Show simple item record

dc.creatorCoronado-Hernández, Oscar E.
dc.creatorDerpich, Ivan
dc.creatorFuertes-Miquel, Vicente S.
dc.creatorCoronado-Hernandez, Jairo R.
dc.creatorGustavo, Gatica
dc.date.accessioned2021-08-19T15:08:47Z
dc.date.available2021-08-19T15:08:47Z
dc.date.issued2021-07
dc.identifier.issn2073-4441
dc.identifier.urihttps://hdl.handle.net/11323/8552
dc.description.abstractThe study of draining processes without admitting air has been conducted using only steady friction formulations in the implementation of governing equations. However, this hydraulic event involves transitions from laminar to turbulent flow, and vice versa, because of the changes in water velocity. In this sense, this research improves the current mathematical model considering unsteady friction models. An experimental facility composed by a 4.36 m long methacrylate pipe was configured, and measurements of air pocket pressure oscillations were recorded. The mathematical model was performed using steady and unsteady friction models. Comparisons between measured and computed air pocket pressure patterns indicated that unsteady friction models slightly improve the results compared to steady friction models.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherWATERspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourcehttps://ezproxy.cuc.edu.co:2080/wos/woscc/full-record/WOS:000676999600001spa
dc.subjectair pocketspa
dc.subjectdraining processspa
dc.subjectfriction factorspa
dc.subjecttransient flowspa
dc.subjectunsteadyspa
dc.titleAssessment of steady and unsteady friction models in the draining processes of hydraulic installationsspa
dc.typearticlespa
dcterms.references1. Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Mora-Melia, D.; Iglesias-Rey, P.L. Hydraulic Modeling during Filling and Emptying Processes in Pressurized Pipelines: A Literature Review. Urban Water J. 2019, 16, 299–311.spa
dcterms.references2. Vasconcelos, J.G.; Klaver, P.R.; Lautenbach, D.J. Flow Regime Transition Simulation Incorporating Entrapped Air Pocket Effects. Urban Water J. 2015, 6, 488–501.spa
dcterms.references3. Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Iglesias-Rey, P.L.; Mora-Melia, D. Transient Phenomena during the Emptying Process of a Single Pipe with Water-Air Interaction. J. Hydraul. Res. 2019, 57, 318–326.spa
dcterms.references4. Zhou, L.; Liu, D. Experimental Investigation of Entrapped Air Pocket in a Partially Full Water Pipe. J. Hydraul. Res. 2013, 51, 469–474.spa
dcterms.references5. Coronado-Hernández, Ó.E.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of a Commercial Air Valve on the Rapid Filling of a Single Pipeline: A Numerical and Experimental Analysis. Water 2019, 11, 1814.spa
dcterms.references6. Tijsseling, A.; Hou, Q.; Bozkus, Z.; Laanearu, J. Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. J. Press. Vessel Technol. 2016, 138, 031301.spa
dcterms.references7. Zhou, L.; Cao, Y.; Karney, B.; Vasconcelos, J.G.; Liu, D.; Wang, P. Unsteady friction in transient vertical-pipe flow with trapped air. J. Hydraul. Res. 2020.spa
dcterms.references8. Vasconcelos, J.G.; Leite, G.M. Pressure Surges Following Sudden Air Pocket Entrapment in Storm-Water Tunnels. J. Hydraul. Eng. 2012, 138, 12.spa
dcterms.references9. Izquierdo, J.; Fuertes, V.S.; Cabrera, E.; Iglesias, P.; García-Serra, J. Pipeline start-up with entrapped air. J. Hydraul. Res. 1999, 37, 579–590.spa
dcterms.references10. Laanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vuˇckoviˇc, S.; Hou, Q.; van’t Westende, J.M.C. Emptying of Large-Scale Pipeline by Pressurized Air. J. Hydraul. Eng. 2012, 138, 1090–1100.spa
dcterms.references11. Laanearu, J.; Annus, I.; Sergejeva, M.; Koppel, T. Semi-empirical method for estimation of energy losses in a large-scale Pipeline. Procedia Eng. 2014, 70, 969–977.spa
dcterms.references12. Coronado-Hernández, Ó.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket. Urban Water J. 2018, 15, 346–352.spa
dcterms.references13. Colebrook, C.F. Turbulent Flow in Pipes, with Particular Reference to the Transition Region between the Smooth and Rough Pipe Laws. J. Inst. Civ. Eng. 1939, 11, 133–156.spa
dcterms.references14. Moody, L.F. Friction Factors for Pipe Flow. Trans. Am. Soc. Mech. Eng. 1994, 66, 671–684.spa
dcterms.references15. Wood, D.J. An Explicit Friction Factor Relationship. Civ. Eng. Am. Soc. Civ. Eng. 1972, 383–390.spa
dcterms.references16. Travis, Q.; Mays, L.W. Relationship between Hazen–William and Colebrook–White Roughness Values. J. Hydraul. Eng. 2007, 133, 11.spa
dcterms.references17. Swamee, D.K.; Jain, A.K. Explicit Equations for Pipe Flow Problems. J. Hydraul. Div. 1976, 102, 657–664.spa
dcterms.references18. Brunone, B.; Golia, U.M.; Greco, M. Some remarks on the momentum equation for fast transients. In Meeting on Hydraulic Transients with Column Separation; 9th Round Table; IAHR: Valencia, Spain, 1991; pp. 140–148.spa
dcterms.references19. Brunone, B.; Karney, B.W.; Mecarelli, M.; Ferrante, M. Velocity profiles and unsteady pipe friction in transient flow. J. Water Res. Plan. Manag. 2000, 126, 236–244.spa
dcterms.references20. Wylie, E.; Streeter, V. Fluid Transients in Systems; Prentice Hall: Englewood Cliffs, NJ, USA, 1993.spa
dcterms.references21. Chaudhry, M.H. Applied Hydraulic Transients, 3rd ed.; Springer: New York, NY, USA, 2014.spa
dcterms.references22. Coronado-Hernández, Ó.E.; Fuertes-Miquel, V.S.; Iglesias-Rey, P.L.; Martínez-Solano, F.J. Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air. J. Hydraul. Eng. 2018, 144, 06018004.spa
dcterms.references23. American Water Works Association (AWWA). Manual of Water Supply Practices-M51: Air-Release, Air-Vacuum, and Combination Air Valves, 1st ed.; American Water Works Association: Denver, CO, USA, 2001.spa
dcterms.references24. Ramezani, L.; Karney, B.; Malekpour, A. Encouraging Effective Air Management in Water Pipelines: A Critical Review. J. Water Resour. Plan. Manag. 2016, 142, 04016055.spa
dc.source.urlhttps://www.mdpi.com/2073-4441/13/14/1888spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.3390/w13141888
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal