Show simple item record

dc.creatorCoronado-Hernández, Oscar E.
dc.creatorDerpich, Ivan
dc.creatorFuertes-Miquel, Vicente S.
dc.creatorCoronado-Hernandez, Jairo R.
dc.creatorGustavo, Gatica
dc.description.abstractThe study of draining processes without admitting air has been conducted using only steady friction formulations in the implementation of governing equations. However, this hydraulic event involves transitions from laminar to turbulent flow, and vice versa, because of the changes in water velocity. In this sense, this research improves the current mathematical model considering unsteady friction models. An experimental facility composed by a 4.36 m long methacrylate pipe was configured, and measurements of air pocket pressure oscillations were recorded. The mathematical model was performed using steady and unsteady friction models. Comparisons between measured and computed air pocket pressure patterns indicated that unsteady friction models slightly improve the results compared to steady friction
dc.rightsCC0 1.0 Universal*
dc.subjectair pocketspa
dc.subjectdraining processspa
dc.subjectfriction factorspa
dc.subjecttransient flowspa
dc.titleAssessment of steady and unsteady friction models in the draining processes of hydraulic installationsspa
dcterms.references1. Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Mora-Melia, D.; Iglesias-Rey, P.L. Hydraulic Modeling during Filling and Emptying Processes in Pressurized Pipelines: A Literature Review. Urban Water J. 2019, 16, 299–
dcterms.references2. Vasconcelos, J.G.; Klaver, P.R.; Lautenbach, D.J. Flow Regime Transition Simulation Incorporating Entrapped Air Pocket Effects. Urban Water J. 2015, 6, 488–
dcterms.references3. Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Iglesias-Rey, P.L.; Mora-Melia, D. Transient Phenomena during the Emptying Process of a Single Pipe with Water-Air Interaction. J. Hydraul. Res. 2019, 57, 318–
dcterms.references4. Zhou, L.; Liu, D. Experimental Investigation of Entrapped Air Pocket in a Partially Full Water Pipe. J. Hydraul. Res. 2013, 51, 469–
dcterms.references5. Coronado-Hernández, Ó.E.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of a Commercial Air Valve on the Rapid Filling of a Single Pipeline: A Numerical and Experimental Analysis. Water 2019, 11,
dcterms.references6. Tijsseling, A.; Hou, Q.; Bozkus, Z.; Laanearu, J. Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. J. Press. Vessel Technol. 2016, 138,
dcterms.references7. Zhou, L.; Cao, Y.; Karney, B.; Vasconcelos, J.G.; Liu, D.; Wang, P. Unsteady friction in transient vertical-pipe flow with trapped air. J. Hydraul. Res.
dcterms.references8. Vasconcelos, J.G.; Leite, G.M. Pressure Surges Following Sudden Air Pocket Entrapment in Storm-Water Tunnels. J. Hydraul. Eng. 2012, 138,
dcterms.references9. Izquierdo, J.; Fuertes, V.S.; Cabrera, E.; Iglesias, P.; García-Serra, J. Pipeline start-up with entrapped air. J. Hydraul. Res. 1999, 37, 579–
dcterms.references10. Laanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vuˇckoviˇc, S.; Hou, Q.; van’t Westende, J.M.C. Emptying of Large-Scale Pipeline by Pressurized Air. J. Hydraul. Eng. 2012, 138, 1090–
dcterms.references11. Laanearu, J.; Annus, I.; Sergejeva, M.; Koppel, T. Semi-empirical method for estimation of energy losses in a large-scale Pipeline. Procedia Eng. 2014, 70, 969–
dcterms.references12. Coronado-Hernández, Ó.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket. Urban Water J. 2018, 15, 346–
dcterms.references13. Colebrook, C.F. Turbulent Flow in Pipes, with Particular Reference to the Transition Region between the Smooth and Rough Pipe Laws. J. Inst. Civ. Eng. 1939, 11, 133–
dcterms.references14. Moody, L.F. Friction Factors for Pipe Flow. Trans. Am. Soc. Mech. Eng. 1994, 66, 671–
dcterms.references15. Wood, D.J. An Explicit Friction Factor Relationship. Civ. Eng. Am. Soc. Civ. Eng. 1972, 383–
dcterms.references16. Travis, Q.; Mays, L.W. Relationship between Hazen–William and Colebrook–White Roughness Values. J. Hydraul. Eng. 2007, 133,
dcterms.references17. Swamee, D.K.; Jain, A.K. Explicit Equations for Pipe Flow Problems. J. Hydraul. Div. 1976, 102, 657–
dcterms.references18. Brunone, B.; Golia, U.M.; Greco, M. Some remarks on the momentum equation for fast transients. In Meeting on Hydraulic Transients with Column Separation; 9th Round Table; IAHR: Valencia, Spain, 1991; pp. 140–
dcterms.references19. Brunone, B.; Karney, B.W.; Mecarelli, M.; Ferrante, M. Velocity profiles and unsteady pipe friction in transient flow. J. Water Res. Plan. Manag. 2000, 126, 236–
dcterms.references20. Wylie, E.; Streeter, V. Fluid Transients in Systems; Prentice Hall: Englewood Cliffs, NJ, USA,
dcterms.references21. Chaudhry, M.H. Applied Hydraulic Transients, 3rd ed.; Springer: New York, NY, USA,
dcterms.references22. Coronado-Hernández, Ó.E.; Fuertes-Miquel, V.S.; Iglesias-Rey, P.L.; Martínez-Solano, F.J. Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air. J. Hydraul. Eng. 2018, 144,
dcterms.references23. American Water Works Association (AWWA). Manual of Water Supply Practices-M51: Air-Release, Air-Vacuum, and Combination Air Valves, 1st ed.; American Water Works Association: Denver, CO, USA,
dcterms.references24. Ramezani, L.; Karney, B.; Malekpour, A. Encouraging Effective Air Management in Water Pipelines: A Critical Review. J. Water Resour. Plan. Manag. 2016, 142,

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal