Mostrar el registro sencillo del ítem

dc.contributor.authorDuque, Josespa
dc.contributor.authorFuentes Lacouture, William Mariospa
dc.contributor.authorBarros Ayala, Jorge Andresspa
dc.date.accessioned2021-09-06T14:18:26Z
dc.date.available2021-09-06T14:18:26Z
dc.date.issued2020
dc.identifier.issn18540171spa
dc.identifier.urihttps://hdl.handle.net/11323/8631spa
dc.description.abstractThe maximum and minimum void ratios define the loosest and densest conditions of a granular soil. Correlations with some granulometric properties of soil are of interest for practical applications, but the experimental procedure to determine these variables can be time consuming. In this work the influence of the grain size distribution on the maximum and minimum void ratios is investigated. Twenty different granular soils with varying grain size distributions were prepared and tested. The experimental results, together with a compilation of 56 additional results reported in the literature, are statistically analysed. The analysis is conducted to examine the influence of some granulometric properties (D10, D30 and D60) on the maximum and minimum void ratios. As a result, some correlations considering the aforementioned variables are proposed. Subsequently, it is shown that the proposed correlations have better agreement with the experimental data than other proposals reported in the literature. The paper ends with some concluding remarks.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherActa Geotechnica Slovenicaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectgrain size distributionspa
dc.subjectgranular soilsspa
dc.subjectrelative densityspa
dc.subjectmaximum void ratiospa
dc.subjectminimum void ratiospa
dc.titleEffect of grain size distribution on the maximum and minimum void ratios of granular soilsspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://ezproxy.cuc.edu.co:2104/record/display.uri?eid=2-s2.0-85105111588&origin=resultslist&sort=plf-f&src=s&sid=2b596c5d2ebf14364ea06497aad7ada7&sot=b&sdt=b&sl=202&s=TITLE-ABS-KEY%28Effect+of+grain+size+distribution+on+the+maximum+and+minimum+void+ratios+of+granular+soils+%5bVpliv+porazdelitve+velikosti+zrn+na+najve%c4%8dji+in+najni%c5%beji+koli%c4%8dnik+por+v+grobozrnatih+zemljinah%5d%29&relpos=0&citeCnt=0&searchTerm=spa
dc.source.urlhttp://fgserver6.fg.um.si/journal-ags/2020-2/article-3.aspspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.doi10.18690/actageotechslov.17.2.26-33.2020spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] Miura, K., Maeda, K., Furukawa, M., Toki, S. 1998. Mechanical characteristics of sands with different primary properties. Soils and Foundations 38(4), 159-172. https://doi.org/10.3208/sandf.38.4_159spa
dc.relation.references[2] Dyskin, A., Estrin, Y., Kanel, A., Pasternak, E. 2001. Toughening by fragmentation— How topology helps. Advanced Engineering Materials 3(1), 885-888. https://doi. org/10.1002/1527-2648(200111)3:11<885::AIDADEM885>3.0.CO;2-Pspa
dc.relation.references[3] Nakata, Y., Kato, Y., Hyodo, M., Hyde, A., Murata, H. 2001. One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils and Foundations 41(2), 39-51. https://doi.org/10.3208/sandf.41.2_39spa
dc.relation.references[4] Guimaraes, M. 2002. Crushed stone fines and ion removal from clay slurries—Fundamental studies. Georgia Institute of Technology: Ph.D. Thesis.spa
dc.relation.references[5] Cho, G., Dodds, J., Santamarina, C. 2006. Particle shape effects on packing density, Stiffness, and Strength: Natural and Crushed Sands. Journal of Geotechnical and Geoenvironmental Engineering 132(5), 591-602. https://doi.org/10.1061/ (ASCE)1090-0241(2006)132:5(591)spa
dc.relation.references[6] Shimboe, S., Moreto, N. 1995. A new classification for sand liquefaction. 1st International Conference of Earthquake Geotechnical Engineering, Tokyo, pp. 315-320.spa
dc.relation.references[7] Cubrinovski, M., Ishihara, K. 2002. Maximum and minimum void ratio characteristics of sands. Soils and Foundations 42(6), 65-78. https://doi. org/10.3208/sandf.42.6_65.spa
dc.relation.references[8] Norris, G. 1980. Shape and surface roughness effects on maximum and minimum void ratios of sand. Proceedings of the Eighteenth Annual Engineeing Geology and Soils Engineering Symposium. Idaho, pp. 187-197.spa
dc.relation.references[9] Edil, T., Krizek, R., Zelasko, J. 1975. Effect of grain characteristics on packing of quartziferous sands. Proceedings of the Istanbul Conference on Soil Mechanics and Foundation Engineering. pp. 46-54.spa
dc.relation.references[10] Panayiotopoulos, K. 1989. Packing of Sands - A Review. Soil & Tillage Research 13(2), 101-121. https://doi.org/10.1016/0167-1987(89)90085-8spa
dc.relation.references[11] Yang, Z. 2013. Study of the minimum void ratio for soils with a range of grain-size distributions. University of Massachusetts Amherst: Master Thesis.spa
dc.relation.references[12] Holtz, R., Kovacs, W. 1981. An Introduction to Geotechnical Engineering. Prentice Hall, Englewood Cliffs, New Jersey.spa
dc.relation.references[13] Lade, P., Liggio, C., Yamamuro, J. 1998. Effects of nonplastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal 21(4), 336-347. https://doi.org/10.1520/GTJ11373Jspa
dc.relation.references[14] Das, B., Sivakugan, N., Atalar, C. 2012. Maximum and minimum void ratios and median grain size of granular soils: their importance and correlations with material properties. 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, pp. 37-54.spa
dc.relation.references[15] Youd, T. 1973. Factors controlling maximum and minimum densities of sands. Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless soils, ASTM, STP 523, 98-112. https://doi.org/10.1520/STP37866Sspa
dc.relation.references[16] Zheng, J. Hryciw, R. 2016. Index Void Ratios of Sands from Their Intrinsic Properties. Journal of Geotechnical and Geoenvironmental Engineering 142(12), 06016019-1-10. https://doi.org/10.1061/ (ASCE)GT.1943-5606.0001575spa
dc.relation.references[17] Åberg, B. 1992. Void ratio of noncohesive soils and similar materials. Journal of Geotechnical Engineering 118(9), 1315-1334. https://doi. org/10.1061/(ASCE)0733-9410(1992)118:9(1315)spa
dc.relation.references[18] Patra, C., Sivakugan, N., Das, B., Rout, S. 2010. Correlations for relative density of clean sand with median grain size and compaction energy. International Journal of Geotechnical Engineering 4(2), 195-203. https://doi.org/10.3328/ IJGE.2010.04.02.195-203spa
dc.relation.references[19] Riquelme, J., Dorador, L. 2014. Metodología para determinar densidades máxima y mínima en suelos granulares gruesos a partir de ensayos de laboratorio de escala reducida. VII congreso chileno de ingeniería geotécnica, pp. 1-11.spa
dc.relation.references[20] Patra, C., Sivakugan, N., Das, B. 2010. Relative density and mean grain-size correlations from laboratory compaction tests on granular soil. International Journal of Geotechnical Engineering 4(1), 55-62. https://doi.org/10.3328/ IJGE.2010.04.01.55-62spa
dc.relation.references[21] Cubrinovski, M., Ishihara, K. 1999. Empirical correlations between SPT N-values and relative density of sandy soils. Soils and Foundations 39(5), 61-71. https://doi.org/10.3208/ sandf.39.5_61spa
dc.relation.references[22] Alvarado, R. 2010. Análisis experimental de las metodologías de curvas homotéticas y corte en la evaluación de propiedades geotécnicas de suelos gruesos. Universidad de Chile: Master Thesis.spa
dc.relation.references[23] Miura, K., Maeda, K., Furukawa, M., Toki, S. 1997. Physical characteristics of sands with different primary properties. Soils and Foundations 37(3), 53-64. https://doi.org/10.3208/sandf.37.3_53spa
dc.relation.references[24] Santamarina, J., Cho, G. 2004. Soil behaviour: the role of particle shape. Advances in geotechnical engineering: The Skempton conference, pp. 604-617.spa
dc.relation.references[25] Shen, C. Liu, S. Xu, S. Wang, L. 2019. Rapid estimation of maximum and minimum void ratios of granular soils. Acta Geotechnica 14(4), 991–1001. https://doi.org/10.1007/s11440-018-0714-xspa
dc.relation.references[26] Moreno, N. 2014. Zonificación geotecnica de los suelos en Barranquilla. Twelfth LACCEI Latin American and Caribbean Conference for Engineering and Technology, pp 1-9.spa
dc.relation.references[27] Salgado, R., Bandini, P., Karim, A. 2000. Shear strength and stiffness of silty sand. Journal of Geotechnical and Geoenvironmental Engineering 126(5), 451-462. https://doi.org/10.1061/ (ASCE)1090-0241(2000)126:5(451)spa
dc.relation.references[28] Kokusho, T. 2000. Correlation of pore-pressure B-value with P-wave velocity and poisson's ratio for imperfectply satured sand or gravel. Soils and Foundations 40(4), 95-102. https://doi. org/10.3208/sandf.40.4_95spa
dc.relation.references[29] Wichtmann, T. 2005. Explicit accumulation model for non-cohesive soils under cyclic loading, RuhrUniversität Bochum: PhD Thesis, pp. 1-288.spa
dc.relation.references[30] Simoni, A., Houlsby, G. 2006. The Direct Shear Strength and Dilatancy of Sand–gravel Mixtures. Geotechnical and geological engineering 24(3), 523-549. https://doi.org/10.1007/s10706-004- 5832-6spa
dc.relation.references[31] Bandini, P., Salthiskumar, S. 2009. Effects of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures. Journal of Geotechnical and Geoenvironmental Engineering 135(12), 1976- 1980. https://doi.org/10.1061/(ASCE)GT.1943- 5606.0000177spa
dc.relation.references[32] Arab, A., Sadek, M. Belkhatir, M., Shahrour, I. 2014. Monotonic Preloading Effect on the Liquefaction Resistance of Chlef Silty Sand: a Laboratory Study. Arabian Journal for Science and Engineering 39(2), 685-694. https://doi.org/10.1007/s13369- 013-0700-4spa
dc.relation.references[33] Bablu, K., Maheshwari, B. 2013. Effects of silt content on dynamic properties of solani sand. Seventh International Conference on Case Histories in Geotechnical Engineering, pp. 1-7.spa
dc.relation.references[34] Mahmoudi, Y., Cherif, T., Belkhatir, M., Arab, A., Schanz, T. 2014. Influence of the equivalent intergranular void ratio on shear strength of sand-silt mixtures. Colloque International: Caractérisation et Modélisation des Matériaux et Structures, pp. 1-18.spa
dc.relation.references[35] Bensoula, M., Missoum, H., Bendani, K. 2015. Critical undrained shear strength of loose-medium sand-silt mixtures under monotonic loadings. Journal of Theoretical and Applied Mechanics 53(2), 331-344. https://doi.org/10.15632/jtampl.53.2.331.spa
dc.relation.references[36] Fuentes, W., Gil, M., Duque, J. 2019. Dynamic simulation of the sudden stettlement of a mine waste dump under earthquake loading. International Journal of Mining, Reclamation and Environment 33(6), 425-443. https://doi.org/10.1080/1 7480930.2018.1483703spa
dc.relation.references[37] Pham, H., Van-Impe, P., Van-Impe, W., Mengé, P., Cnudde, V., Haegeman, W. 2017. Effects of particle characteristics on the shear strength of calcareous sand. Acta Geotechnica Slovenica 14(2), 76-89.spa
dc.title.translatedVpliv porazdelitve velikosti zrn na največji in najnižji količnik por v grobozrnatih zemljinahspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal