Mostrar el registro sencillo del ítem

dc.contributor.authorMattos, Sergiospa
dc.contributor.authorDiel, Leonardo Franciscospa
dc.contributor.authorBittencourt, Leonardospa
dc.contributor.authorSchnorr, Carlos Eduardospa
dc.contributor.authorAurina Gonçalves, Franciscaspa
dc.contributor.authorBernardi, Lspa
dc.contributor.authorLAMERS, MARCELOspa
dc.date.accessioned2021-09-30T21:20:15Z
dc.date.available2021-09-30T21:20:15Z
dc.date.issued2021
dc.identifier.issn0100-879Xspa
dc.identifier.issn1414-431Xspa
dc.identifier.urihttps://hdl.handle.net/11323/8764spa
dc.description.abstractMolecular changes that affect mitochondrial glycolysis have been associated with the maintenance of tumor cells. Some metabolic factors have already been described as predictors of disease severity and outcomes. This systematic review was conducted to answer the question: Is the glycolytic pathway correlated with the prognosis of oral squamous cell carcinoma (OSCC)? A search strategy was developed to retrieve studies in English from PubMed, Scopus, and ISI Web of Knowledge using keywords related to squamous cell carcinoma, survival, and glycolytic pathway, with no restriction of publication date. The search retrieved 1273 publications. After the titles and abstracts were analyzed, 27 studies met inclusion criteria. Studies were divided into groups according to two subtopics, glycolytic pathways and diagnosis, which describe the glycolytic profile of OSCC tumors. Several components of tumor energy metabolism found in this review are important predictors of survival of patients with OSCC.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceBrazilian Journal of Medical and Biological Researchspa
dc.subjectOral cancerspa
dc.subjectSurvivalspa
dc.subjectPrognosisspa
dc.subjectDisease-free survivalspa
dc.subjectEnergy metabolismspa
dc.titleGlycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysisspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://pubmed.ncbi.nlm.nih.gov/33503201/spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doidoi: 10.1590/1414-431X202010504spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 2016; 16: 635–649, doi: 10.1038/nrc.2016.77.spa
dc.relation.references2. Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, Kaneko M, et al. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep 2016; 6: 31520, doi: 10.1038/srep31520.spa
dc.relation.references3. Scully C, Bagan J. Oral squamous cell carcinoma overview. Oral Oncol 2009; 45: 301–308, doi: 10.1016/j.oraloncology. 2009.01.004.spa
dc.relation.references4. Chen L, Yang Y, Liu S, Piao L, Zhang Y, Lin Z, et al. High expression of leucine zipper-EF-hand containing transmembrane protein 1 predicts poor prognosis in head and neck squamous cell carcinoma. BioMed Res Int 2014; 2014: 850316, doi: 10.1155/2014/850316.spa
dc.relation.references5. Baffy G, Derdak Z, Robson SC. Mitochondrial recoupling: a novel therapeutic strategy for cancer? Br J Cancer 2011; 105: 469–474, doi: 10.1038/bjc.2011.245.spa
dc.relation.references6. Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeuticperspective. Nat Rev Clin Oncol 2017; 14: 11–31, doi: 10.1038/nrclinonc.2016.60.spa
dc.relation.references7. Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, et al. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 2011; 13: 81–97, doi: 10.1593/neo.101102.spa
dc.relation.references8. Tanaka T, Ishigamori R. Understanding carcinogenesis for fighting oral cancer. J Oncol 2011; 2011: 603740.spa
dc.relation.references9. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671–684, doi: 10.1038/nrd3504.spa
dc.relation.references10. Cochran WG. The combination of estimates from different experiments. Biometrics 1954; 10: 101–129, doi: 10.2307/3001666.spa
dc.relation.references11. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560, doi: 10.1136/bmj.327.7414.557.spa
dc.relation.references12. Chen SW, Chou CT, Chang CC, Li YJ, Chen ST, Lin IC, et al. HMGCS2 enhances invasion and metastasis via direct interaction with PPARalpha to activate Src signaling in colorectal cancer and oral cancer. Oncotarget 2017; 8:22460–22476, doi: 10.18632/oncotarget.13006.spa
dc.relation.references13. Grimm M, Alexander D, Munz A, Hoffmann J, Reinert S. Increased LDH5 expression is associated with lymph node metastasis and outcome in oral squamous cell carcinoma. Clin Exp Metastasis 2013; 30: 529–540, doi: 10.1007/s10585-012-9557-2.spa
dc.relation.references14. Grimm M, Munz A, Teriete P, Nadtotschi T, Reinert S. GLUT1(+)/TKTL1(+) coexpression predicts poor outcome in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 117: 743–753, doi: 10.1016/j.oooo.2014. 02.007.spa
dc.relation.references15. Kondo Y, Yoshikawa K, Omura Y, Shinohara A, Kazaoka Y, Sano J, et al. Clinicopathological significance of carbonic anhydrase 9, glucose transporter-1, Ki-67 and p53 expression in oral squamous cell carcinoma. Oncol Rep 2011; 25:1227–1233, doi: 10.3892/or.2011.1216.spa
dc.relation.references16. Kunkel M, Förster GJ, Reichert TE, Jeong JH, Benz P, Bartenstein P, et al. Detection of recurrent oral squamous cell carcinoma by [18 F]-2-fluorodeoxyglucose-positron emission tomography: implications for prognosis and patient management. Cancer 2003; 98: 2257–2265, doi: 10.1002/ cncr.11763.spa
dc.relation.references17. Li YJ, Huang TH, Hsiao M, Lin BR, Cheng SJ, Yang CN, et al. Suppression of fructose-bisphosphate aldolase C expression as a predictor of advanced oral squamous cell carcinoma. Head Neck 2016; 38: E1075–E1085, doi: 10.1002/hed.24161.spa
dc.relation.references18. Ohba S, Fujii H, Ito S, Fujimaki M, Matsumoto F, Furukawa M, et al. Overexpression of GLUT-1 in the invasion front is associated with depth of oral squamous cell carcinoma and prognosis. J Oral Pathol Med 2009; 39: 74–78, doi: 10.1111/j.1600-0714.2009.00814.x.spa
dc.relation.references19. Sun W, Zhang X, Ding X, Li H, Geng M, Xie Z, et al. Lactate dehydrogenase B is associated with the response to neoadjuvant chemotherapy in oral squamous cell carcinoma. PloS One 2015; 10: e0125976, doi: 10.1371/journal.pone.0125976.spa
dc.relation.references20. Wang Y, Zhang X, Zhang Y, Zhu Y, Yuan C, Qi B, et al. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma. Cancer Biol Ther 2015; 16: 839–845, doi: 10.1080/15384047.2015.1030551.spa
dc.relation.references21. Eckert A, Lautner M, Schütze A, Taubert H, Schubert J,Bilkenroth U. Coexpression of hypoxia-inducible factor-1 alpha and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology 2011; 58: 1136–1147, doi: 10.1111/j.1365-2559. 2011.03806.x.spa
dc.relation.references22. Kunkel M, Forster GJ, Reichert TE, Kutzner J, Benz P, Bartenstein P, et al. Radiation response non-invasively imaged by [18F]FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol 2003; 39: 170–177, doi: 10.1016/S1368-8375(02)00087-8.spa
dc.relation.references23. Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, et al. A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer 2013; 13: 569, doi: 10.1186/1471-2407-13-569.spa
dc.relation.references24. Abd El-Hafez YG, Moustafa HM, Khalil HF, Liao CT, Yen TC. Total lesion glycolysis: a possible new prognostic parameter in oral cavity squamous cell carcinoma. Oral Oncol 2013; 49: 261–268, doi: 10.1016/j.oraloncology.2012.09.005.spa
dc.relation.references25. Cho JK, Hyun SH, Choi N, Kim MJ, Padera TP, Choi JY, et al. Significance of lymph node metastasis in cancer dissemination of head and neck cancer. Transl Oncol 2015;8: 119–125, doi: 10.1016/j.tranon.2015.03.001.spa
dc.relation.references26. Hasegawa O, Satomi T, Kono M, Watanabe M, Ikehata N, Chikazu D. Correlation between the malignancy and prognosis of oral squamous cell carcinoma in the maximum standardized uptake value. Odontology 2019; 107: 237–243, doi: 10.1007/s10266-018-0379-9.spa
dc.relation.references27. Hofele C, Freier K, Thiele OC, Haberkorn U, Buchmann I. High 2-[18F]fluoro-2-deoxy-d-glucose (18FDG) uptake measured by positron emission tomography is associated with reduced overall survival in patients with oral squamous cell carcinoma. Oral Oncol 2009; 45: 963–967, doi: 10.1016/j. oraloncology.2009.06.008.spa
dc.relation.references28. Joo YH, Yoo IR, Cho KJ, Park JO, Nam IC, Kim MS. Extracapsular spread and FDG PET/CT correlations in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2013; 42: 158–163, doi: 10.1016/j.ijom.2012.11.006.spa
dc.relation.references29. Kunkel M, Helisch A, Reichert TE, Jeong JH, Buchholz HG, Benz P, et al. Clinical and prognostic value of [18F]FDGPET for surveillance of oral squamous cell carcinoma after surgical salvage therapy. Oral Oncol 2006; 42: 297–305, doi: 10.1016/j.oraloncology.2005.08.004.spa
dc.relation.references30. Morand GB, Vital DG, Kudura K, Werner J, Stoeckli SJ, Huber GF, et al. Maximum standardized uptake value (SUVmax) of primary tumor predicts occult neck metastasis in oral cancer. Sci Rep 2018; 8: 11817, doi: 10.1038/s41598- 018-30111-7.spa
dc.relation.references31. Shimizu M, Mitsudo K, Koike I, Taguri M, Iwai T, Koizumi T, et al. Prognostic value of 2-[18 F]fluoro-2-deoxy-D-glucose positron emission tomography for patients with oral squamous cell carcinoma treated with retrograde superselective intra-arterial chemotherapy and daily concurrent radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121: 239–247, doi: 10.1016/j.oooo.2015.10.018.spa
dc.relation.references32. Suzuki H, Hasegawa Y, Terada A, Hyodo I, Nakashima T, Nishio M, et al. FDG-PET predicts survival and distant metastasis in oral squamous cell carcinoma. Oral Oncol 2009; 45: 569–573, doi: 10.1016/j.oraloncology.2008.07.009.spa
dc.relation.references33. Suzuki H, Fukuyama R, Hasegawa Y, Tamaki T, Nishio M, Nakashima T, et al. Tumor thickness, depth of invasion, and Bcl-2 expression are correlated with FDG-uptake in oral squamous cell carcinomas. Oral Oncol 2009; 45: 891–897, doi: 10.1016/j.oraloncology.2009.03.009.spa
dc.relation.references34. Suzuki H, Tamaki T, Nishio M, Beppu S, Mukoyama N, Hanai N, et al. Peak of standardized uptake value in oral cancer predicts survival adjusting for pathological stage. In Vivo 2018; 32: 1193–1198, doi: 10.21873/invivo.11363.spa
dc.relation.references35. Yamaga E, Toriihara A, Nakamura S, Asai S, Fujioka T, Yoshimura R, et al. Clinical usefulness of 2-deoxy-2-[18F] fluoro-d-glucose-positron emission tomography/computed tomography for assessing early oral squamous cell carcinoma (cT1-2N0M0). Jpn J Clin Oncol 2018; 48: 633–639, doi: 10.1093/jjco/hyy065.spa
dc.relation.references36. Zhang H, Seikaly H, Abele JT, Jeffery DT, Harris JR, O’Connell DA. Metabolic tumour volume as a prognostic factor for oral cavity squamous cell carcinoma treated with primary surgery. J Otolaryngol Head Neck Surg 2014; 43: 33.spa
dc.relation.references37. Kim M, Higuchi T, Nakajima T, Andriana P, Hirasawa H, Tokue A, et al. 18F-FDG and 18F-FAMT PET-derived metabolic parameters predict outcome of oral squamous cell carcinoma. Oral Radiol 2019; 35: 308–314, doi:10.1007/s11282-019-00377-2.spa
dc.relation.references38. Kimura M, Kato I, Ishibashi K, Shibata A, Nishiwaki S, Fukumura M, et al. The prognostic significance of intratumoral heterogeneity of 18F-FDG uptake in patients with oral cavity squamous cell carcinoma. Eur J Radiol 2019; 114: 99–104, doi: 10.1016/j.ejrad.2019.03.004.spa
dc.relation.references39. Genden EM, Ferlito A, Silver CE, Takes RP, Suarez C, Owen RP, et al. Contemporary management of cancer of the oral cavity. Eur Arch Otorhinolaryngol 2010; 267: 1001–1017, doi: 10.1007/s00405-010-1206-2.spa
dc.relation.references40. Ram H, Sarkar J, Kumar H, Konwar R, Bhatt ML, Mohammad S. Oral cancer: risk factors and molecular pathogenesis. J Maxillofac Oral Surg 2011; 10: 132–137, doi: 10.1007/s12663-011-0195-z.spa
dc.relation.references41. Li CX, Sun JL, Gong ZC, Lin ZQ, Liu H. Prognostic value of GLUT-1 expression in oral squamous cell carcinoma. A prisma-compliant meta-analysis. Medicine (Baltimore) 2016; 95: e5324, doi: 10.1097/MD.0000000000005324.spa
dc.relation.references42. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8: 705–713, doi: 10.1038/nrc2468.spa
dc.relation.references43. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674, doi: 10.1016/j.cell. 2011.02.013.spa
dc.relation.references44. Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A, Sivridis E. Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis 2005; 22: 25–30, doi: 10.1007/s10585-005-2343-7.spa
dc.relation.references45. Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2013; 13: 89, doi: 10.1186/1475-2867-13-89.spa
dc.relation.references46. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 2008; 13: 472–482, doi: 10.1016/j.ccr.2008.05.005.spa
dc.relation.references47. Xu Q, Tu J, Dou C, Zhang J, Yang L, Liu X, et al. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Mol Cancer 2017; 16: 178, doi: 10.1186/s12943-017-0748-y.spa
dc.relation.references48. Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci USA 2014; 111: 15526– 15531, doi: 10.1073/pnas.1407717111.spa
dc.relation.references49. Huang C, Huang Z, Bai P, Luo G, Zhao X, Wang X. Expression of pyruvate kinase M2 in human bladder cancer and its correlation with clinical parameters and prognosis. Onco Targets Ther 2018; 11: 2075–2082, doi: 10.2147/OTT. S152999.spa
dc.relation.references50. Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu Y, et al. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci Rep 2017; 7: 2886, doi: 10.1038/s41598-017-03031-1.spa
dc.relation.references51. Turner DM, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 2014; 1843: 2563–2582, doi: 10.1016/j.bbamcr.2014.05.014.spa
dc.relation.references52. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med 2016; 213: 337–354, doi: 10.1084/jem.20150900.spa
dc.relation.references53. Lau AN, Vander Heiden GM. Metabolism in the tumor microenvironment. Ann Rev Cancer Biol 2019; 4: 17–40, doi: 10.1146/annurev-cancerbio-030419-033333.spa
dc.relation.references54. Krockenberger M, Honig A, Rieger L, Coy JF, Sutterlin M, Kapp M, et al. Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer 2007; 17: 101–106, doi:10.1111/j.1525-1438.2007.00799.x.spa
dc.relation.references55. Coy JF. EDIM-TKTL1/Apo10 blood test: an innate immune system based liquid biopsy for the early detection, characterization and targeted treatment of cancer. Int J Mol Sci 2017; 18: 878, doi: 10.3390/ijms18040878.spa
dc.relation.references56. Song Y, Liu D, He G. TKTL1 and p63 are biomarkers for the poor prognosis of gastric cancer patients. Cancer Biomark 2015; 15: 591–597, doi: 10.3233/CBM-150499.spa
dc.relation.references57. Su SG, Yang M, Zhang MF, Peng QZ, Li MY, Liu LP, et al. miR-107-mediated decrease of HMGCS2 indicates poor outcomes and promotes cell migration in hepatocellular carcinoma. Int J Biochem Cell Biol 2017; 91: 53–59, doi:10.1016/j.biocel.2017.08.016.spa
dc.relation.references58. Ross JS, Tse T, Zarin DA, Xu H, Zhou L, Krumholz HM. Publication of NIH funded trials registered in ClinicalTrials. gov: cross sectional analysis. BMJ 2012; 344: d7292, doi:10.1136/bmj.d7292.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal