Mostrar el registro sencillo del ítem

dc.contributor.authorHoffmann Sampaio, Carlosspa
dc.contributor.authorGrigore Cazacliu, Bogdanspa
dc.contributor.authorMonteiro Ambrós, Wesleispa
dc.contributor.authorAndré Kronbauer, Márciospa
dc.contributor.authorM. C. Tubino, Rejanespa
dc.contributor.authorC. C. Dal Molin, Denisespa
dc.contributor.authorOliva Moncunill, Josepspa
dc.contributor.authorL. Miltzarek, Gérsonspa
dc.contributor.authorP. Waskow, Regisspa
dc.contributor.authorL. G. dos Santos, Vivianespa
dc.contributor.authorF. O. Silva, Luisspa
dc.date.accessioned2021-09-01T17:20:49Z
dc.date.available2021-09-01T17:20:49Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/11323/8601spa
dc.description.abstractThis paper presents a physical characterization for the recycling into new concretes of three comminuted concretes: C16/20 (“ordinary concrete”), C50/60 (“high strength concrete”), and C70/85 (“very high strength concrete”). The top size of the crushed concretes was 19.1 mm and the size range was 4.75 to 19.1 mm. The characterization was carried out with coarse aggregate liberation, to be prepared and concentrated in a gravity concentration process. The density distribution of the coarse aggregate, cement paste, and sand was carried out in different size ranges (4.75/19.1 mm; 4.75/8.0 mm; 8.0/12.5 mm; and 12.5/19.1 mm) for the three concretes studied. The form factor of the samples, as well as the porosity determination of particles in different density ranges, are presented. The obtained results indicate that the coarse aggregate liberation was more intensive for the low resistance concrete (C16/20), but a reasonable coarse aggregate recovery is possible for all concretes.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceMineralsspa
dc.subjectconcretespa
dc.subjectrecyclingspa
dc.subjectdensity distributionspa
dc.subjectliberationspa
dc.subjectgravity concentrationspa
dc.titleCharacterization of Demolished Concretes with Three Different Strengths for Recycling as Coarse Aggregatespa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.mdpi.com/2075-163X/11/8/803/htmspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.3390/min11080803spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesEuropean Commission. 2011. Available online: http://ec.europa.eu/environment/waste/pdf/2011_CDW_Report.pdf (accessed on 5 June 2021).spa
dc.relation.referencesYahya, K.; Boussabaine, H. Quantifying environmental impacts and eco-costs from brick waste. Architect. Eng. Des. Manag. 2010, 6, 189–206spa
dc.relation.referencesWong, C.L.; Mo, K.H.; Yap, S.P.; Alengaram, U.J.; Ling, T.C. Potential use of brick waste as alternate concrete-making materials: A review. J. Clean. Prod. 2018, 195, 226–239spa
dc.relation.referencesReis, G.S.; Quattrone, M.; Ambrós, W.M.; Cazacliu, B.G.; Sampaio, C.H. Current Applications of Recycled Aggregates from Construction and Demolition: A Review. Materials 2021, 14, 1700spa
dc.relation.referencesNunes, K.R.A.; Mahler, C.F.; Valle, R.; Neves, C. Evaluation of investments in recycling centres for construction and demolition wastes in Brazilian municipalities. Waste Manag. 2007, 27, 1531–1540spa
dc.relation.referencesNeto, R.O.; Gastineau, P.; Cazacliu, B.G.; Guen, L.L.; Paranhos, R.S.; Petter, C.O. An economic analysis of the processing technologies in CDW recycling platforms. Waste Manag. 2017, 60, 277–289spa
dc.relation.referencesCazacliu, B.; Sampaio, C.H.; Petter, C.O.; Miltzarek, G.L.; Guen, L.L.; Paranhos, R.S.; Huchet, F.; Kirchheim, A.P. The potential of using air jigging to sort recycled aggregates. J. Clean. Prod. 2014, 66, 46–53spa
dc.relation.referencesCoelho, A.; Brito, J. Economic viability analysis of a construction and demolition waste recycling plant in Portugal e part I: Location, materials, technology and economic analysis. J. Clean. Prod. 2013, 39, 338–352spa
dc.relation.referencesWu, Z.; Yu, A.T.W.; Shen, L.; Liu, G. Quantifying construction and demolition waste: An analytical review. Waste Manag. 2014, 34, 1683–1692.spa
dc.relation.referencesHua, K.; Chen, Y.; Naz, F.; Zeng, C.; Cao, S. Separation studies of concrete and brick from construction and demolition waste. Waste Manag. 2019, 85, 396–404spa
dc.relation.referencesBehera, M.; Bhattacharyya, S.; Minocha, A.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516spa
dc.relation.referencesSilva, R.; Brito, J.; Dhir, R. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201–217spa
dc.relation.referencesMalešev, M.; Radonjanin, V.; Marinković, S. Recycled Concrete as Aggregate for Structural Concrete Production. Sustainability 2010, 2, 1204–1225spa
dc.relation.referencesXuan, D.; Poon, C.S.; Zheng, W. Management and sustainable utilization of processing wastes from ready-mixed concrete plants in construction: A review. Resour. Conserv. Recycl. 2018, 136, 238–247spa
dc.relation.referencesZega, C.J.; Villagran-Zaccardi, Y.A.; Maio, A.A.D. Effect of natural coarse aggregate type on the physical and mechanical properties of recycled coarse aggregates. Mater. Struct. 2010, 43, 195–202.spa
dc.relation.referencesTam, V.W.Y. Comparing the implementation of concrete recycling in the Australian and Japanese construction industries. J. Clean. Prod. 2009, 17, 688–702.spa
dc.relation.referencesGuo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.; Zhang, H.; Wang, Y. Durability of recycled aggregate concrete: A review. Cem. Concr. Compos. 2018, 89, 251–259.spa
dc.relation.referencesBravo, M.; Brito, J.; Pontes, J.; Evangelista, L. Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 2015, 99, 59–74.spa
dc.relation.referencesEuropean Aggregates Association. Available online: http://www.uepg.eu/ (accessed on 5 June 2021).spa
dc.relation.referencesU.S. Geological Survey. 2021. Available online: https://www.usgs.gov/centers/nmic/natural-aggregates-statistics-and-information (accessed on 25 June 2021).spa
dc.relation.referencesKang, M.; Weibin, L. Effect of the Aggregate Size on Strength Properties of Recycled Aggregate Concrete. Adv. Mater. Sci. Eng. 2018, 2018, 2428576.spa
dc.relation.referencesGomes, P.C.C.; Ulsen, C.; Pereira, F.A.; Quattrone, M.; Angulo, S.C. Comminution and sizing processes of concrete block waste as recycled aggregates. Waste Manag. 2015, 45, 171–179.spa
dc.relation.referencesZhang, Z.; Zhang, Y.; Yan, C.; Liu, Y. Influence of crushing index on properties of recycled aggregates pervious concrete. Constr. Build. Mater. 2017, 135, 112–118.spa
dc.relation.referencesPark, S.S.; Kim, S.J.; Chen, K.Q.; Lee, Y.J.; Lee, S.B. Crushing characteristics of a recycled aggregate from waste concrete. Constr. Build. Mater. 2018, 160, 100–105spa
dc.relation.referencesUlsen, C.; Tseng, E.; Angulo, S.C.; Landmann, M.; Contessotto, R.; Balbo, R.; Kahn, H. Concrete aggregates properties crushed by jaw and impact secondary crushing. J. Mater. Res. Technol. 2019, 8, 494–502.spa
dc.relation.referencesSampaio, C.H.; Tavares, L.M.M. Beneficiamento Gravimétrico: Uma Introdução aos Processos de Concentração Mineral e Reciclagem de Materiais por Densidade; UFRGS: Porto Alegre, Brazil, 2005.spa
dc.relation.referencesAkbarnezhad, A.; Ong, K.C.G.; Zhang, M.H.; Tam, C.T. Acid Treatment Technique for Determining the Mortar Content of Recycled Concrete Aggregates. J. Test. Eval. 2013, 41, 441–450.spa
dc.relation.referencesRecena, F.A.P. Técnicas Aplicáveis a Trabalhos de Restauração de Edificações de Interesse Histórico e Cultural; IPSDP: Porto Alegre, Brazil, 2014; p. 207. ISBN 978-85-62597-21-3.spa
dc.relation.referencesMayer, F. Fundamentals of Potential Theory of the Jigging Process. In Proceedings of the 7th International Mineral Processing Congress, Part 2, Columbia University, NY, USA, 20–24 September 1964; pp. 75–86.spa
dc.relation.referencesSampaio, C.H.; Cazacliu, B.G.; Ambrós, W.M.; Kronbauer, M.A.; Tubino, R.M.C.; Molin, D.C.C.D.; Moncunill, J.O.; Miltzarek, G.L.; Waskow, R.P.; Santos, V.L.G. Demolished concretes recycling by the use of pneumatic jigs. Waste Manag Res. 2020, 38, 392–399.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International