Mostrar el registro sencillo del ítem

dc.contributor.authorRueda-Bayona, Juan Gabrielspa
dc.contributor.authorCabello Eras, Juan Joséspa
dc.contributor.authorSagastume, Alexisspa
dc.date.accessioned2021-08-23T13:31:27Z
dc.date.available2021-08-23T13:31:27Z
dc.date.issued2021-05-18
dc.identifier.issn2369-0739spa
dc.identifier.issn2369-0747spa
dc.identifier.urihttps://hdl.handle.net/11323/8574spa
dc.description.abstractThe limited availability of local climatological stations and the limitations to predict the wind speed (WS) accurately are significant barriers to the expansion of wind energy (WE) projects worldwide. A methodology to forecast accurately the WS at the local scale can be used to overcome these barriers. This study proposes a methodology to forecast the WS with high-resolution and long-term horizons, which combines a Fourier model and a nonlinear autoregressive network (NAR). Given the nonlinearities of the WS variations, a NAR model is used to forecast the WS based on the variability identified with the Fourier analysis. The NAR modelled successfully 1.7 years of windspeed with 3 hours of the time interval, what may be considered the longest forecasting horizon with high resolution at the moment.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceMathematical Modelling of Engineering Problemsspa
dc.subjectFourier analysisspa
dc.subjectNonlinear autoregressive networkspa
dc.subjectWind potentialspa
dc.subjectReanalysisspa
dc.subjectWind-speedspa
dc.titleModeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network modelspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.iieta.org/journals/mmep/paper/10.18280/mmep.080313spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.18280/mmep.080313spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] British Petroleum, Statistical review of world energy, 2017. https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/news-and insights/speeches/bp-statistical-review-of-world-energy2017-lamar-mckay.pdf.spa
dc.relation.references[2] IPCC, Climate Change 2014: Mitigation of climate change, 3. Cambridge University Press, 2014.spa
dc.relation.references[3] Sawin, K., Sverrisson, J., Seyboth, F., Adib, K., Murdock, R., Lins, H.E., Satzinger, C. (2017). Renewables 2017 Global Status Report.spa
dc.relation.references[4] International Energy Agency, Renewables 2017. Analysis and forecasts to 2022., 2017. https://www.iea.org/reports/renewables-2017.spa
dc.relation.references[5] Alkhalidi, M.A., Al-Dabbous, S.K., Neelamani, S., Aldashti, H.A. (2019). Wind energy potential at coastal and offshore locations in the state of Kuwait. Renewable Energy, 135: 529-539. https://doi.org/10.1016/j.renene.2018.12.039spa
dc.relation.references[6] Wiser, R., Bolinger, M., Heath, G., Keyser, D., Lantz, E., Macknick, J., Millstein, D. (2016). Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts. Applied Energy, 179: 146-158. https://doi.org/10.1016/j.apenergy.2016.06.123spa
dc.relation.references[7] Saidur, R., Rahim, N.A., Islam, M.R., Solangi, K.H. (2011). Environmental impact of wind energy. Renewable and Sustainable Energy Reviews, 15(5): 2423-2430. https://doi.org/10.1016/j.rser.2011.02.024.spa
dc.relation.references[8] Global Wind Energy Council, Global wind energy outlook 2016, 2016. https://gwec.net/global-windenergy-outlook-2016/.spa
dc.relation.references[9] Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., SilvaCasarín, R., Bastidas-Arteaga, E., Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220: 529-543. https://doi.org/10.1016/j.jclepro.2019.02.174spa
dc.relation.references[10] Perez-Arriaga, I.J. (2011). Managing large scale penetration of intermittent renewables. In MITEI Symposium on Managing Large-Scale Penetration of Intermittent Renewables, Cambridge/USA, 20(4): 2011.spa
dc.relation.references[11] Jiang, P., Li, C. (2018). Research and application of an innovative combined model based on a modified optimization algorithm for wind speed forecasting. Measurement, 124: 395-412. https://doi.org/10.1016/j.measurement.2018.04.014spa
dc.relation.references[12] Sweeney, C., Bessa, R.J., Browell, J., Pinson, P. (2020). The future of forecasting for renewable energy. Wiley Interdisciplinary Reviews: Energy and Environment, 9(2): e365. https://doi.org/10.1002/wene.365spa
dc.relation.references[13] Skittides, C., Früh, W.G. (2014). Wind forecasting using principal component analysis. Renewable Energy, 69: 365-374. https://doi.org/10.1016/j.renene.2014.03.068spa
dc.relation.references[14] Kavasseri, R.G., Seetharaman, K. (2009). Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy, 34(5): 1388-1393. https://doi.org/10.1016/j.renene.2008.09.006spa
dc.relation.references[15] Wang, J., Song, Y., Liu, F., Hou, R. (2016). Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models. Renewable and Sustainable Energy Reviews, 60: 960-981. https://doi.org/10.1016/j.rser.2016.01.114spa
dc.relation.references[16] Jaramillo, O.A., Borja, M.A. (2004). Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case. Renewable Energy, 29(10): 1613-1630. https://doi.org/10.1016/j.renene.2004.02.001spa
dc.relation.references[17] Segura-Heras, I., Escrivá-Escrivá, G., Alcázar-Ortega, M. (2011). Wind farm electrical power production model for load flow analysis. Renewable Energy, 36(3): 1008-1013. https://doi.org/10.1016/j.renene.2010.09.007spa
dc.relation.references[18] Wang, X., Guo, P., Huang, X. (2011). A review of wind power forecasting models. Energy procedia, 12: 770-778. https://doi.org/10.1016/j.egypro.2011.10.103spa
dc.relation.references[19] Zhang, Y., Wang, J., Wang, X. (2014). Review on probabilistic forecasting of wind power generation. Renewable and Sustainable Energy Reviews, 32: 255-270. https://doi.org/10.1016/j.rser.2014.01.033spa
dc.relation.references[20] Chang, W.Y. (2014). A literature review of wind forecasting methods. Journal of Power and Energy Engineering, 2(04): 161. https://doi.org/10.4236/jpee.2014.24023spa
dc.relation.references[21] Guo, W., Wu, G., Liang, B., Xu, T., Chen, X., Yang, Z., Jiang, M. (2016). The influence of surface wave on water exchange in the Bohai Sea. Continental Shelf Research, 118: 128-142. https://doi.org/10.1016/j.csr.2016.02.019spa
dc.relation.references[22] Fertig, E. (2019). Simulating subhourly variability of wind power output. Wind Energy, 22(10): 1275-1287. https://doi.org/10.1002/we.2354spa
dc.relation.references[23] Duran, M.J., Cros, D., Riquelme, J. (2007). Short-term wind power forecast based on ARX models. Journal of Energy Engineering, 133(3): 172-180. https://doi.org/10.1061/(ASCE)0733- 9402(2007)133:3(172)spa
dc.relation.references[24] Rueda-bayona, J.G., Cabello, J., Schneider, I. (2018). Wind-speed modelling using fourier analysis and nonlinear autoregressive neural network (NAR). In: F. Giannetti, B.F.; Almeida, C.M.V.B.; Agostinho (Ed.), Adv. Clean. Prod. Proc. 7th Int. Work., Barranquilla, pp. 1-198. http://www.advancesincleanerproduction.net/7th/files/se ssoes/6A/8/rueda-bayona_et_al_abstract.pdf (accessed April 8, 2020).spa
dc.relation.references[25] Eras, J.J.C. (2019). A look to the electricity generation from non-conventional renewable energy sources in Colombia. Int. J. Energy Econ. Policy. 9: 15-25. https://doi.org/10.32479/ijeep.7108spa
dc.relation.references[26] NOAA, NCEP North American Regional Reanalysis: NARR, (2016). http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html, accessed on Jan. 5, 2016.spa
dc.relation.references[27] Soman, S.S., Zareipour, H., Malik, O., Mandal, P. (2010). A review of wind power and wind speed forecasting methods with different time horizons. In North American Power Symposium 2010: 1-8. https://doi.org/10.1109/NAPS.2010.5619586spa
dc.relation.references[28] Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., Feitosa, E. (2008). A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews, 12(6): 1725-1744. https://doi.org/10.1016/j.rser.2007.01.015spa
dc.relation.references[29] Liu, H., Duan, Z., Wu, H., Li, Y., Dong, S. (2019). Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network. Measurement, 148: 106971. https://doi.org/10.1016/j.measurement.2019.106971spa
dc.relation.references[30] Wang, H.Z., Li, G.Q., Wang, G.B., Peng, J.C., Jiang, H., Liu, Y.T. (2017). Deep learning based ensemble approach for probabilistic wind power forecasting. Applied Energy, 188: 56-70. https://doi.org/10.1016/j.apenergy.2016.11.111spa
dc.relation.references[31] Carvalho, D., Rocha, A., Santos, C.S., Pereira, R. (2013). Wind resource modelling in complex terrain using different mesoscale-microscale coupling techniques. Applied Energy, 108: 493-504. https://doi.org/10.1016/j.apenergy.2013.03.074spa
dc.relation.references[32] Kotroni, V., Lagouvardos, K., Lykoudis, S. (2014). High-resolution model-based wind atlas for Greece. Renewable and Sustainable Energy Reviews, 30: 479-489. https://doi.org/10.1016/j.rser.2013.10.016spa
dc.relation.references[33] Han, Q., Ma, S., Wang, T., Chu, F. (2019). Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China. Renewable and Sustainable Energy Reviews, 115: 109387. https://doi.org/10.1016/j.rser.2019.109387spa
dc.relation.references[34] Masseran, N. (2016). Modeling the fluctuations of wind speed data by considering their mean and volatility effects. Renewable and Sustainable Energy Reviews, 54: 777-784. https://doi.org/10.1016/j.rser.2015.10.071spa
dc.relation.references[35] Zhao, J., Guo, Z.H., Su, Z.Y., Zhao, Z.Y., Xiao, X., Liu, F. (2016). An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Applied Energy, 162: 808-826. https://doi.org/10.1016/j.apenergy.2015.10.145spa
dc.relation.references[36] Dhiman, H.S., Deb, D., Guerrero, J.M. (2019). Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renewable and Sustainable Energy Reviews, 108: 369-379. https://doi.org/10.1016/j.rser.2019.04.002spa
dc.relation.references[37] Dong, Q., Sun, Y., Li, P. (2017). A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China. Renewable Energy, 102: 241-257. https://doi.org/10.1016/j.renene.2016.10.030spa
dc.relation.references[38] Ziel, F., Croonenbroeck, C., Ambach, D. (2016). Forecasting wind power–modeling periodic and nonlinear effects under conditional heteroscedasticity. Applied Energy, 177: 285-297. https://doi.org/10.1016/j.apenergy.2016.05.111spa
dc.relation.references[39] Meng, A., Ge, J., Yin, H., Chen, S. (2016). Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Conversion and Management, 114: 75-88. https://doi.org/10.1016/j.enconman.2016.02.013spa
dc.relation.references[40] Zjavka, L. (2015). Wind speed forecast correction models using polynomial neural networks. Renewable Energy, 83: 998-1006. https://doi.org/10.1016/j.renene.2015.04.054spa
dc.relation.references[41] Santamaría-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C. (2016). Wind speed forecasting for wind farms: A method based on support vector regression. Renewable Energy, 85: 790-809. https://doi.org/10.1016/j.renene.2015.07.004spa
dc.relation.references[42] Doucoure, B., Agbossou, K., Cardenas, A. (2016). Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renewable Energy, 92: 202-211. https://doi.org/10.1016/j.renene.2016.02.003spa
dc.relation.references[43] Zendehboudi, A., Baseer, M.A., Saidur, R. (2018). Application of support vector machine models for forecasting solar and wind energy resources: A review. Journal of Cleaner Production, 199: 272-285. https://doi.org/10.1016/j.jclepro.2018.07.164spa
dc.relation.references[44] Barbounis, T.G., Theocharis, J.B. (2006). Locally rec urrent neural networks for long-term wind speed and power prediction. Neurocomputing, 69(4-6): 466-496. https://doi.org/10.1016/j.neucom.2005.02.003spa
dc.relation.references[45] Amjady, N., Keynia, F., Zareipour, H. (2011). Short-term wind power forecasting using ridgelet neural network. Electric Power Systems Research, 81(12): 2099-2107. https://doi.org/10.1016/j.epsr.2011.08.007spa
dc.relation.references[46] Blonbou, R. (2011). Very short-term wind power forecasting with neural networks and adaptive Bayesian learning. Renewable Energy, 36(3): 1118-1124. https://doi.org/10.1016/j.renene.2010.08.026spa
dc.relation.references[47] Azad, H.B., Mekhilef, S., Ganapathy, V.G. (2014). Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Transactions on Sustainable Energy, 5(2): 546-553. https://doi.org/10.1109/TSTE.2014.2300150spa
dc.relation.references[48] Xiao, L., Wang, J., Dong, Y., Wu, J. (2015). Combined forecasting models for wind energy forecasting: A case study in China. Renewable and Sustainable Energy Reviews, 44: 271-288. https://doi.org/10.1016/j.rser.2014.12.012spa
dc.relation.references[49] Wang, J., Hu, J., Ma, K., Zhang, Y. (2015). A selfadaptive hybrid approach for wind speed forecasting. Renewable Energy, 78: 374-385. https://doi.org/10.1016/j.renene.2014.12.074spa
dc.relation.references[50] Carpinone, A., Giorgio, M., Langella, R., Testa, A. (2015). Markov chain modeling for very-short-term wind power forecasting. Electric Power Systems Research, 122: 152-158. https://doi.org/10.1016/j.epsr.2014.12.025spa
dc.relation.references[51] Liu, H., Tian, H.Q., Liang, X.F., Li, Y.F. (2015). Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Applied Energy, 157: 183-194. https://doi.org/10.1016/j.apenergy.2015.08.014spa
dc.relation.references[52] Shrivastava, N.A., Lohia, K., Panigrahi, B.K. (2016). A multiobjective framework for wind speed prediction interval forecasts. Renewable Energy, 87: 903-910. https://doi.org/10.1016/j.renene.2015.08.038spa
dc.relation.references[53] Zhao, Y., Ye, L., Li, Z., Song, X., Lang, Y., Su, J. (2016). A novel bidirectional mechanism based on time series model for wind power forecasting. Applied Energy, 177: 793-803. https://doi.org/10.1016/j.apenergy.2016.03.096spa
dc.relation.references[54] Zhao, W., Wei, Y.M., Su, Z. (2016). One day ahead wind speed forecasting: A resampling-based approach. Applied Energy, 178: 886-901. https://doi.org/10.1016/j.apenergy.2016.06.098spa
dc.relation.references[55] Zhang, C., Wei, H., Zhao, J., Liu, T., Zhu, T., Zhang, K. (2016). Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renewable Energy, 96: 727-737. https://doi.org/10.1016/j.renene.2016.05.023spa
dc.relation.references[56] Wang, S., Zhang, N., Wu, L., Wang, Y. (2016). Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renewable Energy, 94: 629-636. https://doi.org/10.1016/j.renene.2016.03.103spa
dc.relation.references[57] Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E. P. (2016). Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Conversion and Management, 112: 115-124. https://doi.org/10.1016/j.enconman.2016.01.007spa
dc.relation.references[58] Jiang, P., Li, P. (2017). Research and application of a new hybrid wind speed forecasting model on BSO algorithm. Journal of Energy Engineering, 143(1): 04016019. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000362spa
dc.relation.references[59] Beale, M., Hagan, M., Demuth, H. (2020). Deep Learning Toolbox™ Getting Started Guide. The MathWorks. Inc.: Natick, MA, USA.spa
dc.relation.references[60] Rockmore, D.N. (2000). The FFT: An algorithm the whole family can use. Computing in Science & Engineering, 2(1): 60-64. https://doi.org/10.1109/5992.814659spa
dc.relation.references[61] Chu, E., George, A. (1999). Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms. CRC Press.spa
dc.relation.references[62] Rueda Bayona, J.G., Elles Pérez, C.J., Sánchez Cotte, E.H., González Ariza, Á.L., Rivillas Ospina, G.D. (2016). Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster k-medias. Tecnura, 20(50): 55-68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a04spa
dc.relation.references[63] Brigham, E. (1988). Fast Fourier Transform and Its Applications.spa
dc.relation.references[64] Zonst, A. (2000). Understanding the FFT, 2nd ed., 2000.spa
dc.relation.references[65] Hewitt, E., Hewitt, R. (1979). Archive for History of Exact Sciences: An Episode in Fourier Analysis.spa
dc.relation.references[66] Rasmussen, H.O. (1993). The wavelet Gibbs phenomenon. Wavelets, Fractals, and Fourier Transforms (M. Farge, JCR Hunt, and JC Vassilicos, eds.), 123-142.spa
dc.relation.references[67] Kelly, S. (1995). Gibbs Phenomenon for Wavelets: Applied and Computational Harmonic Analysis, 1st ed., 1995.spa
dc.relation.references[68] Chan, R.W., Yuen, J.K., Lee, E.W., Arashpour, M. (2015). Application of Nonlinear-AutoregressiveExogenous model to predict the hysteretic behaviour of passive control systems. Engineering Structures, 85: 1- 10. https://doi.org/10.1016/j.engstruct.2014.12.007spa
dc.relation.references[69] Widrow, B., Hoff, M.E. (1989). Adaptive switching circuits, in: Wescon Conf. Rec., 1989.spa
dc.relation.references[70] NOAA, NCEP North American Regional Reanalysis: NARR, (2016).spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal