Mostrar el registro sencillo del ítem

dc.contributor.authorAkinyemi, Segun Ajayispa
dc.contributor.authorNyakuma, Bemgba Bevanspa
dc.contributor.authorJauro, Aliyuspa
dc.contributor.authorOlanipekun, Timileyinspa
dc.contributor.authorMudzielwana, Rabelanispa
dc.contributor.authorGitari, Wilsonspa
dc.contributor.authorSaikia, Binoyspa
dc.contributor.authorDotto, Guilherme Luizspa
dc.contributor.authorHower, J. Cspa
dc.contributor.authorSilva, Luis F. Ospa
dc.date.accessioned2021-09-03T17:05:05Z
dc.date.available2021-09-03T17:05:05Z
dc.date.issued2021-07-14
dc.identifier.issn00162361spa
dc.identifier.urihttps://hdl.handle.net/11323/8626spa
dc.description.abstractThe rare earth elements (REE) possess a beneficial combination of chemical and physical properties, making them valuable for most advanced branches of engineering and technology. Alternative sources of REE are desirable due to limited reserves of conventional REE containing minerals over the world combined with disproportionate supply over demand in the commodity markets. This study investigated the occurrence of REE and carbon nanotubes (CNTs) in Cretaceous Nigerian coals for prospective industrial applications. Results show that the coals’ crystalline mineral matter comprises quartz, kaolinite, and illite with minor quantities of feldspar, hematite, magnetite, calcite, dolomite, which indicate detrital mineral origins. Elemental relationships (such as Al2O3/TiO2, Cr/Th vs. Sc/Th, and Co/Th vs. La/Sc) suggest sediment-source regions with mafic, intermediate or felsic compositions. REE are either strongly fractionated or characterized by light-enrichment along with outlook coefficient (Coutl) values that suggest the coals are prospective substitute sources for REE and yttrium (REY) recovery. Several minerals including jarosite, goethite, epsomite, ferrohexahydrite, natrojarosite, rozenite, and gypsum were detected in trace amounts. REE mineral phases were not identified but only amorphous phases containing Ce, La, Nd, Th, Pr, Sm, Gd, Tb, Dy, Ho, and Hf. Maceral composition (high vitrinite), presence of iron-containing minerals (hematite and magnetite), high carbon contents, reduced volatile matter and low ash content favoured the formation of naturally occurring multi-walled carbon nanotube (MWCNTs) structures in Maiganga (MGA) coal. Hence, the present study is the first scientific report on the naturally occurring REEs and MWC nanophases in Cretaceous coals from the Benue Trough. © 2021spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherFuelspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceFuelspa
dc.subjectCretaceous coalspa
dc.subjectMulti-walled carbon nanotubesspa
dc.subjectNano-mineralogyspa
dc.subjectNano-particlesspa
dc.subjectRare earth elementsspa
dc.subjectTrace elementsspa
dc.titleRare earth elements study of cretaceous coals from benue trough basin, Nigeria: modes of occurrence for greater sustainability of miningspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S0016236121013478?via%3Dihubspa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.fuel.2021.121468spa
dc.date.embargoEnd2023-07-14
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] Seredin VV, Finkelman RB. Metalliferous coals: a review of the main genetic and geochemical types. Int J Coal Geol 2008;76(4):253–89.spa
dc.relation.references[2] Seredin VV, Dai S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int J Coal Geol 2012;94:67–93.spa
dc.relation.references[3] Seredin VV, Dai S, Sun Y, Chekryzhov IY. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl Geochem 2013;31:1–11.spa
dc.relation.references[4] Saikia BK, Ward CR, Oliveira ML, Hower JC, De Leao F, Johnston MN, et al. Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal derived fly ashes from Assam (North-east India): a multi-faceted analytical approach. Int J Coal Geol 2015;137:19–37.spa
dc.relation.references[5] Taggart RK, Hower JC, Dwyer GS, Hsu-Kim H. Trends in the rare earth element content of US-based coal combustion fly ashes. Environ Sci Technol 2016;50(11): 5919–26.spa
dc.relation.references[6] Hower JC, Eble CF, Dai S, Belkin HE. Distribution of rare earth elements in eastern Kentucky coals: indicators of multiple modes of enrichment? Int J Coal Geol 2016;160:73–81.spa
dc.relation.references[7] Hower JC, Granite EJ, Mayfield DB, Lewis AS, Finkelman RB. Notes on contributions to the science of rare earth element enrichment in coal and coal combustion byproducts. Minerals 2016;6(2):32.spa
dc.relation.references[8] Arbuzov S, Chekryzhov IY, Finkelman R, Sun Y, Zhao C, Il’enok S, et al. Comments on the geochemistry of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with examples from coals of north Asia (Siberia, Russian far East, North China, Mongolia, and Kazakhstan). Int J Coal Geol 2019;206:106–20.spa
dc.relation.references[9] Lin R, Howard BH, Roth EA, Bank TL, Granite EJ, Soong Y. Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel 2017;200:506–20.spa
dc.relation.references[10] Humphries M. Rare earth elements: the global supply chain. Congressional Research Service. Washington: The Library of Congress; 2013.spa
dc.relation.references[11] Pan J, Zhou C, Tang M, Cao S, Liu C, Zhang N, et al. Study on the modes of occurrence of rare earth elements in coal fly ash by statistics and a sequential chemical extraction procedure. Fuel 2019;237:555–65.spa
dc.relation.references[12] Haque N, Hughes A, Lim S, Vernon C. Rare earth elements: overview of mining, mineralogy, uses sustainability and environmental impact. Resources 2014;3(4): 614–35.spa
dc.relation.references[13] Dai S, Xie P, Jia S, Ward CR, Hower JC, Yan X, et al. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: genetic implications from geochemical and mineralogical data. Ore Geol Rev 2017;80:1–17.spa
dc.relation.references[14] Asian Metals. Rare earth minerals and classification; 2020. Available from: http://metalpedia.asianmetal.com. [Accessed 23rd September 2020].spa
dc.relation.references[15] Koltun P, Tharumarajah A. Life cycle impact of rare earth elements. Int Scholarly Res Notices 2014;2014.spa
dc.relation.references[16] Seredin V. A new method for primary evaluation of the outlook for rare earth element ores. Geol Ore Deposits 2010;52(5):428–33.spa
dc.relation.references[17] Van Gosen BS, Verplanck PL, Seal RR, Long KR, Gambogi J. Rare-earth elements of Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply. In: Schulz KJ, DeYoung JHJ, Seal RR, Bradley DC, editors. US Geological Survey Professional Paper 1802. United States of America (USA): US Geological Survey; 2017.spa
dc.relation.references[18] Kanazawa Y, Kamitani M. Rare earth minerals and resources in the world. J Alloy Compd 2006;408:1339–43.spa
dc.relation.references[19] US DoE. Rare earth elements from coal and coal by-products; 2017. Available from: https://www.energy.gov/sites/prod/files/2018/01/f47/EXEC-2014- 000442% [Accessed 10th September 2020].spa
dc.relation.references[20] Bauer D, Diamond D, Li J, McKittrick M, Sandalow D, Telleen P. Critical Materials Strategy 2011. Available from: https://www.energy.gov/sites/prod/files/DOE_ CMS2011_FINAL_Full. [Accessed 12th September 2020].spa
dc.relation.references[21] Preston J, Cole P, Craig W, Feather A. The recovery of rare earth oxides from a phosphoric acid by-product. Part 1: Leaching of rare earth values and recovery of a mixed rare earth oxide by solvent extraction. Hydrometallurgy 1996;41(1): 1–19.spa
dc.relation.references[22] Goldschmidt V. Rare elements in coal ashes. Ind Eng Chem 1935;27(9):1100–2.spa
dc.relation.references[23] Schofield A, Haskin L. Rare-earth distribution patterns in eight terrestrial materials. Geochim Cosmochim Acta 1964;28(4):437–46.spa
dc.relation.references[24] Zubovic P, Stadnichenko T, Sheffey NB. Distribution of minor elements in coals of the Appalachian region. US Government Printing Office; 1966.spa
dc.relation.references[25] Finkelman RB, Stanton RW. Identification and significance of accessory minerals from bituminous coal. Fuel 1978;57(12):763–8.spa
dc.relation.references[26] Hood MM, Taggart RK, Smith RC, Hsu-Kim H, Henke KR, Graham U, et al. Rare earth element distribution in fly ash derived from the Fire Clay coal, Kentucky. Coal Combust Gasification Prod 2017;9(1):22–33.spa
dc.relation.references[27] Honaker RQ, Zhang W, Yang X, Rezaee M. Conception of an integrated flowsheet for rare earth elements recovery from coal coarse refuse. Miner Eng 2018;122: 233–40.spa
dc.relation.references[28] Hower JC, Groppo JG, Henke KR, Graham UM, Hood MM, Joshi P, et al. Ponded and landfilled fly ash as a source of rare earth elements from a Kentucky power plant. Coal Combust Gasification Prod 2017;9(1):1–21.spa
dc.relation.references[29] King JF, Taggart RK, Smith RC, Hower JC, Hsu-Kim H. Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash. Int J Coal Geol 2018; 195:75–83.spa
dc.relation.references[30] Taggart RK, Hower JC, Hsu-Kim H. Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. Int J Coal Geol 2018;196:106–14.spa
dc.relation.references[31] Smith RC, Taggart RK, Hower JC, Wiesner MR, Hsu-Kim H. Selective recovery of rare earth elements from coal fly ash leachates using liquid membrane processes. Environ Sci Technol 2019;53(8):4490–9.spa
dc.relation.references[32] Vass CR, Noble A, Ziemkiewicz PF. The occurrence and concentration of rare earth elements in acid mine drainage and treatment byproducts. Part 2: regional survey of northern and central Appalachian coal basins. Mining Metal Explor 2019;36(5):917–29.spa
dc.relation.references[33] Zhang W, Honaker RQ. Rare earth elements recovery using staged precipitation from leachate generated from coarse coal refuse. Int J Coal Geol 2018;195: 189–99.spa
dc.relation.references[34] Zhang W, Honaker R. Process development for the recovery of rare earth elements and critical metals from an acid mine leachate. Miner Eng 2020;153:106382.spa
dc.relation.references[35] Li D, Tang Y, Deng T, Chen K, Liu D. Geochemistry of rare earth elements in coal—a case study from Chongqing, southwestern China. Energy Explor Exploit 2008;26(6):355–62.spa
dc.relation.references[36] Kolker A, Scott C, Hower JC, Vazquez JA, Lopano CL, Dai S. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. Int J Coal Geol 2017;184:1–10.spa
dc.relation.references[37] Montross S, Circe AV, Falcon A, Poston J, Mark M. Characterization of rare earth element minerals in coal utilization by-products and associated clay deposits from Appalachian Basin coal resources. In: September -, ed. 34th International Pittsburgh Coal Conference Pittsburgh, Pennsylvania, USA.: PCC; 2017.spa
dc.relation.references[38] Hower JC, Cantando E, Eble CF, Copley GC. Characterization of stoker ash from the combustion of high-lanthanide coal at a Kentucky bourbon distillery. Int J Coal Geol 2019;213:103260.spa
dc.relation.references[39] Hower JC, Qian D, Briot NJ, Santillan-Jimenez E, Hood MM, Taggart RK, et al. Nano-scale rare earth distribution in fly ash derived from the combustion of the fire clay coal, Kentucky. Minerals 2019;9(4):206.spa
dc.relation.references[40] Hower JC, Qian D, Briot NJ, Henke KR, Hood MM, Taggart RK, et al. Rare earth element associations in the Kentucky State University stoker ash. Int J Coal Geol 2018;189:75–82.spa
dc.relation.references[41] Dai S, Finkelman RB. Coal as a promising source of critical elements: progress and future prospects. Int J Coal Geol 2018;186:155–64.spa
dc.relation.references[42] Silva LF, Crissien TJ, Schneider IL, Blanco EP, ´ Sampaio CH. Nanometric particles of high economic value in coal fire region: opportunities for social improvement. J Cleaner Prod 2020;256:120480.spa
dc.relation.references[43] Silva LF, Crissien TJ, Sampaio CH, Hower JC, Dai S. Occurrence of carbon nanotubes and implication for the siting of elements in selected anthracites. Fuel 2020;263:116740.spa
dc.relation.references[44] Hower JC, Groppo JG, Joshi P, Preda DV, Gamliel DP, Mohler DT, et al. Distribution of lanthanides, yttrium, and scandium in the pilot-scale beneficiation of fly ashes derived from eastern Kentucky coals. Minerals 2020;10(2):105.spa
dc.relation.references[45] Hower JC, Dai S, Seredin VV, Zhao L, Kostova IJ, Silva LF, et al. A note on the occurrence of yttrium and rare earth elements in coal combustion products. Coal Combust Gasification Prod 2013;5(2):39–47.spa
dc.relation.references[46] Blissett R, Smalley N, Rowson N. An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel 2014; 119:236–9.spa
dc.relation.references[47] Dai S, Zhao L, Hower JC, Johnston MN, Song W, Wang P, et al. Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements. Energy Fuels 2014;28(2):1502–14.spa
dc.relation.references[48] Liu J, Dai S, He X, Hower JC, Sakulpitakphon T. Size-dependent variations in fly ash trace element chemistry: examples from a Kentucky power plant and with emphasis on rare earth elements. Energy Fuels 2017;31(1):438–47.spa
dc.relation.references[49] Fatoye FB, Gideon YB. Appraisal of the economic geology of Nigerian coal resources. J Environ Earth Sci 2013;3(11):25–31.spa
dc.relation.references[50] Benkhelil J. The origin and evolution of the Cretaceous Benue Trough (Nigeria). J African Earth Sci (and the Middle East) 1989;8(2–4):251–82.spa
dc.relation.references[51] Petters SW. Central west African Cretaceous-Tertiary benthic foraminifera and stratigraphy. Palaeontographica Abteilung A 1982:1–104.spa
dc.relation.references[52] Obaje N, Abaa S, Najime T, Suh C. Economic geology of Nigerian coal resources-a brief review. Africa Geosci Rev 1999;6:71–82.spa
dc.relation.references[53] Olade M. Evolution of Nigeria’s Benue Trough (Aulacogen): a tectonic model. Geol Mag 1975;112(6):575–83.spa
dc.relation.references[54] Nwajide C. Cretaceous sedimentation and paleogeography of the central Benue Trough. The Benue Trough structure and Evolution International Monograph Series, Braunschweig 1990:19-38.spa
dc.relation.references[55] Idowu J, Ekweozor C. Petroleum potential of Cretaceous shales in the Upper Benue trough, Nigeria. J Petrol Geol 1993;16(3):249–64.spa
dc.relation.references[56] Murat R. Stratigraphy and paleogeography of the Cretaceous and Lower Tertiary in southern Nigeria. African Geol 1972;1(1):251–66.spa
dc.relation.references[57] Reyment RA. Aspects of the geology of Nigeria: the stratigraphy of the Cretaceous and Cenozoic deposits. Ibadan University Press; 1965.spa
dc.relation.references[58] Nwachukwu S. The tectonic evolution of the southern portion of the Benue Trough, Nigeria. Geol Magazine 1972;109(5):411–9.spa
dc.relation.references[59] Obaje NG. Geology and mineral resources of Nigeria. Berlin, Germany: Springer, Berlin, Heidelberg; 2009.spa
dc.relation.references[60] ASTM International. ASTM D2013/D2013M-12 Standard Practice for preparing coal samples for analysis. West Conshohocken, PA, USA: ASTM International; 2012.spa
dc.relation.references[61] ASTM International. ASTM D7582–12 standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis. West Conshohocken, PA, USA: ASTM International; 2012.spa
dc.relation.references[62] Standard A. D4239-12. Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion ASTM International, West Conshohocken, PA 2012.spa
dc.relation.references[63] ASTM International. ASTM D3176–15 standard practice for ultimate analysis of coal and coke. West Conshohocken, PA, USA: ASTM International; 2015.spa
dc.relation.references[64] ICCP. The new vitrinite classification (ICCP System 1994). Fuel 1998;77(5): 349–58.spa
dc.relation.references[65] ICCP. The new inertinite classification (ICCP System 1994). Fuel 2001;80(4): 459–71.spa
dc.relation.references[66] Pickel W, Kus J, Flores D, Kalaitzidis S, Christanis K, Cardott B, et al. Classification of liptinite–ICCP System 1994. Int J Coal Geol 2017;169:40–61.spa
dc.relation.references[67] Sýkorova ´ I, Pickel W, Christanis K, Wolf M, Taylor G, Flores D. Classification of huminite—ICCP System 1994. Int J Coal Geol 2005;62(1–2):85–106.spa
dc.relation.references[68] Akinyemi S, Gitari W, Akinlua A, Petrik L. Mineralogy and geochemistry of sub bituminous coal and its combustion products from Mpumalanga Province, South Africa. Analytical Chemistry. InTech; 2012.spa
dc.relation.references[69] Cutruneo CM, Oliveira ML, Ward CR, Hower JC, de Brum IA, Sampaio CH, et al. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: demonstration of electron beam applications. Int J Coal Geol 2014;130:33–52.spa
dc.relation.references[70] Speight JG. The chemistry and technology of coal. Third Edition ed. USA: CRC Press; 2012.spa
dc.relation.references[71] Ryemshak SA, Jauro A. Proximate analysis, rheological properties and technological applications of some Nigerian coals. Int J Ind Chem 2013;4(1):7.spa
dc.relation.references[72] Obaje N, Ligouis B. Petrographic evaluation of the depositional environments of the Cretaceous Obi/Lafia coal deposits in the Benue Trough of Nigeria. J Afr Earth Sc 1996;22(2):159–71.spa
dc.relation.references[73] Nyakuma B, Jauro A, Oladokun O, Bello A, Alkali H, Modibo M, et al. Physicochemical, mineralogical, and thermogravimetric properties of newly discovered Nigerian coals. Pet Coal 2018;60(4):641–9.spa
dc.relation.references[74] Nyakuma BB, Jauro A. Chemical and pyrolytic thermogravimetric characterization of nigerian bituminous coals. GeoScience Eng 2016;62(3):1–5.spa
dc.relation.references[75] Yossifova MG, Eskenazy GM, Valˇceva SP. Petrology, mineralogy, and geochemistry of submarine coals and petrified forest in the Sozopol Bay, Bulgaria. Int J Coal Geol 2011;87(3–4):212–25.spa
dc.relation.references[76] Hackley PC, SanFilipo JR. Organic petrology and geochemistry of Eocene Suzak bituminous marl, north-central Afghanistan: depositional environment and source rock potential. Mar Pet Geol 2016;73:572–89.spa
dc.relation.references[77] Fu B, Liu G, Liu Y, Cheng S, Qi C, Sun R. Coal quality characterization and its relationship with the geological process of the Early Permian Huainan coal deposits, southern North China. J Geochem Explor 2016;166:33–44.spa
dc.relation.references[78] Quaderer A, Mastalerz M, Schimmelmann A, Drobniak A, Bish D, Wintsch R. Dike-induced thermal alteration of the Springfield Coal Member (Pennsylvanian) and adjacent clastic rocks, Illinois Basin, USA. Int J Coal Geol 2016;166:108–17.spa
dc.relation.references[79] Burwash R, Culbert R. Multivariate geochemical and mineral patterns in the Precambrian basement of western Canada. Can J Earth Sci 1976;13(1):1–18.spa
dc.relation.references[80] Jarrar G, Baumann A, Wachendorf H. Age determinations in the Precambrian basement of the Wadi Araba area, southwest Jordan. Earth Planet Sci Lett 1983; 63(2):292–304.spa
dc.relation.references[81] Dill H. A review of mineral resources in Malawi: with special reference to aluminium variation in mineral deposits. J Afr Earth Sc 2007;47(3):153–73.spa
dc.relation.references[82] Yossifova MG. Mineral and inorganic chemical composition of the Pernik coal, Bulgaria. Int J Coal Geol 2007;72(3–4):268–92.spa
dc.relation.references[83] Ward CR. Analysis and significance of the mineral matter in coal seams. Int J Coal Geol 2002;50(1–4):135–68.spa
dc.relation.references[84] Hower JC, Eble CF, O’Keefe JM, Dai S, Wang P, Xie P, et al. Petrology, palynology, and geochemistry of grey hawk coal (early Pennsylvanian, Langsettian) in eastern Kentucky, USA. Minerals 2015;5(3):592–622.spa
dc.relation.references[85] Dai S, Ren D, Chou C-L, Finkelman RB, Seredin VV, Zhou Y. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. Int J Coal Geol 2012;94:3–21.spa
dc.relation.references[86] Hayashi K-I, Fujisawa H, Holland HD, Ohmoto H. Geochemistry of~ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Acta 1997;61(19):4115–37.spa
dc.relation.references[87] Dai S, Liu J, Ward CR, Hower JC, Xie P, Jiang Y, et al. Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: a comparative study with Ge-rich coals and a formation model for coal hosted Ge ore deposit. Ore Geol Rev 2015;71:318–49.spa
dc.relation.references[88] Finkelman RB. Modes of occurrence of environmentally-sensitive trace elements in coal. Environmental aspects of trace elements in coal. Springer; 1995. p. 24–50.spa
dc.relation.references[89] Finkelman RB. Potential health impacts of burning coal beds and waste banks. Int J Coal Geol 2004;59(1–2):19–24.spa
dc.relation.references[90] Riley K, French D, Farrell O, Wood R, Huggins F. Modes of occurrence of trace and minor elements in some Australian coals. Int J Coal Geol 2012;94:214–24.spa
dc.relation.references[91] Dai S, Li D, Ren D, Tang Y, Shao L, Song H. Geochemistry of the late Permian No. 30 coal seam, Zhijin Coalfield of Southwest China: influence of a siliceous low temperature hydrothermal fluid. Appl Geochem 2004;19(8):1315–30.spa
dc.relation.references[92] Jochum KP, Weis U, Schwager B, Stoll B, Wilson SA, Haug GH, et al. Reference values following ISO guidelines for frequently requested rock reference materials. Geostand Geoanal Res 2016;40(3):333–50.spa
dc.relation.references[93] Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 2005;29(3):333–8.spa
dc.relation.references[94] Ketris M, Yudovich YE. Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals. Int J Coal Geol 2009;78(2):135–48.spa
dc.relation.references[95] Dai S, Ren D, Tang Y, Yue M, Hao L. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Int J Coal Geol 2005; 61(1–2):119–37.spa
dc.relation.references[96] Ren D, Zhao F, Wang Y, Yang S. Distributions of minor and trace elements in Chinese coals. Int J Coal Geol 1999;40(2–3):109–18.spa
dc.relation.references[97] Crowley SS, Stanton RW, Ryer TA. The effects of volcanic ash on the maceral and chemical composition of the C coal bed, Emery Coal Field, Utah. Org Geochem 1989;14(3):315–31.spa
dc.relation.references[98] Hower JC, Ruppert LF, Eble CF. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int J Coal Geol 1999;39(1–3):141–53.spa
dc.relation.references[99] Dai S, Zeng R, Sun Y. Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. Int J Coal Geol 2006;66(3):217–26.spa
dc.relation.references[100] Burger K, Zhou Y, Tang D. Synsedimentary volcanic-ash-derived illite tonsteins in Late Permian coal-bearing formations of southwestern China. Int J Coal Geol 1990;15(4):341–56.spa
dc.relation.references[101] Burger K, Bandelow FK, Bieg G. Pyroclastic kaolin coal–tonsteins of the Upper Carboniferous of Zonguldak and Amasra, Turkey. Int J Coal Geol 2000;45(1): 39–53.spa
dc.relation.references[102] Zhao L, Ward CR, French D, Graham IT. Mineralogical composition of Late Permian coal seams in the Songzao Coalfield, southwestern China. Int J Coal Geol 2013;116:208–26.spa
dc.relation.references[103] Ward CR. Mineral matter in low-rank coals and associated strata of the Mae Moh Basin, northern Thailand. Int J Coal Geol 1991;17(1):69–93.spa
dc.relation.references[104] Saikia BK, Ward CR, Oliveira ML, Hower JC, Baruah BP, Braga M, et al. Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals. Int J Coal Geol 2014;121:26–34.spa
dc.relation.references[105] Finkelman RB. Modes of occurrence of potentially hazardous elements in coal: levels of confidence. Fuel Process Technol 1994;39(1–3):21–34.spa
dc.relation.references[106] Swaine DJ. Why trace elements are important. Fuel Process Technol 2000;65: 21–33.spa
dc.relation.references[107] Bouska V, Pesek J, Sykorova I. Probable modes of occurrence of chemical elements in coal. Acta Montana 2000;117:53–90.spa
dc.relation.references[108] Zhao C, Duan D, Li Y, Zhang J. Rare earth elements in No. 2 coal of Huangling mine, Huanglong coalfield, China. Energy Explor Exploitation 2012;30(5): 803–18.spa
dc.relation.references[109] Hower JC, Eble CF, Backus JS, Xie P, Liu J, Fu B, et al. Aspects of rare earth element enrichment in Central Appalachian coals. Appl Geochem 2020;120: 104676.spa
dc.relation.references[110] Mao J, Lehmann B, Du A, Zhang G, Ma D, Wang Y, et al. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance. Econ Geol 2002;97(5):1051–61.spa
dc.relation.references[111] Sholkovitz ER. The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat Geochem 1995;1(1):1–34.spa
dc.relation.references[112] Pourret O, Gruau G, Dia A, Davranche M, Molenat J. Colloidal control on the distribution of rare earth elements in shallow groundwaters. Aquat Geochem 2010;16(1):31.spa
dc.relation.references[113] Silva LF, Santosh M, Schindler M, Gasparotto J, Dotto GL, Oliveira ML, et al. Nanoparticles in fossil and mineral fuel sectors and their impact on the environment and human health: a review and perspective. Gondwana Res 2021.spa
dc.relation.references[114] Silva LF, Pinto D, Dotto GL, Hower JC. Nanomineralogy of evaporative precipitation of efflorescent compounds from coal mine drainage. Geosci Front 2020.spa
dc.relation.references[115] Silva LF, Pinto D, Dotto GL. A tool for the realistic study of nanoparticulate coal rejects. J Cleaner Prod 2021;278:121916.spa
dc.relation.references[116] Silva LF, Oliveira ML, Philippi V, Serra C, Dai S, Xue W, et al. Geochemistry of carbon nanotube assemblages in coal fire soot, Ruth Mullins fire, Perry County, Kentucky. Int J Coal Geol 2012;94:206–13.spa
dc.relation.references[117] Silva L, Sampaio C, Guedes A, De Vallejuelo S-F-O, Madariaga J. Multianalytical approach to the characterisation of minerals associated with coals and the diagnosis of their potential risk by using combined instrumental microspectroscopic techniques and thermodynamic speciation. Fuel 2012;94: 52–63.spa
dc.relation.references[118] Quispe D, P´erez-Lopez ´ R, Silva LF, Nieto JM. Changes in the mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 2012;94:495–503.spa
dc.relation.references[119] Akinyemi SA, Gitari WM, Petrik LF, Nyakuma BB, Hower JC, Ward CR, et al. Environmental evaluation and nano-mineralogical study of fresh and unsaturated weathered coal fly ashes. Sci Total Environ 2019;663:177–88.spa
dc.relation.references[120] Silva L, Oliveira M. Nanominerals and ultrafine particles from Brazilian coal fires. Coal and peat fires: a global perspective. Amsterdam: Elsevier; 2015. p. 37–55.spa
dc.relation.references[121] Eskenazy GM. Rare earth elements and yttrium in lithotypes of Bulgarian coals. Org Geochem 1987;11(2):83–9.spa
dc.relation.references[122] Eskenazy GM. Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria. Int J Coal Geol 1987;7(3):301–14.spa
dc.relation.references[123] Eskenazy G. Aspects of the geochemistry of rare earth elements in coal: an experimental approach. Int J Coal Geol 1999;38(3–4):285–95.spa
dc.relation.references[124] Birk D, White JC. Rare earth elements in bituminous coals and underclays of the Sydney Basin, Nova Scotia: Element sites, distribution, mineralogy. Int J Coal Geol 1991;19(1–4):219–51.spa
dc.relation.references[125] Laudal DA, Benson SA, Addleman RS, Palo D. Leaching behaviour of rare earth elements in Fort Union lignite coals of North America. Int J Coal Geol 2018;191: 112–24.spa
dc.relation.references[126] Oliveira ML, Pinto D, Tutikian BF, da Boit K, Saikia BK, Silva LF. Pollution from uncontrolled coal fires: continuous gaseous emissions and nanoparticles from coal mines. J Cleaner Prod 2019;215:1140–8.spa
dc.relation.references[127] Oliveira ML, Da Boit K, Schneider IL, Teixeira EC, Borrero TJC, Silva LF. Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: mineral surface chemistry and nanoparticle-aggregation control for health studies. J Cleaner Prod 2018;188:662–9.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3148]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal