Mostrar el registro sencillo del ítem

dc.contributor.authorS. Oliveira, Marcos L.spa
dc.contributor.authorNeckel, Alcindospa
dc.contributor.authorPinto, Dianaspa
dc.contributor.authorStolfo Maculan, Laérciospa
dc.contributor.authorDotto, Guilherme Luizspa
dc.contributor.authorO. Silva, Luis F.spa
dc.date.accessioned2021-08-19T15:42:47Z
dc.date.available2021-08-19T15:42:47Z
dc.date.issued2021
dc.identifier.issn22120955spa
dc.identifier.urihttps://hdl.handle.net/11323/8556spa
dc.description.abstractUrban centers concentrate high levels of atmospheric pollutants, sourced by vehicular traffic, public transit systems, industrial emissions and agricultural emissions. This leads to the accumulation of gases and particulate matter (PM) which contribute to the degradation of historic buildings. Considering the importance of preserving historic structures, this manuscript examines the analysis of dangerous elements on the facades of two historic, UNESCO listed sites in Bordeaux, France, Grosse Cloche and Cathédrale St-André, due to the multiple influences of atmospheric pollutants, responsible for the degradation of historic buildings, in addition to causing possible compromises to human health. A total of 48 samples of particulate matter were collected between June 2018 and May 2019 using self-made passive samplers (SMPSs). Sedimented dust samples were collected from the same locations at the same time, one collection during each of the 4 seasons of the year. Analyses of accumulated ultrafine particles (UFPs) and nanoparticles (NPs) were performed on the collected samples. The results detected the presence of more than 800 organic NPs with high levels of toxic elements. Of these, 78% were detected in samples obtained via SMPS and the others in sedimented dust. 60% were shown to have a diameter of less than 50 nm. The authors suggest restoring the sampled historical structures for the benefit of humanity, in addition to increasing the rigor of public policies to control the release of particulate matter.spa
dc.description.abstractLos centros urbanos concentran altos niveles de contaminantes atmosféricos, provenientes del tráfico vehicular, los sistemas de transporte público, las emisiones industriales y las emisiones agrícolas. Esto conduce a la acumulación de gases y material particulado (PM) que contribuyen a la degradación de los edificios históricos. Teniendo en cuenta la importancia de preservar las estructuras históricas, este manuscrito examina el análisis de elementos peligrosos en las fachadas de dos sitios históricos, incluidos en la lista de la UNESCO en Burdeos, Francia, Grosse Cloche y Cathédrale St-André, debido a las múltiples influencias de los contaminantes atmosféricos, responsables de la degradación de edificios históricos, además de provocar posibles compromisos para la salud humana. Se recolectaron un total de 48 muestras de material particulado entre junio de 2018 y mayo de 2019 utilizando muestreadores pasivos de fabricación propia (SMPS). Se recolectaron muestras de polvo sedimentado de los mismos lugares al mismo tiempo, una recolección durante cada una de las 4 estaciones del año. Se realizaron análisis de partículas ultrafinas acumuladas (UFP) y nanopartículas (NP) en las muestras recolectadas. Los resultados detectaron la presencia de más de 800 NP orgánicas con altos niveles de elementos tóxicos. De estos, el 78% se detectó en muestras obtenidas vía SMPS y el resto en polvo sedimentado. Se demostró que el 60% tenía un diámetro de menos de 50 nm. Los autores sugieren restaurar las estructuras históricas muestreadas en beneficio de la humanidad, además de incrementar el rigor de las políticas públicas para controlar la liberación de material particulado.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherUrban Climatespa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectAtmospheric pollutionspa
dc.subjectDangerous elementsspa
dc.subjectHistoric buildingsspa
dc.subjectHuman healthspa
dc.subjectNanoparticlesspa
dc.subjectContaminación atmosféricaspa
dc.subjectElementos peligrososspa
dc.subjectEdificios históricosspa
dc.subjectSalud humanaspa
dc.subjectNanopartículasspa
dc.titleThe impact of air pollutants on the degradation of two historic buildings in Bordeaux, Francespa
dc.typeArtículo de revistaspa
dc.source.urlhttps://ezproxy.cuc.edu.co:2062/science/article/pii/S2212095521001577?via%3Dihub#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doi10.1016/j.uclim.2021.100927spa
dc.date.embargoEnd2022-07-14
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAhmad, F., Draz, M.U., Su, L., Rauf, A., 2019. Taking the bad with the good: the nexus between tourism and environmental degradation in the lower middle-income southeast Asian economies. J. Clean. Prod. 233, 1240–1249. https://doi.org/10.1016/j.jclepro.2019.06.138spa
dc.relation.referencesAl-Thawadi, F.E., Weldu, Y.W., Al-Ghamdi, S.G., 2020. Sustainable urban transportation approaches: life-cycle assessment perspective of passenger transport modes in Qatar. Transp. Res. Proc. 48 (2056–2062), 2020. https://doi.org/10.1016/j.trpro.2020.08.265.spa
dc.relation.referencesAmato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmosph. Enviro. 43 (9), 1650–1659. https://doi.org/10.1016/j.atmosenv.2008.12.009.spa
dc.relation.referencesAmato, F., Pandolfi, M., Moreno, T., Furger, M., Pey, J., Alastuey, A., Bukowiecki, N., Prevot, A.S.H., Baltensperger, U., Querol, X., 2011. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 45 (37), 6777–6787. https://doi.org/10.1016/j.atmosenv.2011.06.003.spa
dc.relation.referencesAudurier-Cros, A., 1982. Air pollution control in industrial and urban areas and air quality evaluation in 1980 (Fos-Etang de Berre, France). Energy Build. 4 (1), 15–21. https://doi.org/10.1016/0378-7788(82)90015-9.spa
dc.relation.referencesBentayeb, M., Stempfelet, M., Wagner, V., Zins, M., Bonenfant, S., Songeur, C., Sanchez, O., Rosso, A., Brulfert, G., Rios, I., 2014. Retrospective modeling outdoor air pollution at a fine spatial scale in France, 1989-2008. Atmos. Environ. 92, 267–279. https://doi.org/10.1016/j.atmosenv.2014.04.019.spa
dc.relation.referencesBessa, M.J., Brandao, ˜ F., Viana, M., Gomes, J.F., Monfort, E., Cassee, F.R., Fraga, S., Teixeira, J.P., 2020. Nanoparticle exposure and hazard in the ceramic industry: an overview of potential sources, toxicity and health effects. Environ. Res. 184, 109297. https://doi.org/10.1016/j.envres.2020.109297.spa
dc.relation.referencesBoivin, M., Tanguay, G.A., 2019. Analysis of the determinants of urban tourism attractiveness: the case of Qu´ebec city and Bordeaux. J. Destin. Mark. Manag. 11, 67–79. https://doi.org/10.1016/j.jdmm.2018.11.002.spa
dc.relation.referencesBrodny, J., Tutak, M., 2021. The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod. 279, 123641. https://doi.org/10.1016/j.jclepro.2020.123641.spa
dc.relation.referencesBrodusch, N., Zaghib, K., Gauvin, R., 2020. Improvement of the energy resolution of energy dispersive spectrometers (EDS) using Richardson–Lucy deconvolution. Ultramicroscopy 209, 112886. https://doi.org/10.1016/j.ultramic.2019.112886.spa
dc.relation.referencesBTC, 2021. Bordeuax Dossier De Presse. Bordeaux, France. bordeaux-tourisme.com/sites/bordeaux_tourisme/files/parcours/pdf/2021-02/Bordeaux_DP_2021.pdf (Accessed 10 February 2021)spa
dc.relation.referencesCao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., Sun, C., He, B., Wei, F., 2014. Health risks from the exposure of children to as, se, Pb and other heavy metals near the largest coking plant in China. Sci. Total Environ. 472, 1001–1009. https://doi.org/10.1016/j.scitotenv.2013.11.124.spa
dc.relation.referencesChen, X., Wilke, C.M., Gaillard, J.F., Gray, K.A., 2020. Combined toxicity of nano-CuO/nano-TiO2 and CuSO4/nano-TiO2 on Escherichia coli in aquatic environments under dark and light conditions. Nanoimpact 19, 100250. https://doi.org/10.1016/j.impact.2020.100250spa
dc.relation.referencesComite, V., Pozo-Antonio, J.S., Cardell, C., Randazzo, L., Larussa, M.F., Fermo, P., 2020. A multi-analytical approach for the characterization of black crusts on the facade of an historical cathedral. Microchem. J. 158, 105121-1. https://doi.org/10.1016/j.microc.2020.105121spa
dc.relation.referencesD’arco, M., Lopresti, L., Marino, V., Maggiore, G., 2021. Is sustainable tourism a goal that came true? The Italian experience of the Cilento and Vallo di Diano National Park. Land Use Policy 101, 105198. https://doi.org/10.1016/j.landusepol.2020.105198.spa
dc.relation.referencesDemir, E., Gozgor, G., Paramati, S.R., 2020. To what extend economic uncertainty effects tourism investments? Evidence from OECD and non-OECD economies. Tour. Manag. Perspect. 36, 100758. https://doi.org/10.1016/j.tmp.2020.100758.spa
dc.relation.referencesErnould, C., Beausir, B., Fundenberger, J.J., Taupin, V., Bouzy, E., 2020. Characterization at high spatial and angular resolutions of deformed nanostructures by onaxis HR-TKD. Scr. Mater. 185, 30–35. https://doi.org/10.1016/j.scriptamat.2020.04.005.spa
dc.relation.referencesGallego-Cartagena, E., Morillas, H., Maguregui, M., Patino-Camelo, ˜ K., Marcaida, I., Morgado-Gamero, W., Silva, L.F.O., Madariaga, J.M., 2020. A comprehensive study of biofilms growing on the built heritage of a Caribbean industrial city in correlation with construction materials. Int. Biodeterior. Biodegradation 147, 104874. https://doi.org/10.1016/j.ibiod.2019.104874.spa
dc.relation.referencesGallet, Y., 2017. La construction d’une cath´edrale archi´episcopale. Parid: Place Victoires: Nu´es Bleue. 1 (7), 229–251.spa
dc.relation.referencesGarcía-Florentino, C., Maguregui, M., Carrero, J.A., Morillas, H., Arana, G., Madariaga, J.M., 2020. Development of a cost effective passive sampler to quantify the particulate matter depositions on building materials over time. J. Clean. Prod. 268, 122134. https://doi.org/10.1016/j.jclepro.2020.122134.spa
dc.relation.referencesHamza, R.Z., El-Aziz, S.A.A., Said, A.A., Khairy, M.H., Mahmoud, S.H., Habib, W.A., El-Shenawy, N.S., 2021. Improving the efficacy of garlic extract in African catfish against copper sulfate-induced immunological and histological effects. Reg. Stud. Mar. Sci. 41, 101579. https://doi.org/10.1016/j.rsma.2020.101579.spa
dc.relation.referencesHatđr, M.E., 2020. Determining the weathering classification of stone cultural heritage via the analytic hierarchy process and fuzzy inference system. J. Cult. Herit. 44, 120–134. https://doi.org/10.1016/j.culher.2020.02.011.spa
dc.relation.referencesHerrera, L.K., Videla, H.A., 2009. Surface analysis and materials characterization for the study of biodeterioration and weathering effects on cultural property. Int. Biodeterior. Biodegradation 63 (7), 813–822. https://doi.org/10.1016/j.ibiod.2009.05.002.spa
dc.relation.referencesHodoroaba, V.D., 2020. Energy-dispersive X-ray spectroscopy (EDS). Charact. Nanopart. 397–417. https://doi.org/10.1016/b978-0-12-814182-3.00021-3.spa
dc.relation.referencesHoward, J., Weyhrauch, J., Loriaux, G., Schultz, B., Baskaran, M., 2019. Contributions of artifactual materials to the toxicity of anthropogenic soils and street dusts in a highly urbanized terrain. Environ. Pollut. 255, 113350. https://doi.org/10.1016/j.envpol.2019.113350.spa
dc.relation.referencesInsse, 2021. R´egions, D´epartemensts et Villes D´eletott França. https://www.insee.fr/fr/statistique (Accessed 14 February 2021).spa
dc.relation.referencesIrshad, M.K., Noman, A., Alhaithloul, H.A.S., Adeel, M., Rui, Y., Shah, T., Zhu, S., Shang, J., 2020. Goethite-modified biochar ameliorates the growth of rice (Oryza Sativa L.) plants by suppressing cd and as-induced oxidative stress in Cd And As co-contaminated paddy soil. Sci. Total Environ. 717, 137086. https://doi.org/ 10.1016/j.scitotenv.2020.137086.spa
dc.relation.referencesKhajavi, M.Z., Mohammadi, R., Ahmadi, S., Farhoodi, M., Yousefi, M., 2019. Strategies for controlling release of plastic compounds into foodstuffs based on application of nanoparticles and its potential health issues. Trends Food Sci. Technol. 90, 1–12. https://doi.org/10.1016/j.tifs.2019.05.009.spa
dc.relation.referencesLima, B.D., Teixeira, E.C., Hower, J.C., Civeira, M.S., Ramírez, O., Yang, C.X., Oliveira, M.L.S., Silva, L.F.O., 2021. Metal-enriched nanoparticles and black carbon: a perspective from the Brazil railway system air pollution. Geosci. Front. 12 (3), 101129. Elsevier BV. https://doi.org/10.1016/j.gsf.2020.12.010.spa
dc.relation.referencesLiu, D., Guo, X., Xiao, B., 2019. What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Sci. Total Environ. 661, 750–766. https://doi. org/10.1016/j.scitotenv.2019.01.197.spa
dc.relation.referencesMallea, M.E., Iginiz, ˜ L.E., de Diego, M.L.G., 2018. Passive hygrothermal behaviour and indoor comfort concerning the construction evolution of the traditional Basque architectural model. Lea valley case study. Build. Environ. 143, 496–512. https://doi.org/10.1016/j.buildenv.2018.06.041.spa
dc.relation.referencesMorillas, H., de Mendonça, F.F.F., Derluyn, H., Maguregui, M., Gr´egoire, D., Madariaga, J.M., 2020. Decay processes in buildings close to the sea induced by marine aerosol: salt depositions inside construction materials. Sci. Total Environ. 721, 1–9. https://doi.org/10.1016/j.scitotenv.2020.137687.spa
dc.relation.referencesNeckel, A., da Silva, J.L., Saraiva, P.P., Kujawa, H.A., Araldi, J., Paladini, E.P., 2020. Estimation of the economic value of urban parks in Brazil, the case of the City of Passo Fundo. J. Clean. Prod. 264, 121369. https://doi.org/10.1016/j.jclepro.2020.121369.spa
dc.relation.referencesNeckel, A., Korcelski, C., Kujawa, H.A., da Silva, I.S., Prezoto, F., Amorin, A.L.W., Maculan, L.S., Gonçalves, A.C., Bodah, E.T., Bodah, B.W., Dotto, G.L., Silva, L.F.O., 2021. Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. Chemosphere 262, 128248. https://doi.org/10.1016/j. chemosphere.2020.128248spa
dc.relation.referencesNeelamegan, H., Yang, D.K., Lee, G.J., Anandan, S., Wu, J.J., 2020. Synthesis of magnetite nanoparticles anchored cellulose and lignin-based carbon nanotube composites for rapid oil spill cleanup. Mat. Today Commun. 22, 100746. https://doi.org/10.1016/j.mtcomm.2019.100746.spa
dc.relation.referencesOliveira, M.L.S., Flores, E.M.M., Dotto, G.L., Neckel, A., Silva, L.F.O., 2021a. Nanomineralogy of mortars and ceramics from the forum of Caesar and Nerva (Rome, Italy): the protagonist of black crusts produced on historic buildings. J. Clean. Prod. 278, 123982. https://doi.org/10.1016/j.jclepro.2020.123982spa
dc.relation.referencesOliveira, M.L.S., Neckel, A., Silva, L.F.O., Dotto, G.L., Maculan, L.S., 2021b. Environmental aspects of the depreciation of the culturally significant wall of Cartagena de Indias – Colombia. Chemosphere 265, 129119. https://doi.org/10.1016/j.chemosphere.2020.129119spa
dc.relation.referencesOmrani, H., Omrani, B., Parmentier, B., Helbich, M., 2020. Spatio-temporal data on the air pollutant nitrogen dioxide derived from sentinel satellite for France. Data Brief 28, 105089. https://doi.org/10.1016/j.dib.2019.105089.spa
dc.relation.referencesOuyang, X., Wei, X., Li, Y., Wang, X.C., Klemeˇs, J.J., 2021. Impacts of urban land morphology on PM2.5 concentration in the urban agglomerations of China. J. Environ. Manag. 283, 112000. https://doi.org/10.1016/j.jenvman.2021.112000.spa
dc.relation.referencesPietrzak, O., Pietrzak, K., 2019. The role of railway in handling transport services of cities and agglomerations. Transp. Res. Proc. 39, 405–416. https://doi.org/ 10.1016/j.trpro.2019.06.043.spa
dc.relation.referencesPinto, J.A., Kumar, P., Alonso, M.F., Andre˜ ao, W.L., Pedruzzi, R., Espinosa, S.I., de Albuquerque, T.T.A., 2020. Kriging method application and traffic behavior profiles from local radar network database: a proposal to support traffic solutions and air pollution control strategies. Sustain. Cities Soc. 56, 102062. https://doi.org/ 10.1016/j.scs.2020.102062.spa
dc.relation.referencesQuimbayo-Duarte, J., Chemel, C., Staquet, C., Troude, F., Arduini, G., 2021. Drivers of severe air pollution events in a deep valley during wintertime: a case study from the Arve River valley, France. Atmos. Environ. 247, 118030. https://doi.org/10.1016/j.atmosenv.2020.118030.spa
dc.relation.referencesRajput, V., Minkina, T., Mazarji, M., Shende, S., Sushkova, S., Mandzhieva, S., Burachevskaya, M., Chaplygin, V., Singh, A., Jatav, H., 2020. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 65 (2), 137–143. https://doi.org/10.1016/j.aoas.2020.08.001.spa
dc.relation.referencesRamírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655. https://doi.org/10.1016/j.uclim.2020.100655spa
dc.relation.referencesRojas, J.C., Sanchez, ´ N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: environmental implications. Urban Clim. 27, 412–419. https://doi.org/10.1016/j.uclim.2018.12.011spa
dc.relation.referencesSaini, A., Harner, T., Chinnadhurai, S., Schuster, J.K., Yates, A., Sweetman, A., Aristizabal-Zuluaga, B.H., Jim´enez, B., Manzano, C.A., Gaga, E.O., 2020. GAPSmegacities: a new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air. Environ. Pollut. 267, 115416. https://doi.org/10.1016/j.envpol.2020.115416.spa
dc.relation.referencesSamara, C., Melfos, V., Kouras, A., Karali, E., Zacharopoulou, G., Kyranoudi, M., Papadopoulou, L., Pavlidou, E., 2020. Morphological and geochemical characterization of the particulate deposits and the black crust from the triumphal arch of Galerius in Thessaloniki, Greece: implications for deterioration assessment. Sci. Total Environ. 734, 139455. https://doi.org/10.1016/j.scitotenv.2020.139455.spa
dc.relation.referencesSilva, L.F.O., Pinto, D., Neckel, A., Dotto, G.L., Oliveira, M.L.S., 2020a. The impact of air pollution on the rate of degradation of the fortress of Florianopolis Island, Brazil. Chemosphere 251, 126838. https://doi.org/10.1016/j.chemosphere.2020.126838spa
dc.relation.referencesSilva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., 2020b. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 11 (6), 2053–2060. https://doi.org/10.1016/j.gsf.2020.07.003.spa
dc.relation.referencesSuzuki, A., Vettori, S., Giorgi, S., Carretti, E., Benedetto, F.D., Dei, L., Benvenuti, M., Moretti, S., Pecchioni, E., Costagliola, P., 2018. Laboratory study of the sulfation of carbonate stones through SWIR hyperspectral investigation. J. Cult. Herit. 32, 30–37. https://doi.org/10.1016/j.culher.2018.01.006.spa
dc.relation.referencesTrejos, E.M., Silva, L.F.O., Hower, J.C., de Flores, E.M.M., Gonz´ alez, C.M., Pachon, ´ J.E., Aristiz´ abal, B.H., 2021. Volcanic emissions and atmospheric pollution: a study of nanoparticles. Geosci. Front. 1–40. https://doi.org/10.1016/j.gsf.2020.08.013.spa
dc.relation.referencesTrueman, A.M., Fitzpatrick, R.W., Mosley, L.M., Mclaughlin, M.J., 2021. Exploring passivation-based treatments for jarosite from an acid sulfate soil. Chem. Geol. 561, 120034. https://doi.org/10.1016/j.chemgeo.2020.120034spa
dc.relation.referencesVannucci, P., Masi, F., Stefanou, I., 2019. A nonlinear approach to the wind strength of gothic cathedrals: the case of Notre dame of Paris. Eng. Struct. 183, 860–873. https://doi.org/10.1016/j.engstruct.2019.01.030.spa
dc.relation.referencesVidal, R.M., 2017. Evolution of construction techniques in the early gothic: comparative study of the Stereotomy of european sexpartite vaults using new measurement systems. J. Cult. Herit. 28, 99–108. https://doi.org/10.1016/j.culher.2017.05.005.spa
dc.relation.referencesWu, R., Zhao, X., Liu, Y., 2021. Atomic insights of cu nanoparticles melting and sintering behavior in Cu Cu direct bonding. Mater. Des. 197, 109240. https://doi.org/ 10.1016/j.matdes.2020.109240.spa
dc.relation.referencesXing, H., Gao, Z., Wang, H., Lei, Z., Ma, L., Qiu, W., 2019. Digital rotation moir´e method for strain measurement based on high-resolution transmission electron microscope lattice image. Opt. Lasers Eng. 122, 347–353. https://doi.org/10.1016/j.optlaseng.2019.06.013.spa
dc.relation.referencesYan-Zhe, W., Sheng, Z., Xun-Min, O., 2021. Development and application of a life cycle energy consumption and CO2 emissions analysis model for high-speed railway transport in China. Adv. Clim. Chang. Res. 1–10. https://doi.org/10.1016/j.accre.2021.02.001.spa
dc.relation.referencesZahmatkesh, I., Sheremet, M., Yang, L., Heris, S.Z., Sharifpur, M., Meyer, J.P., Ghalambaz, M., Wongwises, S., Jing, D., Mahian, O., 2020. Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: a critical review. J. Mol. Liq. 114430 https://doi.org/10.1016/j.molliq.2020.114430.spa
dc.relation.referencesZamberlan, D.C., Halmenschelager, P.T., Silva, L.F.O., da Rocha, J.B.T., 2020. Copper decreases associative learning and memory in Drosophila melanogaster. Sci. Total Environ. 710 https://doi.org/10.1016/j.scitotenv.2019.135306, 135306-1.spa
dc.title.translatedEl impacto de los contaminantes del aire en la degradación de dos edificios históricos en Burdeos, Franciaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal