Mostrar el registro sencillo del ítem

dc.contributor.authorZapata, Andrésspa
dc.contributor.authorAmaris, Carlosspa
dc.contributor.authorSagastume, Alexisspa
dc.contributor.authorRodríguez, Andrésspa
dc.date.accessioned2021-10-04T15:34:43Z
dc.date.available2021-10-04T15:34:43Z
dc.date.issued2021
dc.identifier.issn2214-157Xspa
dc.identifier.urihttps://hdl.handle.net/11323/8771spa
dc.description.abstractThe absorber is a key component of absorption cooling systems, and its further development is essential to reduce the size and costs and facilitate the diffusion of absorption cooling systems. Computational fluid dynamics (CFD) can facilitate the characterization of the equipment used in absorption cooling systems at lower costs and complexity, but they must be properly developed and validated to provide reliability. This study provides a detailed description and assessment of a 3D CFD bubble absorber model developed to simulate the absorption process in a vertical double pipe with the NH3/LiNO3 solution. It includes a comprehensive methodology to develop the CFD model and its validation considering the effect of the solution flow and the cooling water temperature on absorber performance parameters such as the absorption mass flux and the solution heat transfer coefficient. The results show that the ‘Volume of Fluid model’ and the ‘Realizable k-epsilon model’ provide the lowest residuals and computational times in the simulations while a good correspondence between the CFD model and the experimental data with errors below 10% and 7% for the absorption mass flux and solution heat transfer coefficient, respectively, was obtained. The maximum absorption rate and heat transfer coefficient were 0.00441 kg m−2 s−1 and 786 W m−2 K−1, respectively.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceCase Studies in Thermal Engineeringspa
dc.subjectCFDspa
dc.subjectHeat and mass transferspa
dc.subjectAbsorption refrigeration systemspa
dc.subjectBubble absorberspa
dc.subjectAmmoniaspa
dc.subjectLithium nitratespa
dc.titleCFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3spa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S2214157X21004743spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.csite.2021.101311spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] G.A. Florides, S.A. Tassou, S.A. Kalogirou, L.C. Wrobel, Review of solar and low energy cooling technologies for buildings, Renew. Sustain. Energy Rev. 6 (2002) 557–572.spa
dc.relation.references[2] J. Mendoza, J. Rhenals, A. Avila, A. Martinez, T. De la Vega, E. Durango, Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia, INGE CUC 17 (2021) 1–10, https://doi.org/10.17981/ingecuc.17.2.2021.01.spa
dc.relation.references[3] K.R. Ullah, R. Saidur, H.W. Ping, R.K. Akikur, N.H. Shuvo, A review of solar thermal refrigeration and cooling methods, Renew. Sustain. Energy Rev. 24 (2013) 499–513, https://doi.org/10.1016/J.RSER.2013.03.024.spa
dc.relation.references[4] C. Amaris, B.C. Miranda, M. Balbis-Morejon, ´ Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system, Therm. Sci. Eng. Prog. 20 (2020), https://doi.org/10.1016/j.tsep.2020.100684.spa
dc.relation.references[5] Y.T. Ge, S.A. Tassou, I. Chaer, N. Suguartha, Performance evaluation of a tri-generation system with simulation and experiment, Appl. Energy 86 (2009) 2317–2326, https://doi.org/10.1016/j.apenergy.2009.03.018.spa
dc.relation.references[6] D.S. Ayou, J.C. Bruno, R. Saravanan, A. Coronas, An overview of combined absorption power and cooling cycles, Renew. Sustain. Energy Rev. 21 (2013) 728–748, https://doi.org/10.1016/j.rser.2012.12.068.spa
dc.relation.references[7] M. Mittermaier, F. Ziegler, Theoretical evaluation of absorption and desorption processes under typical conditions for chillers and heat transformers, Int. J. Refrig. 59 (2015) 91–101, https://doi.org/10.1016/j.ijrefrig.2015.07.015.spa
dc.relation.references[8] P. Srikhirin, S. Aphornratana, S. Chungpaibulpatana, A review of absorption refrigeration technologies, Renew. Sustain. Energy Rev. 5 (2000) 343–372, https:// doi.org/10.1016/S1364-0321(01)00003-X.spa
dc.relation.references[9] C. Amaris, M. Bourouis, Boiling process assessment for absorption heat pumps: a review, Int. J. Heat Mass Tran. 179 (2021) 121723, https://doi.org/10.1016/J. IJHEATMASSTRANSFER.2021.121723.spa
dc.relation.references[10] C. Amaris, M. Vall`es, M. Bourouis, Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: a review, Appl. Energy 231 (2018) 826–853, https://doi.org/10.1016/j.apenergy.2018.09.071.spa
dc.relation.references[11] Y.T. Kang, A. Akisawa, T. Kashiwagi, Analytical investigation of two different absorption modes: falling film and bubble types, Int. J. Refrig. 23 (2000) 430–443.spa
dc.relation.references[12] X. Wu, S. Xu, M. Jiang, Development of bubble absorption refrigeration technology: a review, Renew. Sustain. Energy Rev. 82 (2018) 3468–3482, https://doi. org/10.1016/J.RSER.2017.10.109.spa
dc.relation.references[13] M.A. Johnson, J. De La Pena, ˜ R.B. Mesler, Bubble shapes in nucleate boiling, AIChE J. 12 (1966) 344–348, https://doi.org/10.1002/aic.690120225.spa
dc.relation.references[14] Y.T. Kang, T. Nagano, T. Kashiwagi, Visualization of bubble behavior and bubble diameter correlation for NH 3 ± H 2 O bubble absorption A ˆ lation entre le comportement de la bulle et Etude de la corre A ´ tre lors d ’ absorption NH 3 -H 2 O : de son diame A ˆ thode visuelle me, Int. J. Refrig. 25 (2002) 127–135.spa
dc.relation.references[15] T.L. Merrill, H. Perez-Blanco, Combined heat and mass transfer during bubble absorption in binary solutions, Int. J. Heat Mass Tran. 40 (1997) 589–603, https://doi.org/10.1016/0017-9310(96)00118-4.spa
dc.relation.references[16] K. Terasaka, J. Oka, H. Tsuge, Ammonia absorption from a bubble expanding at a submerged orifice into water, Chem. Eng. Sci. 57 (2002) 3757–3765, https:// doi.org/10.1016/S0009-2509(02)00308-1.spa
dc.relation.references[17] T. Elperin, A. Fominykh, Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber, Chem. Eng. Sci. 58 (2003) 3555–3564, https://doi.org/10.1016/S0009-2509(03)00192-1.spa
dc.relation.references[18] M.D. Staicovici, A non-equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part II — modeling of the NH3/H2O bubble absorption, analytical study of absorption and experiments, Int. J. Heat Mass Tran. 43 (2000) 4175–4188, https://doi.org/10.1016/S0017-9310(00)00030-2.spa
dc.relation.references[19] M.D. Staicovici, A non-equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part I — application to NH3/ H2O and other working systems, Int. J. Heat Mass Tran. 43 (2000) 4153–4173, https://doi.org/10.1016/S0017-9310(00)00029-6.spa
dc.relation.references[20] M. Suresh, A. Mani, Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory, Int. J. Heat Mass Tran. 53 (2010) 2813–2825, https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.016.spa
dc.relation.references[21] M.K. Aggarwal, R.S. Agarwal, Thermodynamic properties of lithium nitrate-ammonia mixtures, Int. J. Energy Res. 10 (1986) 59–68, https://doi.org/10.1002/ er.4440100107.spa
dc.relation.references[22] A.A.S. Lima, A.A.V. Ochoa, J.A.P. ˆ Da Costa, F. dos Santos, A.C. Carlos, Lima, V.F. M´ arcio, de Menezes, Energetic analysis of an absorption chiller using NH3/ LiNO3 as an alternative working fluid, Braz. J. Chem. Eng. 36 (2019) 1061–1073, https://doi.org/10.1590/0104-6632.20190362s20180473.spa
dc.relation.references[23] J.M. Abdulateef, K. Sopian, M.A. Alghoul, Optimum design for solar absorption refrigeration systems and comparison of the performances using ammoniawater, ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions, Int. J. Mech. Mater. Eng. 3 (2008) 17–24.spa
dc.relation.references[24] R. Ayala, J.L. Frías, L. Lam, C.L. Heard, F.A. Holland, Experimental assessment of an ammonia/lithium nitrate absorption cooler operated on low temperature geothermal energy, Heat Recovery Syst. CHP 14 (1994) 437–446, https://doi.org/10.1016/0890-4332(94)90047-7.spa
dc.relation.references[25] C. Amaris, M. Bourouis, M. Vall`es, Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber, Energy 68 (2014) 519–528, https://doi.org/10.1016/j.energy.2014.02.039.spa
dc.relation.references[26] A.A.S. Lima, G.N.P. Leite, A.A.V. Ochoa, C.A.C. Dos Santos, J.A.P. da Costa, P.S.A. Michima, A.M.A. Caldas, Absorption refrigeration systems based on ammonia as refrigerant using different absorbents: review and applications, Energies 14 (2021), https://doi.org/10.3390/en14010048.spa
dc.relation.references[27] C.A. Infante Ferreira, Combined momentum, heat and mass transfer in vertical slug flow absorbers, Int. J. Refrig. 8 (1985) 326–334.spa
dc.relation.references[28] J. Cerezo, R. Best, R.J. Romero, A study of a bubble absorber using a plate heat exchanger with NH3-H2O, NH3-LiNO3and NH3-NaSCN, Appl. Therm. Eng. 31 (2011) 1869–1876, https://doi.org/10.1016/j.applthermaleng.2011.02.032.spa
dc.relation.references[29] C. Amaris, M.E. Alvarez, M. Vall`es, M. Bourouis, Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi-empirical model and artificial neural networks, Energies 13 (2020), https://doi.org/10.3390/en13174313.spa
dc.relation.references[30] F. Asfand, Y. Stiriba, M. Bourouis, CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems, Energy. https://doi.org/10.1016/j.energy.2015.08.018, 2015.spa
dc.relation.references[31] F. Asfand, Y. Stiriba, M. Bourouis, Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems, Energy. https://doi.org/10.1016/j.energy.2016.08.103, 2016.spa
dc.relation.references[32] S.M. Hosseinnia, M. Naghashzadegan, R. Kouhikamali, CFD simulation of adiabatic water vapor absorption in large drops of water-LiBr solution, Appl. Therm. Eng. 102 (2016) 17–29, https://doi.org/10.1016/j.applthermaleng.2016.03.144.spa
dc.relation.references[33] S.M. Hosseinnia, M. Naghashzadegan, R. Kouhikamali, CFD simulation of water vapor absorption in laminar falling film solution of water-LiBr ─ Drop and jet modes, Appl. Therm. Eng. 115 (2017) 860–873, https://doi.org/10.1016/j.applthermaleng.2017.01.022.spa
dc.relation.references[34] S.K. Panda, A. Mani, CFD heat and mass transfer studies in a R134a-DMF bubble absorber with swirl flow entry of R134a vapour, Int. Compress. Eng. Refrig. Air Cond. High Perform. Build. Conf. (2016) 1–10.spa
dc.relation.references[35] A.A.S. Lima, A.A. V Ochoa, J.A.P. Da Costa, J.R. Henríquez, CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid, Int. J. Refrig. 98 (2019) 514–525, https://doi.org/10.1016/j.ijrefrig.2018.11.010.spa
dc.relation.references[36] Y.T. Kang, T. Kashiwagi, R.N. Christensen, Ammonia-water bubble absorber with a plate heat exchanger, ASHRAE Trans., 1998, pp. 1565–1575.spa
dc.relation.references[37] J. Cerezo, Estudio del proceso de absorcion ´ con amoníaco-agua en intercambiadores de placas para equipos de refrigeracion ´ por absorcion, ´ Universitat Rovira i Virgili, 2006.spa
dc.relation.references[38] C. Amaris, Intensification of NH3 Bubble Absorption Process Using Advanced Surfaces and Carbon Nanotubes for NH3/LiNO3 Absorption Chillers, Universitat Rovira i Virgili, Tarragona, Spain, 2013. https://www.tdx.cat/handle/10803/128504.spa
dc.relation.references[39] C. Amaris, M. Bourouis, M. Vall`es, Effect of advanced surfaces on the ammonia absorption process with NH3/LiNO3 in a tubular bubble absorber, Int. J. Heat Mass Tran. 72 (2014) 544–552, https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.031.spa
dc.relation.references[40] ANSYS, ANSYS fluent theory guide, New York, USA. https://doi.org/10.1016/0140-3664(87)90311-2, 2013.spa
dc.relation.references[41] W.M.H.K. Versteeg, An Introduction to Computational Fluid Dynamics. The Finite Volume Method, 1st ed., New York, 1995.spa
dc.relation.references[42] S. Libotean, A. Martín, D. Salavera, M. Valles, X. Esteve, A. Coronas, Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 and 353.15) K, J. Chem. Eng. Data 53 (2008) 2383–2388, https://doi.org/10.1021/je8003035.spa
dc.relation.references[43] S. Libotean, D. Salavera, M. Valles, X. Esteve, A. Coronas, Vapor-liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K, J. Chem. Eng. Data 52 (2007) 1050–1055, https://doi.org/10.1021/je7000045.spa
dc.relation.references[44] Y. Cuenca, D. Salavera, A. Vernet, A.S. Teja, M. Vall`es, Thermal conductivity of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions over a wide range of concentrations and temperatures, Int. J. Refrig. 38 (2014) 333–340, https://doi.org/10.1016/j.ijrefrig.2013.08.010.spa
dc.relation.references[45] W. Haltenberger, Enthalpy-concentration charts from vapor pressure data, Ind. Eng. Chem. 31 (1939) 783–786, https://doi.org/10.1021/ie50354a032.spa
dc.relation.references[46] L.A. McNeely, Thermodynamic properties of aqueous solutions of lithium bromide, Build. Eng. 85 (1979) 413–434.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal