitized CNoxidation over TiO, J. Photochem. Photobiol. Chem., 55: 251-257.spa
dc.relation.referencesPercherancier, J.P., R. Chapelon and B. Pouyet, 1995. Semiconductor-sensitized photodegradation of pesticides in water: The case of carbetamide. J. Photochem. Photobiol. Chem., 87: 261-266.spa
dc.relation.referencesPirmoradi, M., S. Hashemian and M.R. Shayesteh, 2017. Kinetics and thermodynamics of cyanide removal by ZnO@ NiO nanocrystals. Trans. Nonferrous Met. Soc. China, 27: 1394-1403.spa
dc.relation.referencesPozzo, R.L., M.A. Baltanas and A.E. Cassano, 1997. Supported titamum oxide as photocatalyst in water decontamination: State of the art. Catal. Today, 39: 219-231.spa
dc.relation.referencesQuintero, E.C., A.G.G. Bayona, M.A.-H. Lopez and M.L.P. Rojas, 2017. [Strategic management of the production of sterile waste from sustaimable mining, using eco-efficient mining practices in Colombia (In Spanish)]. Agrar. Environ. Res. J., 8: 107-118.spa
dc.relation.referencesQuiroga, P.N. and V. Olmos, 2009. [Review of the toxicokinetics and toxicity of hydrocyanic acid and cyanides (In Spanish)]. Acta Toxicol. Argent., 17: 20-32.spa
dc.relation.referencesQuispe, L., M.D.C. Arteaga, E. Cardenas, C. Santelices and E. Palenque et a/., 2011. [Elimination of cyanide by combined UV/H,O,/TiO , system (In Spanish)]. Boliv. J. Chem., 28: 113-118.spa
dc.relation.referencesRay, A.K., 1999. Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment. Chem. Eng. Sci., 54: 3113-3125.spa
dc.relation.referencesRazanamahandry, L.C., H.A. Andrianisa, H. Karoui, K.M. Kouakou and H. Yacouba, 2016. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere, 157: 71-78.spa
dc.relation.referencesSancho, J.P., B. Fernandez, J. Ayala, M.P. Garcia and A. Lavandeira, 2011. [Application of potassium permanganate for the elumination of copper cyanides in wastewater from the leaching plant in a gold mine (II): Pilot plant tests (in Spanish)]. Revista Metalurgia, 47: 224-233.spa
dc.relation.referencesSarla, M., M. Pandit, D.K. Tyagi and J.C. Kapoor, 2004. Oxidation of cyamde in aqueous solution by chemical and photochemical process. J. Hazard. Mater., 116: 49-56.spa
dc.relation.referencesSerpone, N., 1997. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Ady. Oxid. Technol., 2: 203-216.spa
dc.relation.referencesVidal, A. AI. Dyaz, A. El Hraiki, M. Romero and I. Muguruza et al., 1999. Solar photocatalysis for detoxification and disinfection of contaminated water: Pilot plant studies. Catal. Today, 54: 283-290.spa
dc.relation.referencesYeddou, A.R., 5. Chergui, A. Chergui, F. Halet and A. Hamza et al., 2011. Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of copper-impregnated activated carbon. Miner. Eng., 24: 788-793.spa
dc.relation.referencesYu, X., R. Xu, C. Wei and H. Wu, 2016. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biode gradability. J. Hazard. Mater., 302: 468-474.spa
dc.title.translatedDegradación de cianuros en aguas residuales de la minería de oro: una revisión de la literaturaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal