Mostrar el registro sencillo del ítem

dc.contributor.authorVieira, Yasminspa
dc.contributor.authorN. dos Santos, Juliana M.spa
dc.contributor.authorgeorgin, jordanaspa
dc.contributor.authorS. Oliveira, Marcos L.spa
dc.contributor.authorPinto, Dianaspa
dc.contributor.authorDotto, Guilherme Luizspa
dc.date.accessioned2021-08-24T16:57:34Z
dc.date.available2021-08-24T16:57:34Z
dc.date.issued2021-06-26
dc.identifier.issn1342-937Xspa
dc.identifier.urihttps://hdl.handle.net/11323/8587spa
dc.description.abstractAnthropogenic activities have severely affected biogeochemical cycles on a global scale, resulting in a drastic increase in environmental problems, intensified by wastewater generation containing high levels of pollutants. As it is known that water is precious yet limited, viable wastewater treatments must be developed. Adsorption is an environmentally friendly option, and it offers the possibility of resolving two problems simultaneously. Besides removing pollutants from water, many adsorbents can be produced using wooden forestry residues. Such materials are generally considered as waste, which leads to their direct disposal. In addition, there are types of wooden forestry waste that have little or no use for humankind, such as fallen leaves or rotten fruits. Therefore, the utilization of wooden forestry residues for preparing low-cost adsorbents is promising. In this review, we briefly approach adsorption advantages to wastewater treatment. Later on, we focus on several types of wooden forestry residues as alternative low-cost adsorbents. © 2021 International Association for Gondwana Research.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherGondwana Researchspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceGondwana Researchspa
dc.subjectAdsorptionspa
dc.subjectBarkspa
dc.subjectLeavesspa
dc.subjectSawdustspa
dc.subjectSeedsspa
dc.titleAn overview of forest residues as promising low-cost adsorbentsspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1342937X21001994?via%3Dihub#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.gr.2021.06.018spa
dc.date.embargoEnd2022-06-26
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAbatal, M., Anastopoulos, I., Giannakoudakis, D.A., Olguin, M.T., 2020. Carbonaceousmaterial obtained from bark biomass as adsorbent of phenolic compounds fromaqueous solutions. J. Environ. Chem. Eng. 8,.https://doi.org/10.1016/j.jece.2020.103784103784spa
dc.relation.referencesAbegunde, S.M., Idowu, K.S., Adejuwon, O.M., Adeyemi-Adejolu, T., 2020. A reviewon the influence of chemical modification on the performance of adsorbents.Resour. Environ. Sustain. 1,.https://doi.org/10.1016/j.resenv.2020.100001100001.spa
dc.relation.referencesAbel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G., 2013. Impactof biochar and hydrochar addition on water retention and water repellency ofsandy soil. Geoderma 202–203, 183–191.https://doi.org/10.1016/j.geoderma.2013.03.003.spa
dc.relation.referencesAbu El-Rub, Z., Bramer, E.A., Brem, G., 2008. Experimental comparison of biomasschars with other catalysts for tar reduction. Fuel 87, 2243–2252.https://doi.org/10.1016/j.fuel.2008.01.004spa
dc.relation.referencesAchour, Y., Bahsis, L., Ablouh, E.H., Yazid, H., Laamari, M.R., Haddad, M. El, 2021.Insight into adsorption mechanism of Congo red dye onto BombaxBuonopozense bark Activated-carbon using Central composite design and DFTstudies. Surf. Interfaces 23,.https://doi.org/10.1016/j.surfin.2021.100977100977.spa
dc.relation.referencesAfroze, S., Sen, T.K., Ang, H.M., 2016. Adsorption removal of zinc (II) from aqueousphase by raw and base modified Eucalyptus sheathiana bark: Kinetics,mechanism and equilibrium study. Process Saf. Environ. Prot. 102, 336–352.https://doi.org/10.1016/j.psep.2016.04.009.spa
dc.relation.referencesAguayo-Villarreal et al., 2016 I.A. Aguayo-Villarreal, V. Hernández-Montoya, E.M. Ramírez-López, A. Bonilla-Petriciolet, M.A. Montes-Morán Effect of surface chemistry of carbons from pine sawdust for the adsorption of acid, basic and reactive dyes and their bioregeneration using Pseudomona putida Ecol. Eng., 95 (2016), pp. 112-118, 10.1016/j.ecoleng.2016.06.056spa
dc.relation.referencesAhmad, 2009 R. Ahmad Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP) J. Hazard. Mater., 171 (2009), pp. 767-773, 10.1016/j.jhazmat.2009.06.060spa
dc.relation.referencesAhmed et al., 2016 M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M. Chen Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater Bioresour. Technol. (2016), 10.1016/j.biortech.2016.05.057spa
dc.relation.referencesAhmed and Theydan, 2014 M.J. Ahmed, S.K. Theydan Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption J. Anal. Appl. Pyrol., 105 (2014), pp. 199-208, 10.1016/j.jaap.2013.11.005spa
dc.relation.referencesAhmed and Theydan, 2013a M.J. Ahmed, S.K. Theydan Adsorption of p-chlorophenol onto microporous activated carbon from Albizia lebbeck seed pods by one-step microwave assisted activation J. Anal. Appl. Pyrol., 100 (2013), pp. 253-260, 10.1016/j.jaap.2013.01.008spa
dc.relation.referenceshmed and Theydan, 2013b M.J. Ahmed, S.K. Theydan Microwave assisted preparation of microporous activated carbon from Siris seed pods for adsorption of metronidazole antibiotic Chem. Eng. J., 214 (2013), pp. 310-318, 10.1016/j.cej.2012.10.101spa
dc.relation.referencesAhmed and Theydan, 2012 M.J. Ahmed, S.K. Theydan Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations Chem. Eng. J., 211–212 (2012), pp. 200-207, 10.1016/j.cej.2012.09.089spa
dc.relation.referencesAjaelu et al., 2018 C.J. Ajaelu, V. Nwosu, L. Ibironke, A. Adeleye Adsorptive removal of cationic dye from aqueous solution using chemically modified African Border Tree (Newbouldia laevis) bark J. Appl. Sci. Environ. Manag., 21 (2018), p. 1323, 10.4314/jasem.v21i7.18spa
dc.relation.referencesAjmal et al., 1996 Ajmal, M., Ali Khan Rao, R., Siddiqui, B.A., 1996. Studies on removal and recovery of Cr(VI) from electroplating wastes. Water Res. 30, 1478–1482. https://doi.org/10.1016/0043-1354(95)00301-0spa
dc.relation.referencesAkar et al., 2019 S. Akar, B. Lorestani, S. Sobhanardakani, M. Cheraghi, O. Moradi Surveying the efficiency of Platanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample Environ. Monit. Assess., 191 (2019), pp. 1-19, 10.1007/s10661-019-7479-zspa
dc.relation.referencesAkhtar et al., 2018 A. Akhtar, V. Krepl, T. Ivanova A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass Energy Fuels (2018), 10.1021/acs.energyfuels.8b01678spa
dc.relation.referencesAkinwande et al., 2021 A.A. Akinwande, A.A. Adediran, O.A. Balogun, O.S. Olusoju, O.S. Adesina Influence of alkaline modification on selected properties of banana fiber paperbricks Sci. Rep., 11 (2021), p. 5793, 10.1038/s41598-021-85106-8spa
dc.relation.referencesAl Bsoul et al., 2021 A. Al Bsoul, M. Hailat, A. Abdelhay, M. Tawalbeh, A. Al-Othman, I.N. Al-kharabsheh, A.A. Al-Taani Efficient removal of phenol compounds from water environment using Ziziphus leaves adsorbent Sci. Total Environ., 761 (2021), 10.1016/j.scitotenv.2020.143229spa
dc.relation.referencesAlbayari et al., 2021 M. Albayari, M.K. Nazal, F.I. Khalili, N. Nordin, R. Adnan Biochar derived from Salvadora persica branches biomass as low-cost adsorbent for removal of uranium(VI) and thorium(IV) from water J. Radioanal. Nucl. Chem., 1–10 (2021), 10.1007/s10967-021-07667-2spa
dc.relation.referencesÁlvarez-Torrellas et al., 2016 S. Álvarez-Torrellas, M. Muñoz, J.A. Zazo, J.A. Casas, J. García Synthesis of high surface area carbon adsorbents prepared from pine sawdust- Onopordum acanthium L. for nonsteroidal anti-inflammatory drugs adsorption J. Environ. Manage., 183 (2016), pp. 294-305, 10.1016/j.jenvman.2016.08.077spa
dc.relation.referencesAndrew Ofudje et al., 2015 E. Andrew Ofudje, O. Kolawole Akiode, G. Opeoluwa Oladipo, A. Emmanuel Adedapo, L. Olanike Adebayo, A. Olushola Awotula Application of raw and alkaline-modified coconut shaft as a biosorbent for Pb2+ removal BioResources (2015)spa
dc.relation.referencesAngin et al., 2013 D. Angin, E. Altintig, T.E. Köse Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation Bioresour. Technol., 148 (2013), pp. 542-549, 10.1016/j.biortech.2013.08.164spa
dc.relation.referencesArenas Esteban et al., 2020 D. Arenas Esteban, A. Guerrero Martínez, J. Carretero González, V.I. Birss, L.C. Otero-Díaz, D. Ávila Brande Tunable Supercapacitor Materials Derived from Hydrochar/Gold Nanograpes ACS Appl. Energy Mater., 3 (2020), pp. 9348-9359, 10.1021/acsaem.0c01711spa
dc.relation.referencesArgun and Dursun, 2008 M.E. Argun, S. Dursun A new approach to modification of natural adsorbent for heavy metal adsorption Bioresour. Technol., 99 (2008), pp. 2516-2527, 10.1016/j.biortech.2007.04.037spa
dc.relation.referencesArgun et al., 2005 M.E. Argun, S. Dursun, K. Gur, C. Ozdemir, M. Karatas, S. Dogan Nickel adsorption on the modified pine tree materials Environ. Technol., 26 (2005), pp. 479-488, 10.1080/09593332608618532spa
dc.relation.referencesArim et al., 2019 A.L. Arim, M.J. Quina, L.M. Gando-Ferreira Uptake of trivalent chromium from aqueous solutions by xanthate pine bark: Characterization, batch and column studies Process Saf. Environ. Prot., 121 (2019), pp. 374-386, 10.1016/j.psep.2018.11.001spa
dc.relation.referencesAsfour et al., 2007 H.M. Asfour, M.M. Nassar, O.A. Fadali, M.S. El-Geundi Colour removal from textile effluents using hardwood sawdust as an absorbent J. Chem. Technol. Biotechnol. Chem. Technol., 35 (2007), pp. 28-35, 10.1002/jctb.5040350106spa
dc.relation.referencesAsif Tahir et al., 2016 M. Asif Tahir, H.N. Bhatti, M. Iqbal Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies J. Environ. Chem. Eng., 4 (2016), pp. 2431-2439, 10.1016/j.jece.2016.04.020spa
dc.relation.referencesAteş et al., 2019 F. Ateş, S. Şahin, Z. İlbay, I. Kırbaşlar A Green Valorisation Approach Using Microwaves and Supercritical CO 2 for High-Added Value Ingredients from Mandarin (Citrus deliciosa Tenore) Leaf Waste Waste Biomass Valorization, 10 (2019), pp. 533-546, 10.1007/s12649-017-0074-zspa
dc.relation.referencesBabalola et al., 2016 J.O. Babalola, B.A. Koiki, Y. Eniayewu, A. Salimonu, J.O. Olowoyo, V.O. Oninla, H.A. Alabi, A.E. Ofomaja, M.O. Omorogie Adsorption efficacy of Cedrela odorata seed waste for dyes: Non linear fractal kinetics and non linear equilibrium studies J. Environ. Chem. Eng., 4 (2016), pp. 3527-3536, 10.1016/j.jece.2016.07.027spa
dc.relation.referencesBabeker and Chen, 2021 Babeker, T.M.A., Chen, Q., 2021. Heavy Metal Removal from Wastewater by Adsorption with Hydrochar Derived from Biomass: Current Applications and Research Trends. Curr. Pollut. Reports. https://doi.org/10.1007/s40726-020-00172-2spa
dc.relation.referencesBach, 2007 Bach, M.T., 2007. IMPACT OF SURFACE CHEMISTRY ON ADSORPTION: TAILORING OF ACTIVATED CARBON.spa
dc.relation.referencesBakar et al., 2021 N.A. Bakar, N. Othman, Z.M. Yunus, W.A.H. Altowayti, M. Tahir, N. Fitriani, S.N.A. Mohd-Salleh An insight review of lignocellulosic materials as activated carbon precursor for textile wastewater treatment Environ. Technol. Innov., 22 (2021), Article 101445, 10.1016/j.eti.2021.101445spa
dc.relation.referencesBandosz and Block, 2006 T.J. Bandosz, K. Block Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents Appl. Catal. B Environ., 67 (2006), pp. 77-85, 10.1016/j.apcatb.2006.04.006spa
dc.relation.referencesBargmann et al., 2014 I. Bargmann, M.C. Rillig, A. Kruse, J.-M. Greef, M. Kücke Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability J. Plant Nutr. Soil Sci., 177 (2014), pp. 48-58, 10.1002/jpln.201300069spa
dc.relation.referencesBatzias and Sidiras, 2007 F.A. Batzias, D.K. Sidiras Simulation of dye adsorption by beech sawdust as affected by pH J. Hazard. Mater., 141 (2007), pp. 668-679, 10.1016/j.jhazmat.2006.07.033spa
dc.relation.referencesBello et al., 2020 O.S. Bello, E.O. Alabi, K.A. Adegoke, S.A. Adegboyega, A.A. Inyinbor, A.O. Dada Rhodamine B dye sequestration using Gmelina aborea leaf powder Heliyon, 6 (2020), Article e02872, 10.1016/j.heliyon.2019.e02872spa
dc.relation.referencesBergius, 1913 Bergius, F.C.R., 1913. Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle, 1st ed. W. Knapp.spa
dc.relation.referencesBerlan et al., 1994 J. Berlan, F. Trabelsi, H. Delmas, A.M. Wilhelm, J.F. Petrignani Oxidative degradation of phenol in aqueous media using ultrasound Ultrason. - Sonochemistry, 1 (1994), pp. S97-S102, 10.1016/1350-4177(94)90005-1spa
dc.relation.referencesBharali and Bhattacharyya, 2015 R.K. Bharali, K.G. Bhattacharyya Biosorption of fluoride on Neem (Azadirachta indica) leaf powder J. Environ. Chem. Eng., 3 (2015), pp. 662-669, 10.1016/j.jece.2015.02.007spa
dc.relation.referencesBhattacharya et al., 2008 A.K. Bhattacharya, T.K. Naiya, S.N. Mandal, S.K. Das Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents Chem. Eng. J., 137 (2008), pp. 529-541, 10.1016/j.cej.2007.05.021spa
dc.relation.referencesBhattacharya and Sharma, 2005 K.G. Bhattacharya, A. Sharma Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder Dye. Pigment., 65 (2005), pp. 51-59, 10.1016/j.dyepig.2004.06.016spa
dc.relation.referencesBhattacharyya et al., 2009 K.G. Bhattacharyya, J. Sarma, A. Sarma Azadirachta indica leaf powder as a biosorbent for Ni(II) in aqueous medium J. Hazard. Mater., 165 (2009), pp. 271-278, 10.1016/j.jhazmat.2008.09.109spa
dc.relation.referencesBhattacharyya and Sharma, 2004 Krishna G. Bhattacharyya, A. Sharma Azadirachta indica leaf powder as an effective biosorbent for dyes: A case study with aqueous Congo Red solutions J. Environ. Manage., 71 (2004), pp. 217-229, 10.1016/j.jenvman.2004.03.002spa
dc.relation.referencesBhattacharyya and Sharma, 2004c Krishna G Bhattacharyya, A. Sharma Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder J. Hazard. Mater., 113 (2004), pp. 97-109, 10.1016/j.jhazmat.2004.05.034spa
dc.relation.referencesBobleter, 1994 Bobleter, O., 1994. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. https://doi.org/10.1016/0079-6700(94)90033-7spa
dc.relation.referencesBoehm, 2002 H.P. Boehm Surface oxides on carbon and their analysis: A critical assessment Carbon N. Y., 40 (2002), pp. 145-149, 10.1016/S0008-6223(01)00165-8spa
dc.relation.referencesBoni et al., 2020 M.R. Boni, A. Chiavola, S. Marzeddu Remediation of Lead-Contaminated Water by Virgin Coniferous Wood Biochar Adsorbent: Batch and Column Application Water Air Soil Pollut., 231 (2020), pp. 1-16, 10.1007/s11270-020-04496-zspa
dc.relation.referencesBose et al., 2020 S. Bose, A. Ghosh, A. Das, M. Rahaman Development of Mango Peel Derived Activated Carbon-Nickel Nanocomposite as an Adsorbent towards Removal of Heavy Metal and Organic Dye Removal from Aqueous Solution ChemistrySelect, 5 (2020), pp. 14168-14176, 10.1002/slct.202003606spa
dc.relation.referencesBugg et al., 2011 Bugg, T.D.H., Ahmad, M., Hardiman, E.M., Rahmanpour, R., 2011. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. https://doi.org/10.1039/c1np00042jspa
dc.relation.referencesCambero et al., 2015 C. Cambero, T. Sowlati, M. Marinescu, D. Röser Strategic optimization of forest residues to bioenergy and biofuel supply chain Int. J. Energy Res., 39 (2015), pp. 439-452, 10.1002/er.3233spa
dc.relation.referencesCao et al., 2016 D. Cao, X. Jin, L. Gan, T. Wang, Z. Chen Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant Chemosphere, 159 (2016), pp. 23-31, 10.1016/j.chemosphere.2016.05.080spa
dc.relation.referencesÇelekli et al., 2019 A. Çelekli, A.I. Al-Nuaimi, H. Bozkurt Adsorption kinetic and isotherms of Reactive Red 120 on Moringa oleifera seed as an eco-friendly process J. Mol. Struct., 1195 (2019), pp. 168-178, 10.1016/j.molstruc.2019.05.106spa
dc.relation.referencesCemin et al., 2021 A. Cemin, F. Ferrarini, M. Poletto, L.R. Bonetto, J. Bortoluz, L. Lemée, R. Guégan, V.I. Esteves, M. Giovanela Characterization and use of a lignin sample extracted from Eucalyptus grandis sawdust for the removal of methylene blue dye Int. J. Biol. Macromol., 170 (2021), pp. 375-389, 10.1016/j.ijbiomac.2020.12.155spa
dc.relation.referencesCha et al., 2016 J.S. Cha, S.H. Park, S.C. Jung, C. Ryu, J.K. Jeon, M.C. Shin, Y.K. Park Production and utilization of biochar: A review J. Ind. Eng. Chem. (2016), 10.1016/j.jiec.2016.06.002spa
dc.relation.referenceshaudhari, 2010 U.E. Chaudhari Evaluation of adsorption efficiency of Ferronia elefuntum fruit shell for methylene blue from aqueous solution Asian J. Chem., 22 (2010), pp. 6722-6728spa
dc.relation.referencesChen et al., 2010 H. Chen, J. Zhao, G. Dai, J. Wu, H. Yan Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves Desalination, 262 (2010), pp. 174-182, 10.1016/j.desal.2010.06.006spa
dc.relation.referencesCheng et al., 2012 Z. Cheng, Z. Gao, W. Ma, Q. Sun, B. Wang, X. Wang Preparation of magnetic Fe3O4 particles modified sawdust as the adsorbent to remove strontium ions Chem. Eng. J., 209 (2012), pp. 451-457, 10.1016/j.cej.2012.07.078spa
dc.relation.referencesChoi et al., 2015 I.S. Choi, Y.G. Lee, S.K. Khanal, B.J. Park, H.J. Bae A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production Appl. Energy, 140 (2015), pp. 65-74, 10.1016/j.apenergy.2014.11.070spa
dc.relation.referencesColmenares, 2013 Colmenares Q., J.C., 2013. Ultrasound and photochemical procedures for nanocatalysts preparation: Application in photocatalytic biomass valorization. J. Nanosci. Nanotechnol. https://doi.org/10.1166/jnn.2013.7567spa
dc.relation.referencesConde-Cid et al., 2021 M. Conde-Cid, R. Cela-Dablanca, G. Ferreira-Coelho, D. Fernández-Calviño, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, M. Arias-Estévez, E. Álvarez-Rodríguez Sulfadiazine, sulfamethazine and sulfachloropyridazine removal using three different porous materials: Pine bark, “oak ash” and mussel shell Environ. Res., 195 (2021), Article 110814, 10.1016/j.envres.2021.110814spa
dc.relation.referencesConde-Cid et al., 2019 M. Conde-Cid, G. Ferreira-Coelho, M. Arias-Estévez, C. Álvarez-Esmorís, J.C. Nóvoa-Muñoz, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on pine bark, oak ash and mussel shell J. Environ. Manage., 250 (2019), Article 109509, 10.1016/j.jenvman.2019.109509spa
dc.relation.referencesCravotto and Cintas, 2012 G. Cravotto, P. Cintas Harnessing mechanochemical effects with ultrasound-induced reactions Chem. Sci., 3 (2012), pp. 295-307, 10.1039/c1sc00740hspa
dc.relation.referencesCutillas-Barreiro et al., 2014 L. Cutillas-Barreiro, L. Ansias-Manso, D. Fernández-Calviño, M. Arias-Estévez, J.C. Nóvoa-Muñoz, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, A. Núñez-Delgado Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: Batch-type and stirred flow chamber experiments J. Environ. Manage., 144 (2014), pp. 258-264, 10.1016/j.jenvman.2014.06.008spa
dc.relation.referencesDa Silva Correia et al., 2018 I.K. Da Silva Correia, P.F. Santos, C.S. Santana, J.B. Neris, F.H.M. Luzardo, F.G. Velasco Application of coconut shell, banana peel, spent coffee grounds, eucalyptus bark, piassava (Attalea funifera) and water hyacinth (Eichornia crassipes) in the adsorption of Pb2+ and Ni2+ ions in water J. Environ. Chem. Eng., 6 (2018), pp. 2319-2334, 10.1016/j.jece.2018.03.033spa
dc.relation.referencesDahmoune et al., 2013 F. Dahmoune, L. Boulekbache, K. Moussi, O. Aoun, G. Spigno, K. Madani Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction Ind. Crops Prod., 50 (2013), pp. 77-87, 10.1016/j.indcrop.2013.07.013spa
dc.relation.referencesDao et al., 2020 M.U. Dao, H.S. Le, H.Y. Hoang, V.A. Tran, V.D. Doan, T.T.N. Le, A. Sirotkin, V.T. Le Natural core-shell structure activated carbon beads derived from Litsea glutinosa seeds for removal of methylene blue: Facile preparation, characterization, and adsorption properties Environ. Res., 110481 (2020), 10.1016/j.envres.2020.110481spa
dc.relation.referencesDawodu et al., 2021 F.A. Dawodu, C.J. Abonyi, K.G. Akpomie Feldspar-banana peel composite adsorbent for efficient crude oil removal from solution Appl. Water Sci., 11 (2021), 10.1007/s13201-020-01335-8spa
dc.relation.referencesde León-Martínez et al., 2020 P.A. de León-Martínez, A. Sáenz-Galindo, C.A. Ávila-Orta, A.O. Castañeda-Facio, M.L. Andrade-Guel, U. Sierra, G. Alvarado-Tenorio, J. Bernal-Martínez Ultrasound-Assisted Surface Modification of MWCNT Using Organic Acids Materials (Basel)., 14 (2020), p. 72, 10.3390/ma14010072spa
dc.relation.referencesde Oliveira et al., 2017 P.R. de Oliveira, C. Kalinke, J.L. Gogola, A.S. Mangrich, L.H.M. Junior, M.F. Bergamini The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion J. Electroanal. Chem., 799 (2017), pp. 602-608, 10.1016/j.jelechem.2017.06.020spa
dc.relation.referencesde Salomón et al., 2021 Y.L.O. de Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, E.L. Foletto, D. Allasia, G.L. Dotto Application of seed residues from Anadenanthera macrocarpa and Cedrela fissilis as alternative adsorbents for remarkable removal of methylene blue dye in aqueous solutions Environ. Sci. Pollut. Res., 28 (2021), pp. 2342-2354, 10.1007/s11356-020-10635-0spa
dc.relation.referencesDemirbaş and Arin, 2002 A. Demirbaş, G. Arin An overview of biomass pyrolysis Energy Sources, 24 (2002), pp. 471-482, 10.1080/00908310252889979spa
dc.relation.referencesDeng et al., 2019 J. Deng, X. Li, X. Wei, Y. Liu, J. Liang, N. Tang, B. Song, X. Chen, X. Cheng Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu(II) from aqueous solution: Adsorption behavior and mechanism Bioresour. Technol., 290 (2019), Article 121765, 10.1016/j.biortech.2019.121765spa
dc.relation.referencesDeng, 2020 Deng, Y., 2020. Low-cost adsorbents for urban stormwater pollution control. Front. Environ. Sci. Eng. https://doi.org/10.1007/s11783-020-1262-9spa
dc.relation.referenceseniz and Saygideger, 2010 F. Deniz, S.D. Saygideger Equilibrium, kinetic and thermodynamic studies of Acid Orange 52 dye biosorption by Paulownia tomentosa Steud. leaf powder as a low-cost natural biosorbent Bioresour. Technol., 101 (2010), pp. 5137-5143, 10.1016/j.biortech.2010.02.004spa
dc.relation.referencesDhaouadi et al., 2020 F. Dhaouadi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A. Erto, A. Ben Lamine Adsorption of methylene blue on comminuted raw avocado seeds: Interpretation of the effect of salts via physical monolayer model J. Mol. Liq., 305 (2020), Article 112815, 10.1016/j.molliq.2020.112815spa
dc.relation.referencesDhaouadi et al., 2021 F. Dhaouadi, L. Sellaoui, L. Enrique Hernández-Hernández, A. Bonilla-Petriciolet, D. Ileana Mendoza-Castillo, H. Elizabeth Reynel-Ávila, H. Antonio González-Ponce, S. Taamalli, F. Louis, A. Ben Lamine Preparation of an avocado seed hydrochar and its application as heavy metal adsorbent: Properties and advanced statistical physics modeling Chem. Eng. J., 129472 (2021), 10.1016/j.cej.2021.129472spa
dc.relation.referencesDjilali et al., 2016 Y. Djilali, E.H. Elandaloussi, A. Aziz, L.C. de Ménorval Alkaline treatment of timber sawdust: A straightforward route toward effective low-cost adsorbent for the enhanced removal of basic dyes from aqueous solutions J. Saudi Chem. Soc., 20 (2016), pp. S241-S249, 10.1016/j.jscs.2012.10.013spa
dc.relation.referencesDo et al., 2021 T.H. Do, V.T. Nguyen, N.Q. Dung, M.N. Chu, D. Van Kiet, T.T.K. Ngan, L. Van Tan Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf Mater. Today:. Proc., 38 (2021), pp. 3405-3413, 10.1016/j.matpr.2020.10.834spa
dc.relation.referencesDutta et al., 2001 S. Dutta, J.K. Basu, R.N. Ghar Studies on adsorption of p-nitrophenol on charred saw-dust Sep. Purif. Technol., 21 (2001), pp. 227-235, 10.1016/S1383-5866(00)00205-7spa
dc.relation.referencesEl-Sheikh et al., 2018 A.H. El-Sheikh, I.I. Fasfous, R.M. Al-Salamin, A.P. Newman Immobilization of citric acid and magnetite on sawdust for competitive adsorption and extraction of metal ions from environmental waters J. Environ. Chem. Eng., 6 (2018), pp. 5186-5195, 10.1016/j.jece.2018.08.020spa
dc.relation.referencesEl Hajam et al., 2020 M. El Hajam, N.I. Kandri, G.I. Plavan, A.H. Harrath, L. Mansour, F. Boufahja, A. Zerouale Pb2+ ions adsorption onto raw and chemically activated Dibetou sawdust: Application of experimental designs J. King Saud Univ. - Sci., 32 (2020), pp. 2176-2189, 10.1016/j.jksus.2020.02.027spa
dc.relation.referencessteves and Pereira, 2009 B.M. Esteves, H.M. Pereira Heat treatment of wood BioResources (2009)spa
dc.relation.referencesFerrari et al., 2010 L. Ferrari, J. Kaufmann, F. Winnefeld, J. Plank Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements J. Colloid Interface Sci., 347 (2010), pp. 15-24, 10.1016/j.jcis.2010.03.005spa
dc.relation.referencesFerrentino et al., 2020 R. Ferrentino, R. Ceccato, V. Marchetti, G. Andreottola, L. Fiori Sewage Sludge Hydrochar: An Option for Removal of Methylene Blue from Wastewater Appl. Sci., 10 (2020), p. 3445, 10.3390/app10103445spa
dc.relation.referencesFerrero, 2007 F. Ferrero Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust J. Hazard. Mater., 142 (2007), pp. 144-152, 10.1016/j.jhazmat.2006.07.072spa
dc.relation.referencesFunke and Ziegler, 2010 A. Funke, F. Ziegler Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefining, 4 (2010), pp. 160-177, 10.1002/bbb.198spa
dc.relation.referencesG, 2018 G., M., P., S.K., A., S., 2018. Modelling and analysis on the removal of methylene blue dye from aqueous solution using physically/chemically modified Ceiba pentandra seeds. J. Ind. Eng. Chem. 62, 446–461. https://doi.org/10.1016/j.jiec.2018.01.028spa
dc.relation.referencesJayan et al., 2021 G, P., AS, S., Jayan, J.S., Raman, A., Saritha, A., 2021. Lignin based nano-composites: Synthesis and applications. Process Saf. Environ. Prot. https://doi.org/10.1016/j.psep.2020.11.017spa
dc.relation.referencesGao et al., 2019 Y. Gao, Z. Jiang, J. Li, W. Xie, Q. Jiang, M. Bi, Y. Zhang A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust Environ. Res., 172 (2019), pp. 561-568, 10.1016/j.envres.2019.03.010spa
dc.relation.referencesGao et al., 2013 Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li, Y. Wang Comparisons of porous, surface chemistry and adsorption properties of carbon derived from Enteromorpha prolifera activated by H4P2O7 and KOH Chem. Eng. J., 232 (2013), pp. 582-590, 10.1016/j.cej.2013.08.011spa
dc.relation.referencesarg et al., 2004 V.K. Garg, M. Amita, R. Kumar, R. Gupta Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: A timber industry waste Dye. Pigment., 63 (2004), pp. 243-250, 10.1016/j.dyepig.2004.03.005spa
dc.relation.referencesGarg et al., 2003 V.K. Garg, R. Gupta, A.B. Yadav, R. Kumar Dye removal from aqueous solution by adsorption on treated sawdust Bioresour. Technol., 89 (2003), pp. 121-124, 10.1016/S0960-8524(03)00058-0spa
dc.relation.referencesGautam et al., 2020 P.K. Gautam, S. Shivalkar, S. Banerjee Synthesis of M. oleifera leaf extract capped magnetic nanoparticles for effective lead [Pb (II)] removal from solution: Kinetics, isotherm and reusability study J. Mol. Liq., 305 (2020), Article 112811, 10.1016/j.molliq.2020.112811spa
dc.relation.referencesGemici et al., 2021 B.T. Gemici, H.U. Ozel, H.B. Ozel Removal of methylene blue onto forest wastes: Adsorption isotherms, kinetics and thermodynamic analysis Environ. Technol. Innov., 101501 (2021), 10.1016/j.eti.2021.101501spa
dc.relation.referencesGeorgin et al., 2018 J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents Water Sci. Technol., 78 (2018), pp. 1693-1703, 10.2166/wst.2018.448spa
dc.relation.referencesGeorgin et al., 2019 J. Georgin, D.S.P. Franco, P. Grassi, D. Tonato, D.G.A. Piccilli, L. Meili, G.L. Dotto Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents Environ. Sci. Pollut. Res., 26 (2019), pp. 19207-19219, 10.1007/s11356-019-05321-9spa
dc.relation.referencesGeorgin et al., 2020 J. Georgin, D.S.P. Franco, M.S. Netto, D. Allasia, M.L.S. Oliveira, G.L. Dotto Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches Environ. Sci. Pollut. Res., 27 (2020), pp. 25727-25739, 10.1007/s11356-020-08854-6spa
dc.relation.referencesGiannakoudakis et al., 2020a Giannakoudakis, D.A., Chatel, G., Colmenares, J.C., 2020a. Mechanochemical Forces as a Synthetic Tool for Zero- and One-Dimensional Titanium Oxide-Based Nano-photocatalysts. Top. Curr. Chem. https://doi.org/10.1007/s41061-019-0262-3spa
dc.relation.referencesD.A. Giannakoudakis, N. Farahmand, D. Łomot, K. Sobczak, T.J. Bandosz, J.C. Colmenares Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors Chem. Eng. J., 395 (2020), Article 125099, 10.1016/j.cej.2020.125099spa
dc.relation.referencesGiwa et al., 2021 Giwa, A.R.A., Adesokan, S.A., Bello, I.A., 2021. Adsorption of pyrimethamine from wastewater using activated carbons prepared from Daniellia-oliveri sawdust. Int. J. Environ. Anal. Chem. https://doi.org/10.1080/03067319.2021.1884858spa
dc.relation.referencesA.C. Gonçalves Junior, L. Strey, C.A. Lindino, H. Nacke, D. Schwantes, E.P. Seidel Applicability of the Pinus bark (Pinus elliottii) for the adsorption of toxic heavy metals from aqueous solutions Acta Sci. Technol., 34 (2012), pp. 79-87, 10.4025/actascitechnol.v34i1.9585spa
dc.relation.referencesGrassi et al., 2021 P. Grassi, F.C. Drumm, J. Georgin, D.S.P. Franco, G.L. Dotto, E.L. Foletto, S.L. Jahn Application of Cordia trichotoma sawdust as an effective biosorbent for removal of crystal violet from aqueous solution in batch system and fixed-bed column Environ. Sci. Pollut. Res., 28 (2021), pp. 6771-6783, 10.1007/s11356-020-11005-6spa
dc.relation.referencesGupta and Babu, 2009 S. Gupta, B.V. Babu Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies Chem. Eng. J., 150 (2009), pp. 352-365, 10.1016/j.cej.2009.01.013spa
dc.relation.referencesupta et al., 2015 Gupta, V.K., Nayak, A., Agarwal, S., 2015. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. https://doi.org/10.4491/eer.2015.018spa
dc.relation.referencesHafshejani et al., 2015 L.D. Hafshejani, S.B. Nasab, R.M. Gholami, M. Moradzadeh, Z. Izadpanah, S.B. Hafshejani, A. Bhatnagar Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent J. Mol. Liq., 211 (2015), pp. 448-456, 10.1016/j.molliq.2015.07.044spa
dc.relation.referencesHamadeen et al., 2021 H.M. Hamadeen, E.A. Elkhatib, M.E.I. Badawy, S.A.M. Abdelgaleil Green low cost nanomaterial produced from Moringa oleifera seed waste for enhanced removal of chlorpyrifos from wastewater: Mechanism and sorption studies J. Environ. Chem. Eng., 9 (2021), Article 105376, 10.1016/j.jece.2021.105376spa
dc.relation.referencesHamdaoui, 2006 O. Hamdaoui Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick J. Hazard. Mater., 135 (2006), pp. 264-273, 10.1016/j.jhazmat.2005.11.062spa
dc.relation.referencesHameed and Daud, 2008 B. Hameed, F. Daud Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat Chem. Eng. J., 139 (2008), pp. 48-55, 10.1016/j.cej.2007.07.089spa
dc.relation.referencesHameed et al., 2007 B.H. Hameed, A.L. Ahmad, K.N.A. Latiff Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust Dye. Pigment., 75 (2007), pp. 143-149, 10.1016/j.dyepig.2006.05.039spa
dc.relation.referencesHameed et al., 2008 B.H. Hameed, L.H. Chin, S. Rengaraj Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust Desalination, 225 (2008), pp. 185-198, 10.1016/j.desal.2007.04.095spa
dc.relation.referencesB.H. Hameed, M.I. El-Khaiary Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling J. Hazard. Mater., 159 (2008), pp. 574-579, 10.1016/j.jhazmat.2008.02.054spa
dc.relation.referencesHan et al., 2012 X. Han, X. Niu, X. Ma Adsorption characteristics of methylene blue on poplar leaf in batch mode: Equilibrium, kinetics and thermodynamics Korean J. Chem. Eng., 29 (2012), pp. 494-502, 10.1007/s11814-011-0211-5spa
dc.relation.referencesHanafiah et al., 2012 M.A.K.M. Hanafiah, W.S.W. Ngah, S.H. Zolkafly, L.C. Teong, Z.A.A. Majid Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis J. Environ. Sci., 24 (2012), pp. 261-268, 10.1016/S1001-0742(11)60764-Xspa
dc.relation.referencesHasan et al., 2021 M.N. Hasan, M.A. Shenashen, M.M. Hasan, H. Znad, M.R. Awual Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent Chemosphere, 270 (2021), Article 128668, 10.1016/j.chemosphere.2020.128668spa
dc.relation.referencesHashem et al., 2020 A. Hashem, S.M. Badawy, S. Farag, L.A. Mohamed, A.J. Fletcher, G.M. Taha Non-linear adsorption characteristics of modified pine wood sawdust optimised for adsorption of Cd(II) from aqueous systems J. Environ. Chem. Eng., 8 (2020), Article 103966, 10.1016/j.jece.2020.103966spa
dc.relation.referencesHashem et al., 2019 M.A. Hashem, M.A. Momen, M. Hasan, M.S. Nur-A-Tomal, M.H.R. Sheikh Chromium removal from tannery wastewater using Syzygium cumini bark adsorbent Int. J. Environ. Sci. Technol., 16 (2019), pp. 1395-1404, 10.1007/s13762-018-1714-yspa
dc.relation.referencesHashemian and Mirshamsi, 2012 S. Hashemian, M. Mirshamsi Kinetic and thermodynamic of adsorption of 2-picoline by sawdust from aqueous solution J. Ind. Eng. Chem., 18 (2012), pp. 2010-2015, 10.1016/j.jiec.2012.05.020spa
dc.relation.referencesB. Hayati, N.M. Mahmoodi Modification of activated carbon by the alkaline treatment to remove the dyes from wastewater: Mechanism, isotherm and kinetic Desalin. Water Treat., 47 (2012), pp. 322-333, 10.1080/19443994.2012.696429spa
dc.relation.referencesHe et al., 2013 C. He, A. Giannis, J.Y. Wang Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior Appl. Energy, 111 (2013), pp. 257-266, 10.1016/j.apenergy.2013.04.084spa
dc.relation.referencesHe et al., 2019 C. He, Z. Zhang, C. Ge, W. Liu, Y. Tang, X. Zhuang, R. Qiu Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior Waste Manag., 100 (2019), pp. 171-181, 10.1016/j.wasman.2019.09.018spa
dc.relation.referencesHernandes et al., 2019 P.T. Hernandes, M.L.S. Oliveira, J. Georgin, D.S.P. Franco, D. Allasia, G.L. Dotto Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus) Environ. Sci. Pollut. Res., 26 (2019), pp. 31924-31933, 10.1007/s11356-019-06353-xspa
dc.relation.referencesHu et al., 2008 B. Hu, S.H. Yu, K. Wang, L. Liu, X.W. Xu Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process Dalt. Trans., 5414–5423 (2008), 10.1039/b804644cspa
dc.relation.referencesuang et al., 2014 Y. Huang, S. Li, J. Chen, X. Zhang, Y. Chen Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H 3 PO 4 activation: Adsorption capacity, kinetic and isotherm studies Appl. Surf. Sci., 293 (2014), pp. 160-168, 10.1016/j.apsusc.2013.12.123spa
dc.relation.referencesHuff and Lee, 2016 M.D. Huff, J.W. Lee Biochar-surface oxygenation with hydrogen peroxide J. Environ. Manage., 165 (2016), pp. 17-21, 10.1016/j.jenvman.2015.08.046spa
dc.relation.referencesIgalavithana et al., 2020 A.D. Igalavithana, S.W. Choi, J. Shang, A. Hanif, P.D. Dissanayake, D.C.W. Tsang, J.H. Kwon, K.B. Lee, Y.S. Ok Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry Sci. Total Environ., 739 (2020), Article 139845, 10.1016/j.scitotenv.2020.139845spa
dc.relation.referencesIghalo and Adeniyi, 2020 J.O. Ighalo, A.G. Adeniyi Adsorption of pollutants by plant bark derived adsorbents: An empirical review J. Water Process Eng., 35 (2020), Article 101228, 10.1016/j.jwpe.2020.101228spa
dc.relation.referencesInguanzo et al., 2001 M. Inguanzo, J.A. Menéndez, E. Fuente, J.J. Pis Reactivity of pyrolyzed sewage sludge in air and CO2 J. Anal. Appl. Pyrol., 58–59 (2001), pp. 943-954, 10.1016/S0165-2370(00)00143-1spa
dc.relation.referencesIppolito et al., 2012 J.A. Ippolito, D.G. Strawn, K.G. Scheckel, J.M. Novak, M. Ahmedna, M.A.S. Niandou Macroscopic and Molecular Investigations of Copper Sorption by a Steam-Activated Biochar J. Environ. Qual., 41 (2012), pp. 1150-1156, 10.2134/jeq2011.0113spa
dc.relation.referencesIsiuku et al., 2019 B.O. Isiuku, J.C. Iwu, D.C. Emeagwara, F.C. Ibe ADSORPTION PERFORMANCE OF ACID-ACTIVATED CARBON DERIVED FROM GMELINA ARBOREA IN BATCH REMOVAL OF METHYL VIOLET FROM AQEUOUS SOLUTION J. Chem Soc. Niger., 44 (2019), pp. 11-021spa
dc.relation.referencesIUPAC, 2019 IUPAC, 2019. The IUPAC Compendium of Chemical Terminology, 2nd ed, Compendium of Chemical Terminology. Blackwell Scientific Publications, Oxford (1997). https://doi.org/10.1351/goldbookspa
dc.relation.referencesJastrzab and Lomozik, 2010 R. Jastrzab, L. Lomozik Stability and coordination mode of complexes of polyphosphates and polymetaphosphates with copper(II) ions in aqueous solution-potentiometric, spectral and theoretical studies J. Solution Chem., 39 (2010), pp. 909-919, 10.1007/s10953-010-9558-1spa
dc.relation.referencesJeon et al., 2015 C. Jeon, J.H. Cha, J.Y. Choi Adsorption and recovery characteristics of phosphorylated sawdust bead for indium(III) in industrial wastewater J. Ind. Eng. Chem., 27 (2015), pp. 201-206, 10.1016/j.jiec.2014.12.036spa
dc.relation.referencesJiang et al., 2019 Q. Jiang, W. Xie, S. Han, Y. Wang, Y. Zhang Enhanced adsorption of Pb(II) onto modified hydrochar by polyethyleneimine or H3PO4: An analysis of surface property and interface mechanism Colloids Surfaces A Physicochem. Eng. Asp., 583 (2019), Article 123962, 10.1016/j.colsurfa.2019.123962spa
dc.relation.referencesJin et al., 2018 X. Jin, N. Li, X. Weng, C. Li, Z. Chen Green reduction of graphene oxide using eucalyptus leaf extract and its application to remove dye Chemosphere, 208 (2018), pp. 417-424, 10.1016/j.chemosphere.2018.05.199spa
dc.relation.referencesKalavathy et al., 2009 Kalavathy M., H., Regupathi, I., Pillai, M.G., Miranda, L.R., 2009. Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM). Colloids Surfaces B Biointerfaces 70, 35–45. https://doi.org/10.1016/j.colsurfb.2008.12.007spa
dc.relation.referencesKamari and Ngah, 2010 A. Kamari, W.S. Ngah Adsorption of Cu(II) and Cr(VI) onto treated shorea dasyphylla bark: Isotherm, kinetics, and thermodynamic studies Sep. Sci. Technol., 45 (2010), pp. 486-496, 10.1080/01496390903526717spa
dc.relation.referencesKambo and Dutta, 2015 Kambo, H.S., Dutta, A., 2015. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2015.01.050spa
dc.relation.referencesKannan et al., 2010 N. Kannan, A. Vijayakumar, P. Subramaniam Studies on the removal of red industrial dye using teak leaf, maize corn and babool tree bark carbons -A comparison E-Journal Chem., 7 (2010), pp. 770-774, 10.1155/2010/474109spa
dc.relation.referencesKapur and Mondal, 2013 M. Kapur, M.K. Mondal Mass transfer and related phenomena for Cr(VI) adsorption from aqueous solutions onto Mangifera indica sawdust Chem. Eng. J., 218 (2013), pp. 138-146, 10.1016/j.cej.2012.12.054spa
dc.relation.referencesKarthikeyan et al., 2005 T. Karthikeyan, S. Rajgopal, L.R. Miranda Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon J. Hazard. Mater., 124 (2005), pp. 192-199, 10.1016/j.jhazmat.2005.05.003spa
dc.relation.referencesKayser, 1881 H. Kayser Ueber die Verdichtung von Gasen an Oberflächen in ihrer Abhängigkeit von Druck und Temperatur Ann. Phys., 248 (1881), pp. 526-537, 10.1002/andp.18812480404spa
dc.relation.referencesKebede et al., 2018a T.G. Kebede, S. Dube, A.A. Mengistie, T.T. Nkambule, M.M. Nindi Moringa stenopetala bark: A novel green adsorbent for the removal of metal ions from industrial effluents Phys. Chem. Earth., 107 (2018), pp. 45-57, 10.1016/j.pce.2018.08.002spa
dc.relation.referencesKebede et al., 2018b T.G. Kebede, A.A. Mengistie, S. Dube, T.T.I. Nkambule, M.M. Nindi Study on adsorption of some common metal ions present in industrial effluents by Moringa stenopetala seed powder J. Environ. Chem. Eng., 6 (2018), pp. 1378-1389, 10.1016/j.jece.2018.01.012spa
dc.relation.referencesKgatitsoe et al., 2019 M.M. Kgatitsoe, S. Ncube, H. Tutu, I.A. Nyambe, L. Chimuka Synthesis and characterization of a magnetic nanosorbent modified with Moringa oleifera leaf extracts for removal of nitroaromatic explosive compounds in water samples J. Environ. Chem. Eng., 7 (2019), Article 103128, 10.1016/j.jece.2019.103128spa
dc.relation.referencesKhan Rao and Khatoon, 2016 R.A. Khan Rao, A. Khatoon Adsorption characteristics of chemically modified Caryota urens seeds for the removal of Cu(II) from aqueous solution: Isotherms and kinetic studies Groundw. Sustain. Dev., 2–3 (2016), pp. 42-52, 10.1016/j.gsd.2016.05.004spa
dc.relation.referencesKhemchandani et al., 1974 G.V. Khemchandani, T.B. Ray, S. Sarkar Studies on artificial coal. 1 Caking power and chloroform extracts. Fuel, 53 (1974), pp. 163-167, 10.1016/0016-2361(74)90003-9spa
dc.relation.referencesKhosla et al., 2012 E. Khosla, S. Kaur, P.N. Dave Adsorption mechanism of basic red-12 over eucalyptus bark and its surface derivatives J. Chem. Eng. Data, 57 (2012), pp. 2004-2011, 10.1021/je300296kspa
dc.relation.referencesKiruba et al., 2014 U.P. Kiruba, P.S. Kumar, C. Prabhakaran, V. Aditya Characteristics of thermodynamic, isotherm, kinetic, mechanism and design equations for the analysis of adsorption in Cd(II) ions-surface modified Eucalyptus seeds system J. Taiwan Inst. Chem. Eng., 45 (2014), pp. 2957-2968, 10.1016/j.jtice.2014.08.016spa
dc.relation.referencesKoetlisi and Muchaonyerwa, 2019 K.A. Koetlisi, P. Muchaonyerwa Sorption of Selected Heavy Metals with Different Relative Concentrations in Industrial Effluent on Biochar from Human Faecal Products and Pine-Bark Materials (Basel)., 12 (2019), p. 1768, 10.3390/ma12111768spa
dc.relation.referencesKrishnan, 2008 K.A. Krishnan Adsorption of nitrilotriacetic acid onto activated carbon prepared by steam pyrolysis of sawdust: Kinetic and isotherm studies Colloids Surfaces A Physicochem. Eng. Asp., 317 (2008), pp. 344-351, 10.1016/j.colsurfa.2007.11.002spa
dc.relation.referencesKulkarni, 2020 Kulkarni, S., 2020. Synthesis, Characterization and Performance of Low-Cost Unconventional Adsorbents Derived from Waste Materials. Review 10, 7243–7256. https://doi.org/10.33263/BRIAC106.72437256spa
dc.relation.referencesKumar and Gupta, 2020 A. Kumar, H. Gupta Activated carbon from sawdust for naphthalene removal from contaminated water Environ. Technol. Innov., 20 (2020), Article 101080, 10.1016/j.eti.2020.101080spa
dc.relation.referencesKumar et al., 2005 B.G.P. Kumar, L.R. Miranda, M. Velan Adsorption of Bismark Brown dye on activated carbons prepared from rubberwood sawdust (Hevea brasiliensis) using different activation methods J. Hazard. Mater., 126 (2005), pp. 63-70, 10.1016/j.jhazmat.2005.05.043spa
dc.relation.referencesKumar et al., 2018 N.S. Kumar, M. Asif, M.I. Al-Hazzaa, A.A. Ibrahim Biosorption of 2,4,6-trichlorophenol from aqueous medium using agro-waste: Pine (Pinus densiflora Sieb) bark powder Acta Chim. Slov., 65 (2018), pp. 221-230 https://doi.org/10.17344/acsi.2017.3886spa
dc.relation.referencesLattao et al., 2014 C. Lattao, X. Cao, J. Mao, K. Schmidt-Rohr, J.J. Pignatello Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars Environ. Sci. Technol., 48 (2014), pp. 4790-4798, 10.1021/es405096qspa
dc.relation.referencesLee et al., 2013 Y. Lee, J. Park, C. Ryu, K.S. Gang, W. Yang, Y.K. Park, J. Jung, S. Hyun Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C Bioresour. Technol., 148 (2013), pp. 196-201, 10.1016/j.biortech.2013.08.135spa
dc.relation.referencesLi et al., 2007a B. Li, S. Kado, Y. Mukainakano, T. Miyazawa, T. Miyao, S. Naito, K. Okumura, K. Kunimori, K. Tomishige Surface modification of Ni catalysts with trace Pt for oxidative steam reforming of methane J. Catal., 245 (2007), pp. 144-155, 10.1016/j.jcat.2006.10.004spa
dc.relation.referencesD. Li, J. Huang, L. Huang, S. Tan, T. Liu High-Performance Three-Dimensional Aerogel Based on Hydrothermal Pomelo Peel and Reduced Graphene Oxide as an Efficient Adsorbent for Water/Oil Separation Langmuir, 37 (2021), pp. 1521-1530, 10.1021/acs.langmuir.0c03062spa
dc.relation.referencesLi and Chase, 2009 J. Li, H.A. Chase Characterization and evaluation of a macroporous adsorbent for possible use in the expanded bed adsorption of flavonoids from Ginkgo biloba L J. Chromatogr. A, 1216 (2009), pp. 8730-8740, 10.1016/j.chroma.2009.02.092spa
dc.relation.referencesLi et al., 2007b Q. Li, J. Zhai, W. Zhang, M. Wang, J. Zhou Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk J. Hazard. Mater., 141 (2007), pp. 163-167, 10.1016/j.jhazmat.2006.06.109spa
dc.relation.referencesLi et al., 2016 R. Li, J.J. Wang, B. Zhou, M.K. Awasthi, A. Ali, Z. Zhang, L.A. Gaston, A.H. Lahori, A. Mahar Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios Sci. Total Environ., 559 (2016), pp. 121-129, 10.1016/j.scitotenv.2016.03.151spa
dc.relation.referencesLi et al., 2019a Y. Li, S. Fan, Q. Zhou Synthesis of Carboxyl-Rich Biosorbent by UV-Induced Graft Polymerization Method for High Efficiency Adsorption of Ce3+ from Aqueous Solution: Activation and Adsorption Mechanism J. Polym. Environ., 27 (2019), pp. 2259-2266, 10.1007/s10924-019-01515-xspa
dc.relation.referencesLi and Liu, 2014 Y. Li, X. Liu Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor Mater. Chem. Phys., 148 (2014), pp. 380-386, 10.1016/j.matchemphys.2014.07.058spa
dc.relation.referencesLi et al., 2014 Y. Li, J. Shao, X. Wang, Y. Deng, H. Yang, H. Chen Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption Energy Fuels, 28 (2014), pp. 5119-5127, 10.1021/ef500725cspa
dc.relation.referencesLi et al., 2019b Z. Li, G.L. Dotto, A. Bajahzar, L. Sellaoui, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet Adsorption of indium (III) from aqueous solution on raw, ultrasound- and supercritical-modified chitin: Experimental and theoretical analysis Chem. Eng. J., 373 (2019), pp. 1247-1253, 10.1016/j.cej.2019.05.134spa
dc.relation.referencesLi et al., 2010a Z. Li, S. Imaizumi, T. Katsumi, T. Inui, X. Tang, Q. Tang Manganese removal from aqueous solution using a thermally decomposed leaf J. Hazard. Mater., 177 (2010), pp. 501-507, 10.1016/j.jhazmat.2009.12.061spa
dc.relation.referencesi et al., 2010b Z. Li, Q. Tang, T. Katsumi, X. Tang, T. Inui, S. Imaizumi Leaf char: An alternative adsorbent for Cr(III) Desalination, 264 (2010), pp. 70-77, 10.1016/j.desal.2010.07.006spa
dc.relation.referencesLi et al., 2009 Z. Li, X. Tang, Y. Chen, L. Wei, Y. Wang Activation of Firmiana Simplex leaf and the enhanced Pb(II) adsorption performance: Equilibrium and kinetic studies J. Hazard. Mater., 169 (2009), pp. 386-394, 10.1016/j.jhazmat.2009.03.108spa
dc.relation.referencesLim et al., 2020 L.B.L. Lim, N. Priyantha, S.A.A. Latip, Y.C. Lu, A.H. Mahadi Converting hylocereus undatus (White dragon fruit) peel waste into a useful potential adsorbent for the removal of toxic congo red dye Desalin. Water Treat., 185 (2020), pp. 307-317, 10.5004/dwt.2020.25390spa
dc.relation.referencesLin et al., 2015 Y. Lin, X. Ma, X. Peng, S. Hu, Z. Yu, S. Fang Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge Appl. Therm. Eng., 91 (2015), pp. 574-582, 10.1016/j.applthermaleng.2015.08.064spa
dc.relation.referencesLiu and Xiao, 2018 M. Liu, C. Xiao Research progress on modification of activated carbon E3S Web Conf., 38 (2018), p. 02005, 10.1051/e3sconf/20183802005spa
dc.relation.referencesiu et al., 2013 S. Liu, Z. Huang, R. Wang A carbon foam with a bimodal micro-mesoporous structure prepared from larch sawdust for the gas-phase toluene adsorption Mater. Res. Bull., 48 (2013), pp. 2437-2441, 10.1016/j.materresbull.2013.02.069spa
dc.relation.referencesLiu et al., 2015 Liu, W.J., Jiang, H., Yu, H.Q., 2015. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chem. Rev. https://doi.org/10.1021/acs.chemrev.5b00195spa
dc.relation.referencesLiu et al., 2011 W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang Preparation of high adsorption capacity bio-chars from waste biomass Bioresour. Technol., 102 (2011), pp. 8247-8252, 10.1016/j.biortech.2011.06.014spa
dc.relation.referencesLiu et al., 2018 Y. Liu, X. Jin, Z. Chen The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr(VI) Sci. Total Environ., 627 (2018), pp. 470-479, 10.1016/j.scitotenv.2018.01.241spa
dc.relation.referencesLonappan et al., 2020 L. Lonappan, Y. Liu, T. Rouissi, S.K. Brar, R.Y. Surampalli Development of biochar-based green functional materials using organic acids for environmental applications J. Clean. Prod., 244 (2020), Article 118841, 10.1016/j.jclepro.2019.118841spa
dc.relation.referencesLow et al., 2004 K.S. Low, C.K. Lee, S.M. Mak Sorption of copper and lead by citric acid modified wood Wood Sci. Technol., 38 (2004), pp. 629-640, 10.1007/s00226-003-0201-9spa
dc.relation.referencesu et al., 1995 G.Q. Lu, J.C.F. Low, C.Y. Liu, A.C. Lua Surface area development of sewage sludge during pyrolysis Fuel, 74 (1995), pp. 344-348, 10.1016/0016-2361(95)93465-Pspa
dc.relation.referencesLussier et al., 1998 M.G. Lussier, Z. Zhang, D.J. Miller Characterizing rate inhibition in steam/hydrogen gasification via analysis of adsorbed hydrogen Carbon N. Y., 36 (1998), pp. 1361-1369, 10.1016/S0008-6223(98)00123-7spa
dc.relation.referencesLütke et al., 2019 S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption J. Environ. Chem. Eng., 7 (2019), Article 103396, 10.1016/j.jece.2019.103396spa
dc.relation.referencesMagdziarz and Colmenares, 2017 A. Magdziarz, J. Colmenares In Situ Coupling of Ultrasound to Electro- and Photo-Deposition Methods for Materials Synthesis Molecules, 22 (2017), p. 216, 10.3390/molecules22020216spa
dc.relation.referencesMahdi et al., 2019 Z. Mahdi, A. El Hanandeh, Q.J. Yu Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions J. Environ. Chem. Eng., 7 (2019), Article 103379, 10.1016/j.jece.2019.103379spa
dc.relation.referencesMaity and Ray, 2018 J. Maity, S.K. Ray Removal of Pb(II) from water using a bio-composite adsorbent-A systematic approach of optimizing synthesis and process parameters by response surface methodology J. Environ. Manage., 209 (2018), pp. 112-125, 10.1016/j.jenvman.2017.12.039spa
dc.relation.referencesMália et al., 2013 M. Mália, J. De Brito, M.D. Pinheiro, M. Bravo Construction and demolition waste indicators Waste Manag. Res., 31 (2013), pp. 241-255, 10.1177/0734242X12471707spa
dc.relation.referencesMalik, 2003 P.K. Malik Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: A case study of acid yellow 36 Dye. Pigment., 56 (2003), pp. 239-249, 10.1016/S0143-7208(02)00159-6spa
dc.relation.referencesMandal et al., 2020 A. Mandal, N. Bar, S.K. Das Phenol removal from wastewater using low-cost natural bioadsorbent neem (Azadirachta indica) leaves: Adsorption study and MLR modeling Sustain. Chem. Pharm., 17 (2020), Article 100308, 10.1016/j.scp.2020.100308spa
dc.relation.referencesMandal and Singh, 2016 A. Mandal, N. Singh Kinetic and isotherm error optimization studies for adsorption of atrazine and imidacloprid on bark of Eucalyptus tereticornis L. J. Environ. Sci. Heal. - Part B Pestic Food Contam. Agric. Wastes, 51 (2016), pp. 192-203, 10.1080/03601234.2015.1108817spa
dc.relation.referencesMartini et al., 2020 S. Martini, S. Afroze, K. Ahmad Roni Modified eucalyptus bark as a sorbent for simultaneous removal of COD, oil, and Cr(III) from industrial wastewater Alexandria Eng. J., 59 (2020), pp. 1637-1648, 10.1016/j.aej.2020.04.010spa
dc.relation.referencesMcKay and Poots, 2007 G. McKay, V.J.P. Poots Kinetics and diffusion processes in colour removal from effluent using wood as an adsorbent J. Chem. Technol. Biotechnol., 30 (2007), pp. 279-292, 10.1002/jctb.503300134spa
dc.relation.referencesMeinlschmidt et al., 2016 P. Meinlschmidt, D. Mauruschat, R. Briesemeister Altholzsituation in Europa und Deutschland Chemie Ing. Tech., 88 (2016), pp. 475-482, 10.1002/cite.201500023spa
dc.relation.referencesMohanty et al., 2005 K. Mohanty, D. Das, M.N. Biswas Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation Chem. Eng. J., 115 (2005), pp. 121-131, 10.1016/j.cej.2005.09.016spa
dc.relation.referencesMolino et al., 2016 A. Molino, S. Chianese, D. Musmarra Biomass gasification technology: The state of the art overview J. Energy Chem., 25 (2016), pp. 10-25, 10.1016/j.jechem.2015.11.005spa
dc.relation.referencesMolino et al., 2018 A. Molino, V. Larocca, S. Chianese, D. Musmarra Biofuels Production by Biomass Gasification: A Review Energies, 11 (2018), p. 811, 10.3390/en11040811spa
dc.relation.referencesMosoarca et al., 2020 G. Mosoarca, C. Vancea, S. Popa, M. Gheju, S. Boran Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: isotherms, kinetics, thermodynamic and optimization by Taguchi method Sci. Rep., 10 (2020), 10.1038/s41598-020-74819-xspa
dc.relation.referencesMullen et al., 2010 C.A. Mullen, A.A. Boateng, N.M. Goldberg, I.M. Lima, D.A. Laird, K.B. Hicks Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis Biomass Bioenergy, 34 (2010), pp. 67-74, 10.1016/j.biombioe.2009.09.012spa
dc.relation.referencesNadir et al., 2021 I. Nadir, Y. Achour, A. El Kassimi, M. El Himri, M.R. Laamari, M. El Haddad Removal of Antibiotic Sulfamethazine from Aqueous Media Using Watermelon Seeds as a New Low Cost and Ecofriendly Adsorbent Phys. Chem. Res., 9 (2021), pp. 165-180 https://doi.org/10.22036/pcr.2020.249992.1839spa
dc.relation.referencesNag et al., 2020 S. Nag, N. Bar, S.K. Das Cr(VI) removal from aqueous solution using green adsorbents in continuous bed column – statistical and GA-ANN hybrid modelling Chem. Eng. Sci., 226 (2020), Article 115904, 10.1016/j.ces.2020.115904spa
dc.relation.referencesag et al., 2018 S. Nag, A. Mondal, D.N. Roy, N. Bar, S.K. Das Sustainable bioremediation of Cd(II) from aqueous solution using natural waste materials: Kinetics, equilibrium, thermodynamics, toxicity studies and GA-ANN hybrid modelling Environ. Technol. Innov., 11 (2018), pp. 83-104, 10.1016/j.eti.2018.04.009spa
dc.relation.referencesNaghipour et al., 2018 D. Naghipour, L. Hoseinzadeh, K. Taghavi, J. Jaafari Characterization, kinetic, thermodynamic and isotherm data for diclofenac removal from aqueous solution by activated carbon derived from pine tree Data Br., 18 (2018), pp. 1082-1087, 10.1016/j.dib.2018.03.068spa
dc.relation.referencesNaron et al., 2017 D.R. Naron, F.X. Collard, L. Tyhoda, J.F. Görgens Characterisation of lignins from different sources by appropriate analytical methods: Introducing thermogravimetric analysis-thermal desorption-gas chromatography–mass spectroscopy Ind. Crops Prod., 101 (2017), pp. 61-74, 10.1016/j.indcrop.2017.02.041spa
dc.relation.referencesNasir et al., 2007 M.H. Nasir, R. Nadeem, K. Akhtar, M.A. Hanif, A.M. Khalid Efficacy of modified distillation sludge of rose (Rosa centifolia) petals for lead(II) and zinc(II) removal from aqueous solutions J. Hazard. Mater., 147 (2007), pp. 1006-1014, 10.1016/j.jhazmat.2007.01.131spa
dc.relation.referencesNazal et al., 2019 M.K. Nazal, M. Al-Bayyari, F.I. Khalili Salvadora Persica branches biomass adsorbent for removal of uranium(VI) and thorium(IV) from aqueous solution: kinetics and thermodynamics study J. Radioanal. Nucl. Chem., 321 (2019), pp. 985-996, 10.1007/s10967-019-06668-6spa
dc.relation.referencesNazir et al., 2020 N.A.M. Nazir, M. Raoov, S. Mohamad Spent tea leaves as an adsorbent for micro-solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from water and food samples prior to GC-FID analysis Microchem. J., 159 (2020), 10.1016/j.microc.2020.105581spa
dc.relation.referencesNdjientcheu Yossa et al., 2020 L.M. Ndjientcheu Yossa, S.K. Ouiminga, S.S. Sidibe, I.W.K. Ouedraogo Synthesis of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls and investigation of adsorption mechanisms for diuron Sci. African, 9 (2020), Article e00476, 10.1016/j.sciaf.2020.e00476spa
dc.relation.referencesNeppiras, 1980 Neppiras, E.A., 1980. Acoustic cavitation. Phys. Rep. https://doi.org/10.1016/0370-1573(80)90115-5spa
dc.relation.referencesNg et al., 2019 Ng, C.Y., Tan, Y.Y., Mun, A.C.K., Ng, L.Y., 2019. Comparison study of adsorbent produced from renewable resources: Oil palm empty fruit bunch and rice husk, in: Materials Today: Proceedings. Elsevier Ltd, pp. 149–155. https://doi.org/10.1016/j.matpr.2020.05.642spa
dc.relation.referencesNiculau et al., 2020 Niculau, E.D.S., Alves, P.B., Nogueira, P.C. de L., Romão, L.P.C., Cunha, G. da C., Blank, A.F., Silva, A. de C., 2020. Chemical Profile and Use of the Peat as an Adsorbent for Extraction of Volatile Compounds from Leaves of Geranium (Pelargonium graveolens L’ Herit). Molecules 25. https://doi.org/10.3390/molecules25214923spa
dc.relation.referencesNjoku et al., 2013 V.O. Njoku, K.Y. Foo, B.H. Hameed Microwave-assisted preparation of pumpkin seed hull activated carbon and its application for the adsorptive removal of 2,4-dichlorophenoxyacetic acid Chem. Eng. J., 215–216 (2013), pp. 383-388, 10.1016/j.cej.2012.10.068spa
dc.relation.referencesNjoku et al., 2014 V.O. Njoku, M.A. Islam, M. Asif, B.H. Hameed Utilization of sky fruit husk agricultural waste to produce high quality activated carbon for the herbicide bentazon adsorption Chem. Eng. J., 251 (2014), pp. 183-191, 10.1016/j.cej.2014.04.015spa
dc.relation.referencesOECD, 2020 OECD, 2020. Environment at a Glance 2020: OECD Indicators, Environment at a Glance. OECD. https://doi.org/10.1787/4ea7d35f-enspa
dc.relation.referencesOECD, 2015 OECD, 2015. Environment at a Glance 2015: OECD Indicators, Environment at a Glance. OECD. https://doi.org/10.1787/9789264235199-enspa
dc.relation.referencesOfomaja, 2011 A.E. Ofomaja Kinetics and pseudo-isotherm studies of 4-nitrophenol adsorption onto mansonia wood sawdust Ind. Crops Prod., 33 (2011), pp. 418-428, 10.1016/j.indcrop.2010.10.036spa
dc.relation.referencesOfomaja and Unuabonah, 2013 A.E. Ofomaja, E.I. Unuabonah Kinetics and time-dependent Langmuir modeling of 4-nitrophenol adsorption onto Mansonia sawdust J. Taiwan Inst. Chem. Eng., 44 (2013), pp. 566-576, 10.1016/j.jtice.2012.12.021spa
dc.relation.referencesOgunmodede et al., 2021 Ogunmodede, J., Akanji, S.B., Bello, O.S., 2021. Moringa oleifera seed pod-based adsorbent for the removal of paracetamol from aqueous solution: A novel approach toward diversification. Environ. Prog. Sustain. Energy. https://doi.org/10.1002/ep.13615spa
dc.relation.referencesOlasehinde et al., 2018 E.F. Olasehinde, A.V. Adegunloye, M.A. Adebayo, A.A. Oshodi Sequestration of Aqueous Lead(II) Using Modified and Unmodified Red Onion Skin Anal. Lett., 51 (2018), pp. 2708-2730, 10.1080/00032719.2018.1448989spa
dc.relation.referencesOlu-Owolabi et al., 2021 B.I. Olu-Owolabi, P.N. Diagboya, F.M. Mtunzi, R.-A. Düring Utilizing eco-friendly kaolinite-biochar composite adsorbent for removal of ivermectin in aqueous media J. Environ. Manage., 279 (2021), Article 111619, 10.1016/j.jenvman.2020.111619spa
dc.relation.referencesOmorogie et al., 2020 M.O. Omorogie, J.O. Babalola, A.M. Olatunde, T. Alimi, K.I. John, S.A. Adegboyega, S.K. Abesa Microwave-synthesized and Fenton-functionalized Pinus sylvestris bark activated carbon/metal oxides for the effective uptake of tetracycline and congo red dye Biomass Convers. Biorefinery, 10 (2020), pp. 959-975, 10.1007/s13399-019-00460-yspa
dc.relation.referencesOmri and Benzina, 2012 A. Omri, M. Benzina Removal of manganese(II) ions from aqueous solutions by adsorption on activated carbon derived a new precursor: Ziziphus spina-christi seeds Alexandria Eng. J., 51 (2012), pp. 343-350, 10.1016/j.aej.2012.06.003spa
dc.relation.referencesarzei et al., 2014 S. Parzei, S. Krigstin, K. Hayashi, S. Wetzel Forest harvest residues available in Eastern Canada – a critical review of estimations For. Chron., 90 (2014), pp. 778-784, 10.5558/tfc2014-150spa
dc.relation.referencesPekkuz et al., 2008 H. Pekkuz, I. Uzun, F. Güzel Kinetics and thermodynamics of the adsorption of some dyestuffs from aqueous solution by poplar sawdust Bioresour. Technol., 99 (2008), pp. 2009-2017, 10.1016/j.biortech.2007.03.014spa
dc.relation.referencesPeng et al., 2017 H. Peng, P. Gao, G. Chu, B. Pan, J. Peng, B. Xing Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars Environ. Pollut., 229 (2017), pp. 846-853, 10.1016/j.envpol.2017.07.004spa
dc.relation.referencesPeter et al., 2019 Peter, A., Chabot, B., Loranger, E., 2019. Enhancing Surface Properties of Softwood Biochar by Ultrasound Assisted Slow Pyrolysis, in: IEEE International Ultrasonics Symposium, IUS. IEEE Computer Society, pp. 2477–2480. https://doi.org/10.1109/ULTSYM.2019.8925793spa
dc.relation.referencesPeterson et al., 2008 A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal, J.W. Tester Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies Energy Environ. Sci. (2008), 10.1039/b810100kspa
dc.relation.referencesPeydayesh and Rahbar-Kelishami, 2015 M. Peydayesh, A. Rahbar-Kelishami Adsorption of methylene blue onto Platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies J. Ind. Eng. Chem., 21 (2015), pp. 1014-1019, 10.1016/j.jiec.2014.05.010spa
dc.relation.referencesokhrel et al., 2016 Pokhrel, N., Vabbina, P.K., Pala, N., 2016. Sonochemistry: Science and Engineering. Ultrason. Sonochem. https://doi.org/10.1016/j.ultsonch.2015.07.023spa
dc.relation.referencesPonnusami et al., 2009 V. Ponnusami, V. Gunasekar, S.N. Srivastava Kinetics of methylene blue removal from aqueous solution using gulmohar (Delonix regia) plant leaf powder: Multivariate regression analysis J. Hazard. Mater., 169 (2009), pp. 119-127, 10.1016/j.jhazmat.2009.03.066spa
dc.relation.referencesPrado et al., 2010 A.G.S. Prado, A.O. Moura, M.S. Holanda, T.O. Carvalho, R.D.A. Andrade, I.C. Pescara, A.H.A. de Oliveira, E.Y.A. Okino, T.C.M. Pastore, D.J. Silva, L.F. Zara Thermodynamic aspects of the Pb adsorption using Brazilian sawdust samples: Removal of metal ions from battery industry wastewater Chem. Eng. J., 160 (2010), pp. 549-555, 10.1016/j.cej.2010.03.066spa
dc.relation.referencesRajapaksha et al., 2015 A.U. Rajapaksha, M. Vithanage, M. Ahmad, D.C. Seo, J.S. Cho, S.E. Lee, S.S. Lee, Y.S. Ok Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar J. Hazard. Mater., 290 (2015), pp. 43-50, 10.1016/j.jhazmat.2015.02.046spa
dc.relation.referencesRavulapalli and Kunta, 2018 S. Ravulapalli, R. Kunta Removal of lead (II) from wastewater using active carbon of Caryota urens seeds and its embedded calcium alginate beads as adsorbents J. Environ. Chem. Eng., 6 (2018), pp. 4298-4309, 10.1016/j.jece.2018.06.033spa
dc.relation.referencesReck et al., 2018 I.M. Reck, R.M. Paixão, R. Bergamasco, M.F. Vieira, A.M.S. Vieira Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds J. Clean. Prod., 171 (2018), pp. 85-97, 10.1016/j.jclepro.2017.09.237spa
dc.relation.referencesRehman et al., 2019 A. Rehman, M. Park, S.-J. Park Current Progress on the Surface Chemical Modification of Carbonaceous Materials Coatings, 9 (2019), p. 103, 10.3390/coatings9020103spa
dc.relation.referencesRengaraj et al., 2002 S. Rengaraj, S.-H. Moon, R. Sivabalan, B. Arabindoo, V. Murugesan Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon Waste Manag., 22 (2002), pp. 543-548, 10.1016/S0956-053X(01)00016-2spa
dc.relation.referencesRombaut et al., 2020 N. Rombaut, T. Chave, S.I. Nikitenko, M. El Maâtaoui, A.S. Fabiano-Tixier, F. Chemat Modification of Olive Leaves’ Surface by Ultrasound Cavitation. Correlation with Polyphenol Extraction Enhancement Appl. Sci., 11 (2020), p. 232, 10.3390/app11010232spa
dc.relation.referencesSalazar-Rabago and Leyva-Ramos, 2016 J.J. Salazar-Rabago, R. Leyva-Ramos Novel biosorbent with high adsorption capacity prepared by chemical modification of white pine (Pinus durangensis) sawdust. Adsorption of Pb(II) from aqueous solutions J. Environ. Manage., 169 (2016), pp. 303-312, 10.1016/j.jenvman.2015.12.040spa
dc.relation.referencesSaliba et al., 2005 R. Saliba, H. Gauthier, R. Gauthier Adsorption of Heavy Metal Ions on Virgin and Chemically-Modified Lignocellulosic Materials Adsorpt. Sci. Technol., 23 (2005), pp. 313-322, 10.1260/0263617054770039spa
dc.relation.referencesSantos et al., 2021 A.S. Santos, T.S.M. Santos, V.A. Lemos, A.O. De Souza Yellow mombin (spondias mombin l.) seeds from agro-industrial waste as a novel adsorbent for removal of hexavalent chromium from aqueous solutions J. Braz. Chem. Soc., 32 (2021), pp. 437-446 https://doi.org/10.21577/0103-5053.20200196spa
dc.relation.referencesSaravanan et al., 2020 A. Saravanan, S. Karishma, S. Jeevanantham, S. Jeyasri, A.R. Kiruthika, P.S. Kumar, P.R. Yaashikaa Optimization and modeling of reactive yellow adsorption by surface modified Delonix regia seed: Study of nonlinear isotherm and kinetic parameters Surf. Interfaces, 20 (2020), Article 100520, 10.1016/j.surfin.2020.100520spa
dc.relation.referencesSarin and Pant, 2006 V. Sarin, K.K. Pant Removal of chromium from industrial waste by using eucalyptus bark Bioresour. Technol., 97 (2006), pp. 15-20, 10.1016/j.biortech.2005.02.010spa
dc.relation.referencesSchimmelpfennig et al., 2014 S. Schimmelpfennig, C. Müller, L. Grünhage, C. Koch, C. Kammann Biochar, hydrochar and uncarbonized feedstock application to permanent grassland-Effects on greenhouse gas emissions and plant growth Agric. Ecosyst. Environ., 191 (2014), pp. 39-52, 10.1016/j.agee.2014.03.027spa
dc.relation.referencesSchwantes et al., 2018 D. Schwantes, A.C. Gonçalves, M.A. Campagnolo, C.R.T. Tarley, D.C. Dragunski, A. de Varennes, A.K. dos Santos Silva, E. Conradi Chemical modifications on pinus bark for adsorption of toxic metals J. Environ. Chem. Eng., 6 (2018), pp. 1271-1278, 10.1016/j.jece.2018.01.044spa
dc.relation.referencesSebastian et al., 2019 A. Sebastian, A. Nangia, M.N.V. Prasad Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: Relevance in amelioration of metal stress in rice J. Hazard. Mater., 371 (2019), pp. 261-272, 10.1016/j.jhazmat.2019.03.021spa
dc.relation.referencesSellaoui et al., 2020 L. Sellaoui, D. Franco, H. Ghalla, J. Georgin, M.S. Netto, G. Luiz Dotto, A. Bonilla-Petriciolet, H. Belmabrouk, A. Bajahzar Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: Experiments, phenomenological modelling and DFT calculations Chem. Eng. J., 394 (2020), Article 125011, 10.1016/j.cej.2020.125011spa
dc.relation.referencesSemerjian, 2010 L. Semerjian Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinus halepensis sawdust J. Hazard. Mater., 173 (2010), pp. 236-242, 10.1016/j.jhazmat.2009.08.074spa
dc.relation.referencesŞen et al., 2015 Şen, A., Pereira, H., Olivella, M.A., Villaescusa, I., 2015. Heavy metals removal in aqueous environments using bark as a biosorbent. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-014-0525-zspa
dc.relation.referencesSeptevani et al., 2020 Septevani, A.A., Rifathin, A., Sari, A.A., Sampora, Y., Ariani, G.N., Sudiyarmanto, Sondari, D., 2020. Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation. Carbohydr. Polym. 229. https://doi.org/10.1016/j.carbpol.2019.115433spa
dc.relation.referencesSert et al., 2008 Ş. Sert, C. Kütahyali, S. İnan, Z. Talip, B. Çetinkaya, M. Eral Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder Hydrometallurgy, 90 (2008), pp. 13-18, 10.1016/j.hydromet.2007.09.006spa
dc.relation.referencesShah et al., 2021 Shah, Q.U., Tasleem, S., Naeem, A., Din, I.U., Alharthi, A.I., Saeed, T., Alotaibi, M.A., Bakht, M.A., 2021. Reporting the application of Lycopersicon esculentum peel and Brassica botrytis leaves as adsorbents for Cd removal from aqueous solution. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-021-03244-yspa
dc.relation.referencesShaheen et al., 2019 S.M. Shaheen, N.K. Niazi, N.E.E. Hassan, I. Bibi, H. Wang, D.C.W. Tsang, Y.S. Ok, N. Bolan, J. Rinklebe Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review Int. Mater. Rev., 64 (2019), pp. 216-247, 10.1080/09506608.2018.1473096spa
dc.relation.referencesShaikh et al., 2021 W.A. Shaikh, R.U. Islam, S. Chakraborty Stable silver nanoparticle doped mesoporous biochar-based nanocomposite for efficient removal of toxic dyes J. Environ. Chem. Eng., 9 (2021), Article 104982, 10.1016/j.jece.2020.104982spa
dc.relation.referencesShakoor and Nasar, 2018 S. Shakoor, A. Nasar Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste Groundw. Sustain. Dev., 7 (2018), pp. 30-38, 10.1016/j.gsd.2018.03.004spa
dc.relation.referencesShao et al., 2019 Shao, H., Zhao, H., Xie, J., Qi, J., Shupe, T.F., 2019. Agricultural and Forest Residues towards Renewable Chemicals and Materials Using Microwave Liquefaction. Int. J. Polym. Sci. https://doi.org/10.1155/2019/7231263spa
dc.relation.referencesSharma and Bhattacharyya, 2005 A. Sharma, K.G. Bhattacharyya Azadirachta indica (Neem) leaf powder as a biosorbent for removal of Cd(II) from aqueous medium J. Hazard. Mater., 125 (2005), pp. 102-112, 10.1016/j.jhazmat.2005.05.012spa
dc.relation.referencesShen et al., 2008 W. Shen, Z. Li, Y. Liu Surface Chemical Functional Groups Modification of Porous Carbon Recent Patents Chem. Eng., 1 (2008), pp. 27-40spa
dc.relation.referenceshi et al., 2017 J. Shi, Z. Yang, H. Dai, X. Lu, L. Peng, X. Tan, L. Shi, R. Fahim Preparation and application of modified zeolites as adsorbents in wastewater treatment Water Sci. Technol., 2017 (2017), pp. 621-635, 10.2166/wst.2018.249spa
dc.relation.referencesShim et al., 2001 J.W. Shim, S.J. Park, S.K. Ryu Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers Carbon N. Y., 39 (2001), pp. 1635-1642, 10.1016/S0008-6223(00)00290-6spa
dc.relation.referencesShimizu et al., 2010 M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses J. Appl. Phys., 108 (2010), Article 073533, 10.1063/1.3483238spa
dc.relation.referencesShukla and Skhardande, 1992 S.R. Shukla, V.D. Skhardande Column studies on metal ion removal by dyed cellulosic materials J. Appl. Polym. Sci., 44 (1992), pp. 903-910, 10.1002/app.1992.070440518spa
dc.relation.referencesda Silva et al., 2020 F.A. da Silva, F.J. Simioni, D.N. Hoff Diagnosis of circular economy in the forest sector in southern Brazil Sci. Total Environ., 706 (2020), Article 135973, 10.1016/j.scitotenv.2019.135973spa
dc.relation.referencesSingha et al., 2011 Singha, B., Naiya, T.K., Bhattacharya, A. kumar, Das, S.K., 2011. Cr(VI) Ions Removal from Aqueous Solutions Using Natural Adsorbents – FTIR Studies. J. Environ. Prot. (Irvine,. Calif). 02, 729–735. https://doi.org/10.4236/jep.2011.26084spa
dc.relation.referencesSirajudheen et al., 2021 P. Sirajudheen, P. Karthikeyan, K. Ramkumar, P. Nisheetha, S. Meenakshi Magnetic carbon-biomass from the seeds of Moringa oleifera@MnFe2O4 composite as an effective and recyclable adsorbent for the removal of organic pollutants from water J. Mol. Liq., 327 (2021), Article 114829, 10.1016/j.molliq.2020.114829spa
dc.relation.referencesSommerhuber et al., 2015 P.F. Sommerhuber, J. Welling, A. Krause Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites Waste Manag., 46 (2015), pp. 76-85, 10.1016/j.wasman.2015.09.011spa
dc.relation.referencesSonal et al., 2020 S. Sonal, P. Prakash, B.K. Mishra, G.C. Nayak Synthesis, characterization and sorption studies of a zirconium(IV) impregnated highly functionalized mesoporous actIVated carbonsb RSC Adv., 10 (2020), pp. 13783-13798, 10.1039/c9ra10103aspa
dc.relation.referencesSousa et al., 2011 S. Sousa, P. Jiménez-Guerrero, A. Ruiz, N. Ratola, A. Alves Organochlorine pesticides removal from wastewater by pine bark adsorption after activated sludge treatment Environ. Technol., 32 (2011), pp. 673-683, 10.1080/09593330.2010.510535spa
dc.relation.referencesSrivastava and Rupainwar, 2010 R. Srivastava, D.C. Rupainwar Liquid phase adsorption of Indigo Carmine and Methylene Blue on Neem bark Desalin. Water Treat., 24 (2010), pp. 74-84, 10.5004/dwt.2010.1195spa
dc.relation.referencesStute, 1992 R. Stute Hydrothermal Modification of Starches: The Difference between Annealing and Heat/Moisture -Treatment Starch - Stärke, 44 (1992), pp. 205-214, 10.1002/star.19920440603spa
dc.relation.referencesSubratti et al., 2021 A. Subratti, J.L. Vidal, L.J. Lalgee, F.M. Kerton, N.K. Jalsa Preparation and characterization of biochar derived from the fruit seed of Cedrela odorata L and evaluation of its adsorption capacity with methylene blue Sustain. Chem. Pharm., 21 (2021), Article 100421, 10.1016/j.scp.2021.100421spa
dc.relation.referencesSuganya et al., 2017 S. Suganya, P. Senthil Kumar, A. Saravanan, P. Sundar Rajan, C. Ravikumar Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: Theoretical and experimental analysis Environ. Toxicol. Pharmacol., 50 (2017), pp. 45-57, 10.1016/j.etap.2017.01.014spa
dc.relation.referencesSugimoto and Miki, 1997 Sugimoto, Y., Miki, Y., 1997. Chemical structure of artificial coals obtained from cellulose, wood and peat (Miscellaneous) | ETDEWEB, in: Ziegler, A., van Heek, K., Klein, J., Wanzl, W. (Eds.), . . Proceedings of the 9th International Conference on Coal Science ICCS ’97. pp. 187–190.spa
dc.relation.referencesSummons, 1993 Summons, R.E., 1993. Biogeochemical Cycles. pp. 3–21. https://doi.org/10.1007/978-1-4615-2890-6_1spa
dc.relation.referencesSun et al., 2013 L. Sun, S. Wan, W. Luo Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies Bioresour. Technol., 140 (2013), pp. 406-413, 10.1016/j.biortech.2013.04.116spa
dc.relation.referencesSunsandee et al., 2020 N. Sunsandee, P. Ramakul, S. Phatanasri, U. Pancharoen Biosorption of dicloxacillin from pharmaceutical waste water using tannin from Indian almond leaf: Kinetic and equilibrium studies Biotechnol. Reports, 27 (2020), Article e00488, 10.1016/j.btre.2020.e00488spa
dc.relation.referencesSuslick et al., 1986 K.S. Suslick, D.A. Hammerton, R.E. Cline The Sonochemical Hot Spot J. Am. Chem. Soc., 108 (1986), pp. 5641-5642, 10.1021/ja00278a055spa
dc.relation.referencesTamon and Okazaki, 1996 H. Tamon, M. Okazaki Influence of acidic surface oxides of activated carbon on gas adsorption characteristics Carbon N. Y., 34 (1996), pp. 741-746, 10.1016/0008-6223(96)00029-2spa
dc.relation.referencesTan, 2016 Tan, X. fei, Liu, Y. guo, Gu, Y. ling, Xu, Y., Zeng, G. ming, Hu, X. jiang, Liu, Shao bo, Wang, X., Liu, Si mian, Li, J., 2016. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2016.04.093spa
dc.relation.referencesTang et al., 2010 Q. Tang, X. Tang, M. Hu, Z. Li, Y. Chen, P. Lou Removal of Cd(II) from aqueous solution with activated Firmiana Simplex Leaf: Behaviors and affecting factors J. Hazard. Mater., 179 (2010), pp. 95-103, 10.1016/j.jhazmat.2010.02.062spa
dc.relation.referencesTaty-Costodes et al., 2003 V.C. Taty-Costodes, H. Fauduet, C. Porte, A. Delacroix Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris J. Hazard. Mater., 105 (2003), pp. 121-142, 10.1016/j.jhazmat.2003.07.009spa
dc.relation.referencesTelkapalliwar and Shivankar, 2018 N.G. Telkapalliwar, V.M. Shivankar Adsorption of Zinc onto Microwave assisted carbonized Acacia nilotica bark Materials Today: Proceedings, Elsevier Ltd (2018), pp. 22694-22705, 10.1016/j.matpr.2018.06.646spa
dc.relation.referencesThilagavathy and Santhi, 2014 P. Thilagavathy, T. Santhi Kinetics, Isotherms and Equilibrium Study of Co(II) Adsorption from Single and Binary Aqueous Solutions by Acacia nilotica Leaf Carbon Chinese J. Chem. Eng., 22 (2014), pp. 1193-1198, 10.1016/j.cjche.2014.08.006spa
dc.relation.referencesTirkey et al., 2018 P. Tirkey, T. Bhattacharya, S. Chakraborty Optimization of fluoride removal from aqueous solution using Jamun (Syzygium cumini) leaf ash Process Saf. Environ. Prot., 115 (2018), pp. 125-138, 10.1016/j.psep.2017.10.022spa
dc.relation.referencesTony, 2021 M.A. Tony Low-cost adsorbents for environmental pollution control: a concise systematic review from the prospective of principles, mechanism and their applications J. Dispers. Sci. Technol. (2021), 10.1080/01932691.2021.1878037spa
dc.relation.referencesTu et al., 2021 W. Tu, Y. Liu, Z. Xie, M. Chen, L. Ma, G. Du, M. Zhu A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties J. Colloid Interface Sci., 593 (2021), pp. 390-407, 10.1016/j.jcis.2021.02.133spa
dc.relation.referencesUnugul and Nigiz, 2020 Unugul, T., Nigiz, F.U., 2020. Preparation and Characterization an Active Carbon Adsorbent from Waste Mandarin Peel and Determination of Adsorption Behavior on Removal of Synthetic Dye Solutions. Water. Air. Soil Pollut. https://doi.org/10.1007/s11270-020-04903-5spa
dc.relation.referencesVázquez et al., 2007 G. Vázquez, J. González-Álvarez, A.I. García, M.S. Freire, G. Antorrena Adsorption of phenol on formaldehyde-pretreated Pinus pinaster bark: Equilibrium and kinetics Bioresour. Technol., 98 (2007), pp. 1535-1540, 10.1016/j.biortech.2006.06.024spa
dc.relation.referencesVeksha et al., 2014 A. Veksha, H. McLaughlin, D.B. Layzell, J.M. Hill Pyrolysis of wood to biochar: Increasing yield while maintaining microporosity Bioresour. Technol., 153 (2014), pp. 173-179, 10.1016/j.biortech.2013.11.082spa
dc.relation.referencesVieira et al., 2021 Y. Vieira, M.S. Netto, É.C. Lima, I. Anastopoulos, M.L.S. Oliveira, G.L. Dotto An overview of geological originated materials as a trend for adsorption in wastewater treatment Geosci. Front., 101150 (2021), 10.1016/j.gsf.2021.101150spa
dc.relation.referencesVinke et al., 1994 P. Vinke, M. van der Eijk, M. Verbree, A.F. Voskamp, H. van Bekkum Modification of the surfaces of a gasactivated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia Carbon N. Y., 32 (1994), pp. 675-686, 10.1016/0008-6223(94)90089-2spa
dc.relation.referencesVishnu Priyan et al., 2021 V. Vishnu Priyan, T. Shahnaz, E. Suganya, S. Sivaprakasam, S. Narayanasamy Ecotoxicological assessment of micropollutant Diclofenac biosorption on magnetic sawdust: Phyto, Microbial and Fish toxicity studies J. Hazard. Mater., 403 (2021), Article 123532, 10.1016/j.jhazmat.2020.123532spa
dc.relation.referencesWahab et al., 2010 M.A. Wahab, S. Jellali, N. Jedidi Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling Bioresour. Technol., 101 (2010), pp. 5070-5075, 10.1016/j.biortech.2010.01.121spa
dc.relation.referencesWan Ngah and Hanafiah, 2008 W.S. Wan Ngah, M.A.K.M. Hanafiah Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies Biochem. Eng. J., 39 (2008), pp. 521-530, 10.1016/j.bej.2007.11.006spa
dc.relation.referencesWang et al., 2015a H. Wang, B. Gao, S. Wang, J. Fang, Y. Xue, K. Yang Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood Bioresour. Technol., 197 (2015), pp. 356-362, 10.1016/j.biortech.2015.08.132spa
dc.relation.referencesWang et al., 2018a H. Wang, Y. Liu, J. Ifthikar, L. Shi, A. Khan, Zhulei Chen, Zhuqi Chen Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with Γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment Bioresour. Technol., 256 (2018), pp. 269-276, 10.1016/j.biortech.2018.02.019spa
dc.relation.referencesWang and Wang, 2019 J. Wang, S. Wang Preparation, modification and environmental application of biochar: A review J. Clean. Prod. (2019), 10.1016/j.jclepro.2019.04.282spa
dc.relation.referencesWang et al., 2018b Wang, T., Zhai, Y., Zhu, Y., Li, C., Zeng, G., 2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2018.03.071spa
dc.relation.referencesWang et al., 2018c X. Wang, W. Lian, X. Sun, J. Ma, P. Ning Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution Front. Environ. Sci. Eng., 12 (2018), pp. 1-11, 10.1007/s11783-018-1066-3spa
dc.relation.referencesWang et al., 2015b Z. Wang, H. Guo, F. Shen, G. Yang, Y. Zhang, Y. Zeng, L. Wang, H. Xiao, S. Deng Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3-), and phosphate (PO43-) Chemosphere, 119 (2015), pp. 646-653, 10.1016/j.chemosphere.2014.07.084spa
dc.relation.referencesWatkins et al., 2015 D. Watkins, M. Nuruddin, M. Hosur, A. Tcherbi-Narteh, S. Jeelani Extraction and characterization of lignin from different biomass resources J. Mater. Res. Technol., 4 (2015), pp. 26-32, 10.1016/j.jmrt.2014.10.009spa
dc.relation.referencesWatson et al., 2018 Watson, J., Zhang, Y., Si, B., Chen, W.T., de Souza, R., 2018. Gasification of biowaste: A critical review and outlooks. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2017.10.003spa
dc.relation.referencesWei et al., 2015 Z. Wei, T. Xia, M. Liu, Q. Cao, Y. Xu, K. Zhu, X. Zhu Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration Front. Chem. Sci. Eng., 9 (2015), pp. 450-460, 10.1007/s11705-015-1542-2spa
dc.relation.referencesWong et al., 2020 S. Wong, N.A. Ghafar, N. Ngadi, F.A. Razmi, I.M. Inuwa, R. Mat, N.A.S. Amin Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste Sci. Rep., 10 (2020), pp. 1-13, 10.1038/s41598-020-60021-6spa
dc.relation.referencesWu et al., 2017 H. Wu, Q. Feng, H. Yang, E. Alam, B. Gao, D. Gu Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: Characterization, kinetics and mechanisms Colloids Surfaces A Physicochem. Eng. Asp., 517 (2017), pp. 63-71, 10.1016/j.colsurfa.2017.01.005spa
dc.relation.referencesXiao et al., 2020 F. Xiao, A.H. Bedane, S. Mallula, P.C. Sasi, A. Alinezhad, D. Soli, Z.M. Hagen, M.D. Mann Production of granular activated carbon by thermal air oxidation of biomass charcoal/biochar for water treatment in rural communities: A mechanistic investigation Chem. Eng. J. Adv., 4 (2020), Article 100035, 10.1016/j.ceja.2020.100035spa
dc.relation.referencesXiong et al., 2013 Z. Xiong, Z. Shihong, Y. Haiping, S. Tao, C. Yingquan, C. Hanping Influence of NH3/CO2 Modification on the Characteristic of Biochar and the CO2 Capture Bioenergy Res., 6 (2013), pp. 1147-1153, 10.1007/s12155-013-9304-9spa
dc.relation.referencesXu et al., 2021a S. Xu, J. Chen, H. Peng, S. Leng, Hui Li, W. Qu, Y. Hu, Hailong Li, S. Jiang, W. Zhou, L. Leng Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar Fuel, 291 (2021), Article 120128, 10.1016/j.fuel.2021.120128spa
dc.relation.referencesXu et al., 2021b Y. Xu, T. Bai, Q. Li, H. Yang, Y. Yan, B. Sarkar, S.S. Lam, N. Bolan Influence of pyrolysis temperature on the characteristics and lead(II) adsorption capacity of phosphorus-engineered poplar sawdust biochar J. Anal. Appl. Pyrol., 154 (2021), Article 105010, 10.1016/j.jaap.2020.105010spa
dc.relation.referencesYagub et al., 2012 M.T. Yagub, T.K. Sen, H.M. Ang Equilibrium, Kinetics, and Thermodynamics of Methylene Blue Adsorption by Pine Tree Leaves Water Air Soil Pollut., 223 (2012), pp. 5267-5282, 10.1007/s11270-012-1277-3spa
dc.relation.referencesYan et al., 2016 H. Yan, H. Yang, A. Li, R. Cheng pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water Chem. Eng. J., 284 (2016), pp. 1397-1405, 10.1016/j.cej.2015.06.030spa
dc.relation.referencesYan et al., 2021 T. Yan, Z. Wang, C. Liao, W. Xu, L. Wan Experimental data on the adsorption of water by branches and leaves as affected by different the morphological characteristics of plants Data Br., 34 (2021), Article 106689, 10.1016/j.dib.2020.106689spa
dc.relation.referencesYang et al., 2015 J. Yang, M. Yu, W. Chen Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics J. Ind. Eng. Chem., 21 (2015), pp. 414-422, 10.1016/j.jiec.2014.02.054spa
dc.relation.referencesYang et al., 2019 Yang, X., Zhang, S., Ju, M., Liu, L., 2019. Preparation and modification of biochar materials and their application in soil remediation. Appl. Sci. https://doi.org/10.3390/app9071365spa
dc.relation.referencesYao et al., 2013 X. Yao, J. Liu, G. Gong, Y. Jiang, Q. Xie Preparation and modification of activated carbon for benzene adsorption by steam activation in the presence of KOH Int. J. Min. Sci. Technol., 23 (2013), pp. 395-401, 10.1016/j.ijmst.2013.05.015spa
dc.relation.referencesYildiz and Gümüşkaya, 2007 S. Yildiz, E. Gümüşkaya The effects of thermal modification on crystalline structure of cellulose in soft and hardwood Build. Environ., 42 (2007), pp. 62-67, 10.1016/j.buildenv.2005.07.009spa
dc.relation.referencesYin et al., 2018 Z. Yin, Y. Liu, Shaobo Liu, L. Jiang, X. Tan, G. Zeng, M. Li, Sijia Liu, S. Tian, Y. Fang Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper Sci. Total Environ., 639 (2018), pp. 1530-1542, 10.1016/j.scitotenv.2018.05.130spa
dc.relation.referencesYu et al., 2001 J.C. Yu, J. Yu, W. Ho, L. Zhang Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation Chem. Commun., 1 (2001), pp. 1942-1943, 10.1039/b105471fspa
dc.relation.referencesZhang et al., 2010 C. Zhang, X. Guo, C. Song, S. Zhao, X. Wang Effects of steam and TEOS modification on HZSM-5 zeolite for 2,6-dimethylnaphthalene synthesis by methylation of 2-methylnaphthalene with methanol Catal. Today, 149 (2010), pp. 196-201, 10.1016/j.cattod.2009.04.015spa
dc.relation.referencesZhang et al., 2021 F. Zhang, S. Zhang, L. Chen, Z. Liu, J. Qin Utilization of bark waste of Acacia mangium: The preparation of activated carbon and adsorption of phenolic wastewater Ind. Crops Prod., 160 (2021), Article 113157, 10.1016/j.indcrop.2020.113157spa
dc.relation.referencesZhang et al., 2015 J. Zhang, J. Liu, R. Liu Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate Bioresour. Technol., 176 (2015), pp. 288-291, 10.1016/j.biortech.2014.11.011spa
dc.relation.referencesZhang et al., 2014 J. Zhang, F. Lü, L. Shao, P. He The use of biochar-amended composting to improve the humification and degradation of sewage sludge Bioresour. Technol., 168 (2014), pp. 252-258, 10.1016/j.biortech.2014.02.080spa
dc.relation.referencesZhou et al., 2019 R. Zhou, M. Zhang, J. Zhou, J. Wang Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd2+ Sci. Rep., 9 (2019), pp. 1-17, 10.1038/s41598-019-54105-1spa
dc.relation.referencesZhou et al., 2017 Y. Zhou, R. Zhang, K. Chen, X. Zhao, X. Gu, J. Lu Enhanced adsorption and photo-degradation of bisphenol A by β-cyclodextrin modified pine sawdust in an aquatic environment J. Taiwan Inst. Chem. Eng., 78 (2017), pp. 510-516, 10.1016/j.jtice.2017.06.025spa
dc.relation.referencesZieliński et al., 2016 M. Zieliński, M. Zielińska, M. Dębowski Ammonium removal on zeolite modified by ultrasound Desalin. Water Treat., 57 (2016), pp. 8748-8753, 10.1080/19443994.2015.1024750spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal