Mostrar el registro sencillo del ítem

dc.contributor.authorBarrios-Ulloa, Alexisspa
dc.date.accessioned2021-09-21T20:27:57Z
dc.date.available2021-09-21T20:27:57Z
dc.date.issued2021
dc.identifier.citationBarrios Ulloa, A. R. (2021). Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en el área urbana de la ciudad de Barranquilla. Computer and Electronic Sciences: Theory and Applications, 2(1), 31–38. https://doi.org/10.17981/cesta.02.01.2021.03spa
dc.identifier.urihttps://hdl.handle.net/11323/8739spa
dc.description.abstractEmpirical propagation models are widely used to calculate path losses in a wireless channel in different types of scenarios, and their results are considered when selecting the location of base stations and planning their coverage area. The Walfisch-Ikegami, Stanford University Interim (SUI) and COST-231 Hata models were evaluated in this work in order to estimate their effectiveness. The power in a receiver operating in the 1900 MHz band was measured in different locations in an urban area of Barranquilla, Colombia, and the data obtained was used in the comparison. The effectiveness of the loss prediction by the models was analyzed through the calculation of the relative error and prediction error, showing that the Walfisch-Ikegami presented the lowest relative error compared to the SUI type B and the COST-231 Hata. The error values obtained were high, which indicates that the evaluated models do not correctly predict the losses measured in the considered scenario.spa
dc.description.abstractLos modelos de propagación empíricos son ampliamente usados para calcular las pérdidas por trayectoria en un canal inalámbrico en diferentes tipos de escenarios, y sus resultados son tenidos en cuenta al momento de seleccionar la ubicación de estaciones base y planificar su área de cobertura. Los modelos Walfisch-Ikegami, Interino de la Universidad de Stanford (SUI) y COST-231 Hata fueron evaluados en este trabajo con el propósito de estimar su efectividad. La potencia en un receptor operando en la banda de 1900 MHz fue medida en diferentes ubicaciones de una zona urbana de Barranquilla, Colombia, y los datos obtenidos se utilizaron en la comparación. La efectividad de la predicción de pérdidas por parte de los modelos fue analizada a través del cálculo del error relativo y error de predicción, mostrando que el Walfisch-Ikegami presentó menor error relativo en comparación con el SUI tipo B y el COST-231 Hata. Los valores de error obtenidos fueron altos, lo cual indica que los modelos evaluados no predicen adecuadamente las pérdidas medidas en el escenario considerado.spa
dc.format8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceComputer and Electronic Sciences: Theory and Applicationsspa
dc.titleComparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquillaspa
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.17981/cesta.02.01.2021.03spa
dc.source.urlhttps://revistascientificas.cuc.edu.co/CESTA/article/view/3380spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.17981/cesta.02.01.2021.03spa
dc.identifier.eissn2745-0090spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeBarranquillaspa
dc.relation.ispartofjournalComputer and Electronic Sciences: Theory and Applicationsspa
dc.relation.ispartofjournalComputer and Electronic Sciences: Theory and Applicationsspa
dc.relation.references[1] T. S. Rappaport, Wireless Communications: Principles and practice, 2 ed. NJ, USA: Prentice Hall, 2002.spa
dc.relation.references[2] N. Blaunstein & C. Christodoulou, Radio propagation and adaptative antennas for wireless communications. NJ, USA: Wiley, 2007.spa
dc.relation.references[3] S. M. Tasmeeh Ahsan, F. Jahan & N. M. Proma, “Inspection of picocell’s performance using different models in different regions,” presente at 5th Int Conf Comput Commun Syst, ICCCS 2020, SHG, CN, pp. 891–894, 2020. http://doi.org/10.1109/ ICCCS49078.2020.9118503spa
dc.relation.references[4] COST telecomunications, COST Action 231. Digital mobile radio towards future generation systems, BRU, BE: EC, Final report, EUR 18957, 1999. Available: https://op.europa.eu/en/publication-detail/-/publication/f2f42003-4028-4496-af95-beaa38fd475fspa
dc.relation.references[5] R. Saidi, N. Cherrid & T. Bentahar, “Study of the Prediction of Way Weakening in Mobile Radio Service: Applied to a Part of the City of Batna-Algeria,” presented at Int. Conf. Adv. Syst. Emergent Technol, IC_ASET 2020, Hammamet, TUN, pp. 389–393, 15-18 Dec 2020. http://doi.org/10.1109/IC_ASET49463.2020.9318308spa
dc.relation.references[6] R. Drozdova & V. Akhpashev, “Ordinay Least Squares in COST 231 HATA Key parameters optimization base on experimental data,” in 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON, NOV, RU, pp. 21–23, 18-22 Sept 2017. http://doi.org/10.1109/SIBIRCON.2017.8109878spa
dc.relation.references[7] H. S. Jo, C. Park, E. Lee, H. K. Choi & J. Park, “Path loss prediction based on machine learning techniques: Principal component analysis, artificial neural network and gaussian process,” Sensors (Switzerland), vol. 20, no. 7, pp. 1–23, 2020. http:// doi.org/10.3390/s20071927spa
dc.relation.references[8] A. Barrios, R. Arjona & R. Álvarez, “Comparación de modelos de radiopropagación en el área suburbana de la ciudad de Barranquilla,” Rev Colomb Tecnol Av, vol. 2, no. 32, pp. 78–85, 2018. Disponible en http://revistas.unipamplona.edu.co/ojs_viceinves/index.php/RCTA/article/view/3029spa
dc.relation.references[9] UIT-R, “Datos de propagación y métodos de predicción para la planificación de los sistemas de radiocomunicaciones de exteriores de corto alcance y redes de radiocomunicaciones de área local en la gama de frecuencias de 300 MHz a 100 GHz Serie P,” Geneva, Switzerland: ITU, P.1411-7, 2013. Available: https://www.itu.int/rec/R-REC-P.1411-7-201309-S/enspa
dc.relation.references[10] S. Mohanty & S. Mishra, “Performance evaluation of wireless propagation models for long term evolution using NS-3,” presente at 2015 Int Conf Man Mach Interfacing, MAMI, BBSR, IMD, 17-19 Dec. 2016. http://doi.org/10.1109/MAMI.2015.7456599spa
dc.relation.references[11] W. Bhupuak & S. Tooprakai, “Path loss comparison in 850 MHz and 1800 MHz frequency bands,” presented at 13th Int Conf Electr Eng Comput Telecommun Inf Technol, ECTI-CON, CNX, TH, 28 Jun.-1 Jul 2016. http://doi.org/10.1109/ECTICon.2016.7561295spa
dc.relation.references[12] H. Xu, C. Shi, W. Zhang & Y. Yang, “Field testing, modeling and comparison of multi frequency band propagation characteristics for cellular networks,” presented at 2016 IEEE Int Conf Commun, ICC 2016, KUL, MY, 22-27 May 2016. http://doi. org/10.1109/ICC.2016.7510961spa
dc.relation.references[13] T. Acar, F. Caliskan & E. Aydin, “Comparison of computer-based propagation models with experimental data collected in an urban area at 1800 MHz,” presented at 2015 IEEE 16th Annu Wirel Microw Technol Conf, WAMICON, CB, FL, USA, 13-15 Apr 2015. http://doi.org/10.1109/WAMICON.2015.7120381spa
dc.relation.references[14] N. Belhadj, B. Oueslati & T. Aguili, “Adjustment of Cost231 Walfisch-Ikegami model for HSPA+ in Tunisian urban environments,” presented at 2nd World Symposium on Web Applications and Networking, WSWAN, DTTZ, TN, 21-23 Mar 2015. http://doi.org/10.1109/WSWAN.2015.7210330spa
dc.relation.references[15] L. Schirru, M. B. Lodi, A. Fanti & G. Mazzarella, “Improved COST 231-WI Model for Irregular Built-Up Areas 2 Modified Version of the Cost 231 Walfisch-Ikegami Model 1 Introduction 4 Results 3 Measurement Campaign,” presented at XXXIV General Assembly and Scientific Symposium (GASS) of the International Union of Radio Science, URSI GASS 2020, ROM, IT, 29 Aug-5 Sept 2020. Available from https://www.ursi.org/proceedings/procGA20/papers/Schirruetal.pdfspa
dc.relation.references[16] V. S. Anusha, G. K. Nithya & S. N. Rao, “A comprehensive survey of electromagnetic propagation models,” presented at 2017 IEEE Int Conf Commun Signal Process, ICCSP, MÄS, IN, 6-8 Apr 2017. http://doi.org/10.1109/ICCSP.2017.8286627spa
dc.relation.references[17] P. K. Sharma, D. Sharma & T. V. Sai, “Optimization of propagation path loss model in 4G wireless communication systems,” presented at 2nd Int Conf Inven Syst Control, ICISC, CJB, IN, 19-20 Jan 2018. http://doi.org/10.1109/ICISC.2018.8399004spa
dc.relation.references[18] A. Mahmood, S. Khan, S. Hussain & M. Zeeshan, “Performance Analysis of Multi-User Downlink PD-NOMA under sui Fading Channel Models,” IEEE Access, vol. 9, pp. 52851–52859, Mar 2021. http://doi.org/10.1109/ACCESS.2021.3070147spa
dc.relation.references[19] UIT-R, Datos de propagación y métodos de predicción para la planificación de los sistemas de radiocomunicaciones de exteriores de corto alcance y redes de radiocomunicaciones de área local en la gama de frecuencias de 300 MHz a 100 GHz Serie P, Geneva, Switzerland: ITU, P.1411-10, 2019. Available: https://www.itu.int/rec/R-REC-P.1411-10-201908-I/esspa
dc.relation.references[20] C. Phillips, D. Sicker & D. Grunwald, “A survey of wireless path loss prediction and coverage mapping methods,” IEEE Commun Surv Tutorials, vol. 15, no. 1, pp. 255–270, Mar 2012. http://doi.org/10.1109/SURV.2012.022412.00172spa
dc.relation.references[21] A. Bhuvaneshwari & T. Sathyasavithri, “Comparative analysis of mobile radio path loss models for suburban environment in Southern India,” presented at 2013 Int Conf Emerg Trends VLSI Embed Syst Nano Electron Telecommun Syst, ICEVENT, TVM, IN, 7-9 Jan 2013. http://doi.org/10.1109/ICEVENT.2013.6496544spa
dc.subject.proposalError de predicciónspa
dc.subject.proposalError relativospa
dc.subject.proposalEntorno urbanospa
dc.subject.proposalModelo de propagación empíricospa
dc.subject.proposalPérdida por trayectoriaspa
dc.subject.proposalEmpirical propagation modeleng
dc.subject.proposalPrediction erroreng
dc.subject.proposalRelative erroreng
dc.subject.proposalTrajectory losseng
dc.subject.proposalUrban settingeng
dc.title.translatedComparison of radio wave propagations models of a wireless channel in the urban environment of the city of Barranquillaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage38
dc.relation.citationstartpage31
dc.relation.citationissue1spa
dc.relation.citationvolume2spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.ispartofjournalabbrevCESTAspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Revistas Científicas [1682]
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal