Mostrar el registro sencillo del ítem

dc.contributor.authorDiel, Júlia C.spa
dc.contributor.authorP. Franco, Dison S.spa
dc.contributor.authorIgansi, Andrei V.spa
dc.contributor.authorS. Cadaval Jr., Tito R.spa
dc.contributor.authorPereira, Hércules A.spa
dc.contributor.authorS. Nunes, Isaac dosspa
dc.contributor.authorBasso, Charles W.spa
dc.contributor.authorM. Alves, Maria do Carmospa
dc.contributor.authorMorais, Jonderspa
dc.contributor.authorPinto, Dianaspa
dc.contributor.authorDotto, Guilherme L.spa
dc.date.accessioned2021-07-27T13:39:54Z
dc.date.available2021-07-27T13:39:54Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/11323/8491spa
dc.description.abstractIn the present work, multi-walled carbon nanotubes (MWCNTs) were used as support material for the impregnation of metallic nanoparticles (MNPs) produced by green synthesis. The influences of the plant extracts (pomegranate (Punica Granatum), Eucalyptus, and pecan (Carya illinoinensis, leaves), metal species (copper and iron), metallic concentrations, and type of functionalization (OH and COOH) on the characteristics of the obtained materials were studied. The precursor and impregnated MWCNTs were characterized through X-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, point of charge, N2 adsorption/desorption isotherms and, X-ray photoelectron spectroscopy. All the synthesized materials were tested as adsorbents to remove glyphosate (GLY) in an aqueous medium. The MWCNTs were resistant to withstand the synthesis process, preserving its structure and morphological characteristics. The copper and iron on the surface of MWCNTS confirm the successful synthesis and impregnation of the MNPs. The MWCNTs impregnated with high metallic concentrations showed favorable adsorption of GLY. The adsorption capacity and percentage of removal were 21.17 mg g−1 and 84.08%, respectively, for the MWCNTs impregnated with iron MNPs using the pecan leaves as a reducing agent. The results indicated that an advanced adsorbent for GLY could be obtained by green synthesis, using MWCNTs as precursors and pecan leaves as a reducing agent.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceChemospherespa
dc.subjectGlyphosatespa
dc.subjectAdsorptionspa
dc.subjectCarbon nanotubesspa
dc.subjectNanoparticlesspa
dc.subjectGreen synthesisspa
dc.subjectXPS analysesspa
dc.titleGreen synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorptionspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/abs/pii/S0045653521016659spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.chemosphere.2021.131193spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesM. Abu-dalo, A. Jaradat, B.A. Albiss, N.A.F. Al-rawashdeh Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection J. Environ. Chem. Eng., 7 (2019), p. 103370, 10.1016/j.jece.2019.103370spa
dc.relation.referencesN. Al-Jammal, T.A. Abdullah, T. Juzsakova, B. Zsirka, I. Cretescu, V. Vágvölgyi, V. Sebestyén, C. Le Phuoc, R.T. Rasheed, E. Domokos Functionalized carbon nanotubes for hydrocarbon removal from water J. Environ. Chem. Eng., 8 (2020), p. 103570, 10.1016/j.jece.2019.103570spa
dc.relation.referencesP.T. Anastas, T.C. Williamson Green chemistry: an overview Green Chem. Des. Chem. Environ. (1996), 10.1021/bk-1996-0626.ch001spa
dc.relation.referencesN. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang Carbon nanotube - a review on Synthesis, Properties and plethora of applications in the field of biomedical science Sensors Int, 1 (2020), p. 100003, 10.1016/j.sintl.2020.100003spa
dc.relation.referencesA. Bankar, B. Joshi, A. Ravi, S. Zinjarde Banana peel extract mediated synthesis of gold nanoparticles Colloids Surf. B Biointerfaces, 80 (2010), pp. 45-50, 10.1016/j.colsurfb.2010.05.029spa
dc.relation.referencesB.L. Bhaskara, P. Nagaraja Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples Helv. Chim. Acta, 89 (2006), pp. 2686-2693, 10.1002/hlca.200690240spa
dc.relation.referencesA. Bonilla-Petriciolet, D.I. Mendoza-Castillo, G.L. Dotto, C.J. Duran-Valle Adsorption in water treatment Chem. Mol. Sci. Chem. Eng. (2019), pp. 1-19, 10.1016/B978-0-12-409547-2.14390-2spa
dc.relation.referencesM. Bordbar, N. Mortazavimanesh Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time Environ. Sci. Pollut. Res. (2016), 10.1007/s11356-016-8183-yspa
dc.relation.referencesL.F.F.P.G. Bragança, R.R. Avillez, C.R. Moreira, M.I. Pais da Silva Synthesis and characterization of Co-Fe nanoparticles supported on mesoporous silicas Mater. Chem. Phys., 138 (2013), pp. 17-28, 10.1016/j.matchemphys.2012.10.012spa
dc.relation.referencesR.T.A. Carneiro, T.B. Taketa, R.J. Gomes Neto, J.L. Oliveira, E.V.R. Campos, M.A. De Moraes, C.M.G. Silva, M.M. Beppu, L.F. Fraceto Removal of glyphosate herbicide from water using biopolymer membranes J. Environ. Manag., 151 (2015), pp. 353-360, 10.1016/j.jenvman.2015.01.005spa
dc.relation.referencesA. Chowdhry, J. Kaur, M. Khatri, V. Puri, R. Tuli, S. Puri Characterization of functionalized multiwalled carbon nanotubes and comparison of their cellular toxicity between HEK 293 cells and zebra fish in vivo Heliyon, 5 (2019), Article e02605, 10.1016/j.heliyon.2019.e02605spa
dc.relation.referencesB.R.C. De Menezes, F.V. Ferreira Effects of octadecylamine functionalization of carbon nanotubes on dispersion , polarity , and mechanical properties of CNT/HDPE nanocomposites J. Mater. Sci. (2018), 10.1007/s10853-018-2627-3spa
dc.relation.referencesJ.C. Diel, D.S.P. Franco, I.D.S. Nunes, H.A. Pereira, K.S. Moreira, T.A. Thiago, E.L. Foletto, G.L. Dotto Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix J. Environ. Chem. Eng., 9 (2021), 10.1016/j.jece.2021.105178spa
dc.relation.referencesG.L. Dotto, R. Ocampo-Pérez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects Adsorption, 22 (2016), pp. 973-983, 10.1007/s10450-016-9804-yspa
dc.relation.referencesS. Fiorilli, L. Rivoira, G. Calì, M. Appendini, M. Concetta, M. Coïsson, B. Onida Applied Surface Science Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water Appl. Surf. Sci., 411 (2017), pp. 457-465, 10.1016/j.apsusc.2017.03.206spa
dc.relation.referencesS.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L.S. Hin, A. El-Shafi Review on heavy metal adsorption processes by carbon nanotubes J. Clean. Prod., 230 (2019), pp. 783-793, 10.1016/j.jclepro.2019.05.154spa
dc.relation.referencesC.R. Galan, M.F. Silva, D. Mantovani, R. Bergamasco, M.F. Vieira Green synthesis of copper oxide nanoparticles impregnated on activated carbon using moringa oleifera leaves extract for the removal of nitrates from water Can. J. Chem. Eng., 9999 (2018), pp. 1-9, 10.1002/cjce.23185spa
dc.relation.referencesM. Ghaedi, A. Ansari, R. Sahraei ZnS:Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive Orange 12 and Direct yellow 12 adsorption Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 114 (2013), pp. 687-694, 10.1016/j.saa.2013.04.091spa
dc.relation.referencesM. Gomathi, A. Prakasam, P. V Rajkumar, S. Rajeshkumar, R. Chandrasekaran, P.M. Anbarasan Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity S. Afr. J. Chem. Eng., 32 (2020), pp. 1-4, 10.1016/j.sajce.2019.11.005spa
dc.relation.referencesI. Herath, P. Kumarathilaka, M.I. Al-Wabel, A. Abduljabbar, M. Ahmad, A.R.A. Usman, M. Vithanage Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar Microporous Mesoporous Mater., 225 (2016), pp. 280-288, 10.1016/j.micromeso.2016.01.017spa
dc.relation.referencesG.A.D. Herath, L.S. Poh, W.J. Ng Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology Chemosphere, 227 (2019), pp. 533-540, 10.1016/j.chemosphere.2019.04.078spa
dc.relation.referencesY. Holade, N.E. Sahin, K. Servat, T.W. Napporn, K.B. Kokoh Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells Catalysts, 5 (2015), pp. 310-348, 10.3390/catal5010310spa
dc.relation.referencesZ. Hosseini-Dastgerdi, S.S. Meshkat An experimental and modeling study of asphaltene adsorption by carbon nanotubes from model oil solution J. Petrol. Sci. Eng., 174 (2019), pp. 1053-1061, 10.1016/j.petrol.2018.12.024spa
dc.relation.referencesZ. Hosseini-Dastgerdi, S.S. Meshkat An experimental and modeling study of asphaltene adsorption by carbon nanotubes from model oil solution J. Petrol. Sci. Eng., 174 (2019), pp. 1053-1061, 10.1016/j.petrol.2018.12.024spa
dc.relation.referencesM. Karuppiah, R. Rajmohan Green synthesis of silver nanoparticles using Ixora coccinea leaves extract Mater. Lett., 97 (2013), pp. 141-143, 10.1016/j.matlet.2013.01.087spa
dc.relation.referencesS.M.S. Khademi, U. Telgheder, Y. Valadbeigi, V. Ilbeigi, M. Tabrizchi Direct detection of glyphosate in drinking water using corona-discharge ion mobility spectrometry: a theoretical and experimental study Int. J. Mass Spectrom., 442 (2019), pp. 29-34, 10.1016/j.ijms.2019.05.002spa
dc.relation.referencesO.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez, V.M.J. Pérez The greener synthesis of nanoparticles Trends Biotechnol., 31 (2013), pp. 240-248, 10.1016/j.tibtech.2013.01.003spa
dc.relation.referencesG. Leofanti, G. Tozzola, M. Padovan, G. Petrini, S. Bordiga, A. Zecchina Catalyst characterization: characterization techniques Catal. Today (1997), pp. 307-327, 10.1016/S0920-5861(96)00056-9spa
dc.relation.referencesL. Li, M. Chen, G. Huang, N. Yang, L. Zhang, H. Wang, Y. Liu, W. Wang, J. Gao A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation J. Power Sources, 263 (2014), pp. 13-21, 10.1016/j.jpowsour.2014.04.021spa
dc.relation.referencesP. Marin, R. Bergamasco, A.N. Módenes, P.R. Paraiso, S. Hamoudi Synthesis and characterization of graphene oxide functionalized with MnFe2O4 and supported on activated carbon for glyphosate adsorption in fixed bed column Process Saf. Environ. Protect., 123 (2019), pp. 59-71, 10.1016/j.psep.2018.12.027spa
dc.relation.referencesJ.L. Marques Jr., S.F. Lütke, T.S. Frantz, J.B.S. Espinelli, R. Carapelli, L.A.A. Pinto, T.R.S. Cadaval Removal of Al (III) and Fe (III) from binary system and industrial effluent using chitosan films Int. J. Biol. Macromol., 120 (2018), pp. 1667-1673, 10.1016/j.ijbiomac.2018.09.135spa
dc.relation.referencesY. Mo, Y. Tang, S. Wang, J. Lin, H. Zhang, D. Luo Green synthesis of silver nanoparticles using eucalyptus leaf extract Mater. Lett., 144 (2015), pp. 165-167, 10.1016/j.matlet.2015.01.004spa
dc.relation.referencesP. Mondal, A. Anweshan, M.K. Purkait Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review Chemosphere, 259 (2020), p. 127509, 10.1016/j.chemosphere.2020.127509spa
dc.relation.referencesK.D.B.J.F. Moulder, W.F. Stickle, P.E. Sobol Handbook of X-Ray Photoelectron Spectroscopy Perkin-Elmer Corporation Physical Electronics Division, Eden Prain, Minnesota USA (1992)spa
dc.relation.referencesM. Naderi Surface area: brunauer-emmett-teller (BET) Prog. Filtr. Sep. (2015), pp. 585-608, 10.1016/B978-0-12-384746-1.00014-8spa
dc.relation.referencesF.G. Pacheco, A.A.C. Cotta, H.F. Gorgulho, A.P. Santos, W.A.A. Macedo, C.A. Furtado Applied Surface Science Comparative temporal analysis of multiwalled carbon nanotube oxidation reactions : evaluating chemical modifications on true nanotube surface Appl. Surf. Sci., 357 (2015), pp. 1015-1023, 10.1016/j.apsusc.2015.09.054spa
dc.relation.referencesM.R. Páez, Y. Ochoa-Muñoz, J.E. Rodriguez-Páez Efficient removal of a glyphosate - based herbicide from water using ZnO Biocatal. Agric. Biotechnol., 22 (2019), p. 101434, 10.1016/j.bcab.2019.101434spa
dc.relation.referencesG. Pal, P. Rai, A. Pandey Green synthesis of nanoparticles: a greener approach for a cleaner future Green Synth. Charact. Appl. Nanoparticles, Elsevier Inc. (2019), pp. 1-26, 10.1016/b978-0-08-102579-6.00001-0spa
dc.relation.referencesJ. Peternela, M.F. Silva, M.F. Vieira, R. Bergamasco, A.M.S. Vieira Synthesis and impregnation of copper oxide nanoparticles on activated carbon through green synthesis for water pollutant removal Mater. Res., 21 (2018), Article e20160460, 10.1590/1980-5373-MR-2016-0460%0ASynthesisspa
dc.relation.referencesV.N. Popov Carbon nanotubes: properties and application Mater. Sci. Eng. Reports., 43 (2004), pp. 61-102, 10.1016/j.mser.2003.10.001spa
dc.relation.referencesS.M. Pourmortazavi, M. Taghdiri, V. Makari, M. Rahimi-Nasrabadi Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 136 (2015), pp. 1249-1254, 10.1016/j.saa.2014.10.010spa
dc.relation.referencesC. Ramesh, M. Hariprasad, V. Ragunathan Effect of Arachis hypogaea L . Leaf extract on barfoed's solution; green synthesis of Cu2O nanoparticles and its antibacterial effect Curr. Nanosci., 7 (2011), pp. 995-999, 10.2174/157341311798220781spa
dc.relation.referencesL. Ramrakhiani, S. Ghosh, A.K. Mandal, S. Majumdar Utilization of multi-metal laden spent biosorbent for removal of glyphosate herbicide from aqueous solution and its mechanism elucidation Chem. Eng. J., 361 (2019), pp. 1063-1077, 10.1016/j.cej.2018.12.163spa
dc.relation.referencesJ.M. Salman, F.M. Abid Preparation of mesoporous activated carbon from palm-date pits: optimization study on removal of bentazon, carbofuran, and 2,4-D using response surface methodology Water Sci. Technol., 68 (2013), pp. 1503-1512, 10.2166/wst.2013.370spa
dc.relation.referencesL. Samuel, R. Wang, G. Dubois, R. Allen, R. Wojtecki, Y.-H. La Amine-functionalized, multi-arm star polymers: a novel platform for removing glyphosate from aqueous media Chemosphere, 169 (2017), pp. 437-442, 10.1016/j.chemosphere.2016.11.049spa
dc.relation.referencesK. Sen, N.K. Mondal, S. Chattoraj, J.K. Datta Statistical optimization study of adsorption parameters for the removal of glyphosate on forest soil using the response surface methodology Environ. Earth Sci., 76 (2017), pp. 1-15, 10.1007/s12665-016-6333-7spa
dc.relation.referencesA. Shaji, A.K. Zachariah Surface area analysis of nanomaterials Therm. Rheol. Meas. Tech. Nanomater. Charact., Elsevier Inc. (2017), pp. 197-231, 10.1016/B978-0-323-46139-9.00009-8spa
dc.relation.referencesM. Shanmugavadivu, S. Kuppusamy, R. Ranjithkumar Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity Am. J. Adv. Drug Deliv., 2 (2014), pp. 174-182spa
dc.relation.referencesD.A. Shirley High-resolution X-ray photoemission spectrum of the valence bands ofGold~ Phys. Rev. B, 5 (1972), pp. 4709-4714spa
dc.relation.referencesK.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure Appl. Chem., 57 (1985), pp. 603-619, 10.1515/iupac.57.0007spa
dc.relation.referencesG. Singer, P. Siedlaczek, G. Sinn, H. Rennhofer, M. Mič, M. Omastov, M.M. Unterlass, J. Wendrinsky, V. Milotti Acid Free Oxidation and Simple Dispersion Method of MWCNT for High-Performance CFRP (2018), pp. 1-18, 10.3390/nano8110912spa
dc.relation.referencesL. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, J. Judek Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods J. Alloys Compd., 501 (2010), pp. 77-84, 10.1016/j.jallcom.2010.04.032spa
dc.relation.referencesI. Subhankari, P.L. Nayak Synthesis of copper nanoparticles using syzygium aromaticum (cloves) aqueous extract by using green chemistry World J. Nano Sci. Technol., 2 (2013), pp. 14-17, 10.5829/idosi.wjnst.2013.2.1.21134spa
dc.relation.referencesM. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem., 87 (2015), pp. 1051-1069, 10.1515/pac-2014-1117spa
dc.relation.referencesF.V. Ferreira, W. Franceschi, B.R.C. Menezes, A.F. Biagioni, A.R. Coutinho, L.S. Cividanes Synthesis, characterization, and applications of carbon nanotubes Carbon-Based Nanofillers and Their Rubber Nanocomposites (2019), pp. 1-45, 10.1016/B978-0-12-813248-7.00001-8%0A©spa
dc.relation.referencesL. Vanyorek, Á. Prekob, V. Hajdu, G. Muránszky, B. Fiser, E. Sikora, F. Kristály, B. Viskolcz Ultrasonic cavitation assisted deposition of catalytically active metals on nitrogen-doped and non-doped carbon nanotubes - a comparative study J. Mater. Res. Technol. (2020), pp. 1-9, 10.1016/j.jmrt.2020.02.054spa
dc.relation.referencesB. Verma, C. Balomajumder Surface modification of one-dimensional Carbon Nanotubes: a review for the management of heavy metals in wastewater Environ. Technol. Innov., 17 (2020), p. 100596, 10.1016/j.eti.2019.100596spa
dc.relation.referencesS. Vivekanandhan, M. Venkateswarlu, D. Carnahan, M. Misra, A.K. Mohanty, N. Satyanarayana Functionalization of single-walled carbon nanotubes with silver nanoparticles using Tecoma stans leaf extract Phys. E., 44 (2012), pp. 1725-1729, 10.1016/j.physe.2011.10.013spa
dc.relation.referencesT. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution J. Clean. Prod., 83 (2014), pp. 413-419, 10.1016/j.jclepro.2014.07.006spa
dc.relation.referencesT. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater Sci. Total Environ. (2014), pp. 466-467, 10.1016/j.scitotenv.2013.07.022 210–213spa
dc.relation.referencesWorld Health Organization (Who) Environmental Health Criteria 159: Glyphosate (1994), p. 178 https://apps.who.int/iris/bitstream/handle/10665/40044/9241571594-eng.pdf?sequence=1&isAllowed=y, Accessed 15th Jan 2021spa
dc.relation.referencesB. Wouters, X. Sheng, A. Boschin, T. Breugelmans, E. Ahlberg, I.F.J. Vankelecom, P.P. Pescarmona, A. Hubin The electrocatalytic behaviour of Pt and Cu nanoparticles supported on carbon nanotubes for the nitrobenzene reduction in ethanol Electrochim. Acta, 111 (2013), pp. 405-410, 10.1016/j.electacta.2013.07.210spa
dc.relation.referencesG. Xiao, R. Wen Comparative adsorption of glyphosate from aqueous solution by 2-aminopyridine modified polystyrene resin, D301 resin and 330 resin: influencing factors, salinity resistance and mechanism Fluid Phase Equil., 411 (2016), pp. 1-6, 10.1016/j.fluid.2015.11.026spa
dc.relation.referencesN.U. Yamaguchi, R. Bergamasco, S. Hamoudi Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water Chem. Eng. J., 295 (2016), pp. 391-402, 10.1016/j.cej.2016.03.051spa
dc.relation.referencesS. Yurdakal, C. Garlisi, O. Levent, M. Bellardita, G. Palmisano (Photo)catalyst characterization techniques: adsorption isotherms and BET, SEM, FTIR, UV-vis, photoluminescence, and electrochemical, characterizations Heterog. Photocatal. (2019), pp. 87-152, 10.1016/B978-0-444-64015-4.00004-3spa
dc.relation.referencesS. Zavareh, Z. Farrokhzad, F. Darvishi Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water Ecotoxicol. Environ. Saf., 155 (2018), pp. 1-8, 10.1016/j.ecoenv.2018.02.043spa
dc.relation.referencesC.R. Zhou, G.P. Li, D.G. Jiang Fluid Phase Equilibria Study on behavior of alkalescent fiber FFA-1 adsorbing glyphosate from production wastewater of glyphosate Fluid Phase Equil., 362 (2014), pp. 69-73, 10.1016/j.fluid.2013.09.00spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International