Mostrar el registro sencillo del ítem

dc.contributor.authorSchindler, Michaelspa
dc.contributor.authorSantosh, Mspa
dc.contributor.authorDotto, Guilhermespa
dc.contributor.authorSilva O, Luis Fspa
dc.contributor.authorHochella Jr, Michael Fspa
dc.date.accessioned2021-10-19T16:14:14Z
dc.date.available2021-10-19T16:14:14Z
dc.date.issued2021-07-17
dc.identifier.issn1342937Xspa
dc.identifier.urihttps://hdl.handle.net/11323/8788spa
dc.description.abstractLead (Pb) is one of the most paradoxical elements, both having diverse practical uses, as well as being extremely toxic to humans, and especially to children. The use of Pb records a steady growth with annual production currently exceeding 10 million metric tons. In spite of the environmental awareness of modern society, humans are still exposed to Pb through its emission by smelting and mining activities, and also by Pb-bearing mine wastes and soils. Here, we review the chemical and mineralogical forms of Pb generated from smelting and mining processes and subsequently altered in tailings, slag piles, and soils. In smelter plumes, Pb is emitted to the atmosphere either in the form of smaller nano-size particulate matter (PM) often associated with S, or larger micrometer Pb-bearing PM matter accompanied by oxide-silicate matrices. Pb-bearing phases in mine tailings and impacted soils depict a greater mineralogical and chemical complexity than those emitted from smelters and the larger particle size of this PM also leads to a lower Pb bioavailability. High resolution observations in aquatic system, soils and rock coatings impacted by smelting and mining activities show the presence of Pb-bearing phosphates, sulfides, sulfates, carbonates, and oxide nanoparticles. Larger micrometer size particles of Pb-bearing minerals form often through the aggregation of Pb-bearing nanoparticles, a process commonly referred to as crystallization through particle attachment. Mobilization of Pb within soil columns is strongly affected by the transport of colloids, especially those composed of organic matter and Fe-hydroxides because Pb is taken up efficiently by these two soil components. The extraordinary variability and complexities of all of these processes suggest that future reduction of Pb contamination in the environment and its impact on human health mainly depends on eliminating or greatly reducing Pb-release from smelting operations and tailings impoundments.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherGondwana Researchspa
dc.subjectenvironmentspa
dc.subjecthuman healthspa
dc.subjectminingspa
dc.subjectnanoparticlesspa
dc.subjectsmeltingspa
dc.titleA review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activitiesspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1342937X2100215Xspa
dc.source.urlhttps://ezproxy.cuc.edu.co:2104/record/display.uri?eid=2-s2.0-85112081474&origin=resultslist&sort=plf-f&src=s&sid=e739f667779faa9317435431ebc77840&sot=b&sdt=b&sl=129&s=TITLE-ABS-KEY%28A+review+on+Pb-bearing+nanoparticles%2c+particulate+matter+and+colloids+released+from+mining+and+smelting+activities%29&relpos=0&citeCnt=0&searchTerm=spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.gr.2021.07.011spa
dc.date.embargoEnd2023-07-17
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAdiansyah, J.S., Rosano, M., Vink, S., Keir, G., 2015. A framework for a sustainable approach to mine tailings management: disposal strategies. J. Cleaner Prod. 108, 1050–1062.spa
dc.relation.referencesAhmad, M., Ok, Y.S., Rajapaksha, A.U., Lim, J.E., Kim, B.-Y., Ahn, J.-H., Lee, Y.H., AlWabel, M.I., Lee, S.-E., Lee, S.S., 2016. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 301, 179– 186.spa
dc.relation.referencesArgyraki, A., 2014. Garden soil and house dust as exposure media for lead uptake in the mining village of Stratoni, Greece. Environ. Geochem. Health 36 (4), 677– 692.spa
dc.relation.referencesAgency for Toxic Substances and Disease Registry (ATSDR), 2017. Lead Toxicity. What are possible health effects from lead exposure? Available: https://www. atsdr.cdc.gov/csem /lead/docs/csem-lead_toxicity_508.pdf.spa
dc.relation.referencesBarbosa Jr, F., Tanus-Santos, J.E., Gerlach, R.F., Parsons, P.J., 2005. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environmental Health Perspective 113, 1669– 1674.spa
dc.relation.referencesBanfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T., Penn, R.L., 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754.spa
dc.relation.referencesBao, H.M., Reheis, M.C., 2003. Multiple oxygen and sulfur isotopic analyses on watersoluble sulfate in bulk atmospheric deposition from the southwestern United States. J. Geophys. Res. 108, 4430–4438.spa
dc.relation.referencesBatonneau, Y., Bremard, C., Gengembre, L., Laureyns, J., Le Maguer, A., Le Maguer, D., Perdrix, E., Sobanska, S., 2004. Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters. Environ. Sci. Technol. 38 (20), 5281–5289.spa
dc.relation.referencesBarcan, V., 2002. Nature and origin of multicomponent aerial emissions of the copper-nickel smelter complex. Environ. Int. 28, 451–456.spa
dc.relation.referencesBen-Moshe, T., Dror, I., Berkowitz, B., 2010. Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81 (3), 387–393.spa
dc.relation.referencesBlacksmith Institute and Green Cross Switzerland. The Worlds Worst, 2013. The Top Ten Toxic Threats – Cleanup, Progress, and Ongoing Challenges Blacksmithspa
dc.relation.referencesInstitute, Zurich, Switzerland (2013). USA and Green Cross Switzerland, New York.spa
dc.relation.referencesBoisa, N., Elom, N., Dean, J.R., Deary, M.E., Bird, G., Entwistle, J.A., 2014. Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10size fraction of soil. Environ. Int. 70, 132–142.spa
dc.relation.referencesBose-O’Reilly, S., Yabe, J., Makumba, J., Schutzmeier, P., Ericson, B., Caravanos, J., 2018. Lead intoxicated children in Kabwe, Zambia. Environ. Res. 165, 420–424.spa
dc.relation.referencesBosso, S.T., Enzweiler, J., 2008. Bioaccessible lead in soils, slag, and mine wastes from abandoned mining district in Brazil. Environ. Geochem. Health 30, 219– 229.spa
dc.relation.referencesBoussen, S., Abdelaziz, S., Soubrand, M., Bril, H., Chaabani, F., Abdeljaouad, S., 2010. Mobilization of lead-zinc rich particles from mine tailing in Northern Tunisia by aeolian and run-off processes. Bulletin de la Société Géologique de France 181, 371–379.spa
dc.relation.referencesBraungardt, C.B., Achterberg, E.P., Elbaz-Poulichet, F., Morley, N.H., 2003. Metal geochemistry in a mine-polluted estuarine system in Spain. Appl. Geochem. 18 (11), 1757–1771.spa
dc.relation.referencesBrock, C.A., Hamill, P., Wilson, J.C., Jonsson, H.H., Chan, K.R., 1995. Particle formation in the upper tropical troposphere – a source of nuclei for the stratospheric aerosol. Science 270 (5242), 1650–1653.spa
dc.relation.referencesBrown, J.S., Gordon, T., Price, O., Asgharian, B., 2013. Thoracic and respirable particle definitions for human health risk assessment. Particle Fibre Toxicology 10 (1), 12. https://doi.org/10.1186/1743-8977-10-12.spa
dc.relation.referencesBrown Jr., G.E., Hochella Jr., M.F., Calas, G., 2017. Improving Mitigation of the LongTerm Legacy of Mining Activities: Nano- and Molecular-Level Concepts and Methods. Elements 13, 325–330.spa
dc.relation.referencesBuatier, M.D., Sobanska, S., Elsass, F., 2001. investigation on Zn-and Pbcontaminated soils. Appl. Geochem. 16 (9-10), 1165–1177.spa
dc.relation.referencesBuffle, J., Leppard, G.G., 1995. Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ. Sci. Technol. 29 (9), 2169–2175.spa
dc.relation.referencesBuzek, F., Sramek, J., 1985. Sulphur isotopes in the study of stone monument conservation. Stud. Conserv. 30, 171–176.spa
dc.relation.referencesCalas, G., 2017. Mineral resources and sustainable development. Elements 13, 301– 306.spa
dc.relation.referencesCaplette, J.N., Schindler, M., Kyser, T.K., Widory, D., 2015. The Black Rock Coatings in Rouyn-Noranda, Québec: Fingerprints of Historical Smelter Emissions and the Local Ore. Can. J. Earth Sci. 52 (11), 952–965.spa
dc.relation.referencesCaplette, J.N., Schindler, M., 2018. Black rock-coatings in Trail B.C. Canada: Records of past emissions of Lead, Zinc, Antimony, Arsenic, Tellurium, Tin, Selenium, Silver, Bismuth and Indium-bearing atmospheric contaminants. Can. Mineral. 56, 113–127.spa
dc.relation.referencesCasteel, S.W., Weis, C.P., Henningsen, G.M., Brattin, W.J., 2006. Estimation of relative bioavailability of lead in soil and soil-like materials using young swine. Environ. Health Perspect. 114 (8), 1162–1171spa
dc.relation.referencesCastillo, S., de la Rosa, J.D., Sánchez de la Campa, A.M., González-Castanedo, Y., Fernández-Caliani, J.C., Gonzalez, I., Romero, A., 2013. Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Sci. Total Environ. 449, 363–372.spa
dc.relation.referencesCerqueira, B., Vega, F.A., Serra, C., Silva, L.F.O., Andrade, M.L., 2011. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a Bt horizon surfaces. J. Hazard. Mater. 195, 422–431.spa
dc.relation.referencesCerqueira, B., Vega, F.A., Silva, L.F.O., Andrade, L., 2012. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Sci. Total Environ. 421-422, 220–229.spa
dc.relation.referencesChan, W.H., Vet, R.J., Skelton, G.B., Lusis, M.A., 1982a. Size distribution and emission rate measurements of particulates in the 93m Falconbridge smelter stack plume, 1979. Report ARBTDA- 57-80, Air Resources Branch, Ontario Ministry of the Environment.spa
dc.relation.referencesChan, W.H., Vet, R.J., Lusis, M.A., Skelton, B.G., 1982b. Size distribution and emission rate measurements of particulates in the Inco 381 m chimney and iron ore recovery plant stack fumes, 1979–80. Report ARB-TDA-62-80, Air Resources Branch, Ontario Ministry of the Environment.spa
dc.relation.referencesChan, W.H., Lusis, M.A., 1985. Post-superstack smelter emissions and their fate in the atmosphere: an overview of the Sudbury environment study results. Water Air Soil Pollut. 26, 43–58.spa
dc.relation.referencesCheng, X. Tomas, Danek, T., Drozdova, J., Huang, O., Qi, W., Zou, L., Yang, S., Zhao, X., Xiang, Y., 2018. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China. Environ. Monit. Assessment 190, 194.spa
dc.relation.referencesChoël, M., Deboudt, K., Flament, P., Lecornet, G., Perdrix, E., Sobanska, S., 2006. Fast evolution of tropospheric Pb- and Znrich particles in the vicinity of a lead smelter. Atmos. Environ. 40 (24), 4439–4449.spa
dc.relation.referencesCiteau, L., Lamy, I., van Oort, F., Elsass, F., 2003. Colloidal facilitated transfer of metals in soils under different land use. Colloids Surf. A 217 (1-3), 11–19.spa
dc.relation.referencesCave, M.R., Wragg, J., Denys, S., Jondreville, C., Feidt, C., 2011. Oral bioavailability. In: Swartjes, F.A. (Ed.), Dealing with Contaminated Sites. Springer Sciene, Business Media B.V, Berlin, pp. 261–286.spa
dc.relation.referencesCorona Sánchez, Jesús Eulises, González Chávez, Ma del Carmen Angeles, Carrillo González, Rogelio, Scheckel, Kirk, Tapia Maruri, Daniel, García Cue, José L., 2021. Metal(loid) bioaccessibility of atmospheric particulate matter from mine tailings at Zimapan, Mexico. Environ. Sci. Pollut. Res. 28 (15), 19458–19472.spa
dc.relation.referencesCourtin-Nomade, Alexandra, Waltzing, Thomas, Evrard, Catherine, Soubrand, Marilyne, Lenain, Jean-François, Ducloux, Emmanuelle, Ghorbel, Sonda, Grosbois, Cécile, Bril, Hubert, 2016. Arsenic and lead mobility: From tailing materials to the aqueous compartment. Appl. Geochem. 64, 10–21.spa
dc.relation.referencesCourchesne, B., Schindler, M., Lussier, A.J., Mykytczuk, N., 2021. The mineralogy and geochemistry of Cobalt-bearing mine tailings in North-Eastern Ontario. Canadian Mineralogist (in press), Canada.spa
dc.relation.referencesCsavina, Janae, Landázuri, Andrea, Wonaschütz, Anna, Rine, Kyle, Rheinheimer, Paul, Barbaris, Brian, Conant, William, Sáez, Avelino Eduardo, Betterton, Eric A., 2011. Metal and metalloid contaminants in atmospheric aerosols from mining operations. Water Air Soil Pollut. 221 (1-4), 145–157.spa
dc.relation.referencesCsavina, Janae, Field, Jason, Taylor, Mark P., Gao, Song, Landázuri, Andrea, Betterton, Eric A., Sáez, A. Eduardo, 2012. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. The Sci. Total Environ. 433, 58–73.spa
dc.relation.referencesDapul, Heda, Laraque, Danielle, 2014. Lead poisoning in children. Adv. Pediatrics 61 (1), 313–333.spa
dc.relation.referencesDavies, B.E., 1983. Heavy metal contamination from base metal mining and smelting: implications for man and his environment. In: Thornton, I. (Ed.), Applied Environmental Geochemistry. Academic Press London, pp. 425–462.spa
dc.relation.referencesDavis, Andy, Ruby, Michael V., Bergstrom, Paul D., 1992. Bioavailability of arsenic and lead in soils from the Butte, Montana, mining district. Environ. Sci. Technol. 26 (3), 461–468.spa
dc.relation.referencesDavis, A., Drexler, J.W., Ruby, M.V., Nicholson, A., 1993. Mineralogy of mine waste in relation to lead bioavailability. Environ. Sci. Technol. 27, 1415–1425. Denaix, L, Semlali, R.M, Douay, F, 2001. Dissolved and colloidal transport of Cd, Pb, and Zn in a silt loam soil affected by atmospheric industrial deposition. Environ. Pollut. 114 (1), 29–38.spa
dc.relation.referencesDeng, Wenbo, Li, Xuxiang, An, Zhisheng, Yang, Liu, 2016. Lead Contamination and Source Characterization in Soils Around a Lead-Zinc Smelting Plant in a NearUrban Environment in Baoji, China. Arch. Environ. Contam. Toxicol. 71 (4), 500– 508.spa
dc.relation.referencesDe Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., Penn, R.L., Whitelam, S., Joester, D., Zhang, H., Rimer, J.D., Navrotsky, A., Banfield, J.F., Wallace, A.F., Michel, F.M., Meldrum, F.C., Cölfen, H., Dove, P.M., 2015. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, 498.spa
dc.relation.referencesDixon, S.L., Gaitens, J.M., Jacobs, D.E., Strauss, W., Nagaraja, J., Pivetz, T., Wilson, J.W., Ashley, P.J., 2009. Exposure of U.S. children to residential dust lead, 1999–2004: II. The contribution of lead contaminated dust to children’s blood lead levels. Environ. Health Perspect. 117, 468–474.spa
dc.relation.referencesDorn, Ronald I., Oberlander, Theodore M., 1982. Rock varnish. Prog. Phys. Geogr. 6 (3), 317–367.spa
dc.relation.referencesEdwards, Marc, Dudi, Abhijeet, 2004. Role of chlorine and chloramine in corrosion of lead-bearing plumbing materials. J. – Am. Water Works Assoc. 96 (10), 69– 81.spa
dc.relation.referencesEntwistle, Jane A., Hursthouse, Andrew S., Marinho Reis, Paula A., Stewart, Alex G., 2019. Metalliferous mine dust: human health impacts and the potential determinants of disease inmining communities. Curr. Pollut. Rep. 5 (3), 67–83.spa
dc.relation.referencesEgli, M., Fitze, P., Oswald, M., 1999. Changes in heavy metal contents in an acidic forest soil affected by depletion of soil organic matter within the time span 1969–93. Environ. Pollut. 105 (3), 367–379.spa
dc.relation.referencesEqueenuddin, S.M., Akhtar, S., Bastia, F., Rout, S.S., Saika, P.I., 2020. Role of colloid in metal transport in river water around Jaduguda uranium mines, Singhbhum shear zone. J. Earth Syst. Sci. 129, 23.spa
dc.relation.referencesEttler, V., Johan, Z., Barronnet, A., Jankovsky´ , F., Gilles, C., Mihaljevic, M., _Sebek, O., Strnad, L., Bezdicka, P., 2005a. Mineralogy of air-pollution-control residues from a secondary lead smelter: environmental implications. Environ. Sci. Technol., 39, 9309-9316.spa
dc.relation.referencesEttler, Vojteˇch, Vaneˇk, Aleš, Mihaljevicˇ, Martin, Bezdicˇka, Petr, 2005b. Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy. Chemosphere 58 (10), 1449–1459.spa
dc.relation.referencesEttler, V., Sebek, O., Grygar, T., Klementová, M., Bezdicka, P., Slavíková, H., 2008. Controls on metal leaching from secondary Pb smelter air-pollution-control residues. Environ. Sci. Technol. 42, 7878–7884.spa
dc.relation.referencesEttler, V., Mihaljevic , M., S ebek, O., Grygar. T.M., Klementova´ M. 2012a. Experimental - transformation of Pb smelter fly ash in acidic soils. Environ. Sci. Technol. 46, 10539 10548.spa
dc.relation.referencesEttler, Vojteˇch, Mihaljevicˇ, Martin, Šebek, Ondrˇej, Valigurová, Radka, Klementová, Mariana, 2012a. Differences in antimony and arsenic releases from lead smelter fly ash in soils. Chem. Erde 72, 15–22.spa
dc.relation.referencesEttler, Vojteˇch, Krˇíbek, Bohdan, Majer, Vladimír, Knésl, Ilja, Mihaljevicˇ, Martin, 2012b. Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia). J. Geochem. Explor. 113, 68– 75.spa
dc.relation.referencesEttler, Vojteˇch, Cihlová, Markéta, Jarošíková, Alice, Mihaljevicˇ, Martin, Drahota, Petr, Krˇíbek, Bohdan, Vaneˇk, Aleš, Penízˇek, Vít, Sracek, Ondra, Klementová, Mariana, Engel, Zbyneˇk, Kamona, Fred, Mapani, Ben, 2019. Oral bioaccessibility of metal (loid)s in dust materials from mining areas of northern Namibia. Environ. Int. 124, 205–215.spa
dc.relation.referencesEttler, Vojteˇch, Šteˇpánek, David, Mihaljevicˇ, Martin, Drahota, Petr, Jedlicka, Radim, Krˇíbek, Bohdan, Vaneˇk, Aleš, Penízˇek, Vít, Sracek, Ondra, Nyambe, Imasiku, 2020. Slag dusts from Kabwe (Zambia): Contaminant mineralogy and oral bioaccessibility. Chemosphere 260, 127642. https://doi.org/10.1016/j. chemosphere.2020.127642.spa
dc.relation.referencesEttler, Vojteˇch, 2016. Soil contamination near non-ferrous metal smelters: A review. Appl. Geochem. 64, 56–74.spa
dc.relation.referencesFreedman, B., Hutchinson, T.C., 1980. Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel–copper smelter at Sudbury, Ontario, Canada. Can. J. Bot. 58 (1), 108–132.spa
dc.relation.referencesGee, C., Ramsey, M.H., Maskall, J., Thornton, I., 1997. Mineralogy and weathering processes in historical smelting slags and their effect on the mobilization of lead. J. Geochem. Explor. 58, 249–257.spa
dc.relation.referencesGelly, R., Fekiacova, Z., Guihou, A., Doelsch, E., Deschamps, P., Keller, C., 2019. Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago. Sci. Total Environ. 665, 502–512.spa
dc.relation.referencesGlotov, Vladimir E., Chlachula, Jiri, Glotova, Ludmila P., Little, Edward, 2018. Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East. Eng. Geol. 245, 236–247.spa
dc.relation.referencesGrolimund, D., Borkovec, M., Barmettler, K., Sticher, H., 1996. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: A laboratory column study. Environ. Sci. Technol. 30, 3118–3123.spa
dc.relation.referencesGulson, Brian L., Mizon, Karen J., Korsch, Michael J., Palmer, Jacqueline M., Donnelly, John B., 2003. Mobilization of lead from human bone tissue during pregnancy and lactation - a summary of long-term research. Sci. Total Environ. 303 (1-2), 79–104.spa
dc.relation.referencesHamill, Patrick, Jensen, Eric J., Russell, P.B., Bauman, Jill J., 1997. The life cycle of stratospheric aerosol particles. Bull. Am. Meteorol. Soc. 78 (7), 1395– 1410.spa
dc.relation.referencesHassellov, M., von der Kammer, F., 2008. Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 4 (6), 401–406.spa
dc.relation.referencesHashimoto, Yohey, Yamaguchi, Noriko, Takaoka, Masaki, Shiota, Kenji, 2011. EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum. Sci. Total Environ. 409 (5), 1001–1007.spa
dc.relation.referencesHawa, T., Zachariah, M.R., 2006. Coalescence kinetics of unequal sized nanoparticles Aerosol. Science 37 (1), 1–15.spa
dc.relation.referencesHayes, Sarah M., Webb, Sam M., Bargar, John R., O’Day, Peggy A., Maier, Raina M., Chorover, Jon, 2012. Geochemical weathering increases lead bioaccessibility in semi-arid mine tailings. Environ. Sci. Technol. 46 (11), 5834–5841.spa
dc.relation.referencesHenderson, P.J., McMartin, I., Hall, G.E., Percival, J.B., Walker, D.A., 1998. The chemical and physical characteristics of heavy metals in humus and till in the vicinity of the base metal smelter at Flin Flon, Manitoba, Canada. Environ. Geol. 34 (1), 39–58.spa
dc.relation.referencesHerms, U., Brümmer, G., 1984. Einflussgrössen der Schwermetalloslichkeit und - bindung in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 147, 400–424.spa
dc.relation.referencesHernberg, Sven, 2000. Lead poisoning in a historical perspective. Am. J. Ind. Med. 38 (3), 244–254.spa
dc.relation.referencesHochella Jr, M.F., Moore, J.N., Golla, U., Putnis, A., 1999. A TEM study of samples from acid mine drainage systems: metal-mineral association with implications for transport. Geochim. Cosmochim. Acta 63, 3395–3406.spa
dc.relation.referencesHochella, Michael F., Moore, Johnnie N., Putnis, Christine V., Putnis, Andrew, Kasama, Takeshi, Eberl, Dennis D., 2005a. Direct observation of heavy metalmineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability. Geochim. Cosmochim. Acta 69 (7), 1651–1663.spa
dc.relation.referencesHochella Jr., M.F., Kasama, T., Putnis, A., Putnis, C., Moore, J.N., 2005b. Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex. Am. Mineral. 90, 718–724.spa
dc.relation.referencesHochella Jr., M.F. et al., 2008. Nanominerals, mineral nanoparticles, and earth systems. Science 319, 1631.spa
dc.relation.referencesHochella Jr., M.F. et al., 2019. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, 1414.spa
dc.relation.referencesHogan, G.D., Wotton, D.L., 1984. Pollutant distribution and effects on forests adjacent to smelters. J. Environ. Qual. 13, 377–382.spa
dc.relation.referencesHower, James C., O’Keefe, Jennifer M.K., Henke, Kevin R., Wagner, Nicola J., Copley, Gregory, Blake, Donald R., Garrison, Trent, Oliveira, Marcos L.S., Kautzmann, Rubens M., Silva, Luis F.O., 2013. Gaseous emissions and sublimates from the truman shepherd coal fire, floyd county, Kentucky: a re-investigation following attempted mitigation of the fire. Int. J. Coal Geol. 116-117, 63–74.spa
dc.relation.referencesHudson-Edwards, K.A., Macklin, M.G., Curtis, C.D., Vaughan, D.J., 1996. Processes of formation and distribution of Pb-, Zn-, Cd-, and Cu-bearing minerals in the Tyne Basin, northeast England: Implications for metal-contaminated river systems. Environ. Sci. Technol. 30, 72–80.spa
dc.relation.referencesInternational Lead Association, 2021. https://ila-lead.org/.spa
dc.relation.referencesInternational Union of Pure and Applied Chemistry (IUPAC), 2001. Appendix II Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Ed. D. H. Everett &L. K. Koopal; pp 78.spa
dc.relation.referencesJackson, Togwell A., 1978. The biogeochemistry of heavy metals in polluted lakes and streams at Flin Flon, Canada, and a proposed method for limiting heavymetal pollution of natural waters. Environ. Geol. 2 (3), 173–189.spa
dc.relation.referencesJarošíková, Alice, Ettler, Vojteˇch, Mihaljevicˇ, Martin, Drahota, Petr, Culka, Adam, Racek, Martin, 2018. Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust. J. Environ. Manage. 209, 71–80.spa
dc.relation.referencesKastury, Farzana, Smith, Euan, Juhasz, Albert L., 2017. A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci. Total Environ. 574, 1054–1074.spa
dc.relation.referencesKeim, Maximilian F., Markl, Gregor, 2015. Weathering of galena: Mineralogical processes, hydrogeochemical fluid path modeling, and estimation of the growth rate of pyromorphite. Am. Mineral. 100 (7), 1584–1594.spa
dc.relation.referencesKim, C.S., Wilson, K.M., Rytuba, J.J., 2011. Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure. Appl. Geochem. 26 (4), 484–495.spa
dc.relation.referencesKjøller, Claus, Postma, Dieke, Larsen, Flemming, 2004. Groundwater acidification and the mobilization of trace metals in a sandy aquifer. Environ. Sci. Technol. 38 (10), 2829–2835.spa
dc.relation.referencesKlitzke, S., Lang, F., Kaupenjohann, M., 2008. Increasing pH releases colloidal lead in a highly contaminated forest soil. Eur. J. Soil Sci. 59 (2), 265–273.spa
dc.relation.referencesKlitzke, Sondra, Lang, Friederike, Kirby, Jason, Lombi, Enzo, Hamon, Rebecca, 2012. Lead, antimony and arsenic in dissolved and colloidal fractions from an amended shooting-range soil as characterised by multi-stage tangential ultrafiltration and centrifugation. Environ. Chem. 9 (5), 462. https://doi.org/ 10.1071/EN12010.spa
dc.relation.referencesKretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M., 1999. Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66, 121–194.spa
dc.relation.referencesKretzschmar, R., Schafer, T., 2005. Metal retention and transport on colloidal particles in the environment. Elements 1 (4), 205–210.spa
dc.relation.referencesKrˇíbek, Bohdan, Majer, Vladimír, Veselovsky´ , František, Nyambe, Imasiku, 2010. Discrimination of lithogenic and anthropogenic sources of metals and sulphur in soils of the central-northern part of the Zambian Copperbelt Mining District: A topsoil vs. subsurface soil concept. J. Geochem. Explor. 104 (3), 69–86.spa
dc.relation.referencesKrˇibek, B., Majer, V., Knesl, I., Nyambe, I., Mihaljevicˇ, M., Ettler, V., Sracek, O., 2014. Concentration of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt. J. Afr. Earth Sc. 99, 713–723.spa
dc.relation.referencesKrˇíbek, Bohdan, Majer, Vladimír, Knésl, Ilja, Keder, Josef, Mapani, Benjamin, Kamona, Frederick, Mihaljevicˇ, Martin, Ettler, Vojteˇch, Penízˇek, Vít, Vaneˇk, Aleš, Sracek, Ondra, 2016. Contamination of soil and grass in the Tsumeb smelter area, Namibia: modeling of contaminants dispersion and ground geochemical verification. Appl. Geochem. 64, 75–91.spa
dc.relation.referencesKrˇíbek, Bohdan, Šípková, Adéla, Ettler, Vojteˇch, Mihaljevicˇ, Martin, Majer, Vladimír, Knésl, Ilja, Mapani, Benjamin, Penízˇek, Vít, Vaneˇk, Aleš, Sracek, Ondra, 2018. Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia. Chem. Geol. 493, 121–135.spa
dc.relation.referencesKrinsley, David H., Dorn, Ronald I., DiGregorio, Barry E., Langworthy, Kurt A., Ditto, Jeffrey, 2012. Rock varnish in New York: an accelerated snapshot of accretionary processes. Geomorphology 138 (1), 339–351.spa
dc.relation.referencesKrinsley, David, Ditto, Jeffrey, Langworthy, Kurt, Dorn, Ronald I., Thompson, Tyler, 2013. Varnish microlaminations: new insights from focused ion beam preparation. Phys. Geogr. 34 (3), 159–173.spa
dc.relation.referencesLanteigne, S., Schindler, M., McDonald, A., 2014. Distribution of metal(loid)s in smelter-derived particulate matter in soils, mineralogical insights into their retention and release in a low-T environment. Can. Mineral. 52, 453–471.spa
dc.relation.referencesLenoble, Véronique, Bouras, Omar, Deluchat, Véronique, Serpaud, Bernard, Bollinger, Jean-Claude, 2002. Arsenic adsorption onto pillared clays and iron oxides. J. Colloid Interface Sci. 255 (1), 52–58.spa
dc.relation.referencesLi, Zhonggen, Feng, Xinbin, Bi, Xiangyang, Li, Guanghui, Lin, Yan, Sun, Guangyi, 2014. Probing the distribution and contamination levels of 10 trace metal/ metalloids in soils near a Pb/Zn smelter in Middle China. Environ. Sci. Pollut. Res. Int. 21 (6), 4149–4162.spa
dc.relation.referencesLi, Hong-Bo, Chen, Kai, Juhasz, Albert L., Huang, Lei, Ma, Lena Q., 2015. Childhood lead exposure in an industrial town in China: coupling stable isotope ratios with bioaccessible lead. Environ. Sci. Technol. 49 (8), 5080–5087.spa
dc.relation.referencesLöv, Åsa, Cornelis, Geert, Larsbo, Mats, Persson, Ingmar, Sjöstedt, Carin, Gustafsson, Jon Petter, Boye, Kristin, Kleja, Dan B., 2018. Particle- and colloid-facilitated Pb transport in four historically contaminated soils - Speciation and effect of irrigation intensity. Appl. Geochem. 96, 327–338.spa
dc.relation.referencesLu, Hongjian, Qi, Chongchong, Chen, Qiusong, Gan, Deqing, Xue, Zhenlin, Hu, Yajun, 2018. A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits. J. Cleaner Prod. 188, 601–612.spa
dc.relation.referencesLv, X., Gao, B., Sun, Y., Shi, X., Xu, H., Wu, J., 2014. Effects of humic acid and solution chemistry on the retention and transport of cerium dioxide nanoparticles in saturated porous media. Water Air Soil Pollut. 225, 1–9.spa
dc.relation.referencesLi, J., McDonald-Gillespie, K., 2020. Airborne Lead (Pb) From Abandoned Mine Waste in Northeastern Oklahoma, USA. GeoHealth, 4, e2020GH000273. Mai, F.M., 2006. Beethoven’s terminal illness and death. J. Royal College of Phys. Edinburgh 36, 258–263.spa
dc.relation.referencesMason, P.M., 2013. Trace Metals in Aquatic Systems. Wiley, Chichester. McCarthy, J.F., McKay, L.D., 2004. Colloid transport in the subsurface: past, present, and future challenges. Vadose Zone J. 3 (2), 326–337.spa
dc.relation.referencesMcKay, Larry D., Cherry, John A., Bales, Roger C., Yahya, Moyasar T., Gerba, Charles P., 1993. A field example of bacteriophage as tracers of fracture flow. Environ. Sci. Technol. 27 (6), 1075–1079.spa
dc.relation.referencesMantha, Nathalie M., Schindler, Michael, Murayama, Mitsuhiro, Hochella, Michael F., 2012a. Silica- and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution I. Formation and mineralogical composition. Geochim. Cosmochim. Acta 85, 254–274.spa
dc.relation.referencesMantha, N.M., Schindler, M., Kyser, T.K., 2012b. Silica- and sulfate-bearing rock coatings in smelter areas: II. Forensic tools for atmospheric metal(loid)- and sulfur-isotope compositions. Geochim. Cosmochim. Acta 90, 221–241.spa
dc.relation.referencesMarcotte, A., Anbar, A., Majestic, B., Herckes, P., 2020. Mineral dust and iron solubility: effects of composition, particle size, and surface area. Atmosphere. 11, 533. https://doi.org/10.3390/atmos11050533.spa
dc.relation.referencesMartin, Rachael, Dowling, Kim, Pearce, Dora, Sillitoe, James, Florentine, Singarayer, 2014. Health effects associated with inhalation of airborne arsenic arising from mining operations. Geosciences 4 (3), 128–175.spa
dc.relation.referencesMcCarthy, J.F., Zachara, J.M., 1989. Subsurface transport of contaminants. Environ. Sci. Technol. 23, 496–502.spa
dc.relation.referencesMcCarthy, J.F., Degueldre, C., 1993. Sampling and characterization of colloids and particles in groundwater for studying their role in contaminant transport. In: Buffle, J., van Leeuwen, H.P. (Eds.), Environmental Particles, Vol. 2. Lewis Publishers, Boca Raton, pp. 247–315.spa
dc.relation.referencesMcConnell, Joseph R., Wilson, Andrew I., Stohl, Andreas, Arienzo, Monica M., Chellman, Nathan J., Eckhardt, Sabine, Thompson, Elisabeth M., Pollard, A. Mark, Steffensen, Jørgen Peder, 2018. Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity. Proc. Natl. Acad. Sci. 115 (22), 5726–5731.spa
dc.relation.referencesMerill, J.C., Morton, J.J.P., Soileau, S.D., 2007. Metals. In: Hayes, A.W., Principles and Methods of Toxicology (5th ed.) CRC Press.spa
dc.relation.referencesMillward, Geoffrey E., 1995. Processes affecting trace element speciation in estuaries; a review. Analyst 120 (3), 609. https://doi.org/10.1039/ an9952000609. Mindat, 2021. https://www.mindat.orgspa
dc.relation.referencesMonaci, Fabrizio, Ancora, Stefania, Bianchi, Nicola, Bonini, Ilaria, Paoli, Luca, Loppi, Stefano, 2021. Combined use of native and transplanted moss for post-mining characterization of metal(loid) river contamination. Sci. Total Environ. 750, 141669. https://doi.org/10.1016/j.scitotenv.2020.141669.spa
dc.relation.referencesMorin, Guillaume, Ostergren, John D., Juillot, Farid, Ildefonse, Philippe, Calas, Georges, Brown, Gordon E., 1999. XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings: importance of adsorption processes. Am. Mineral. 84 (3), 420–434.spa
dc.relation.referencesMorrison, Anthony L., Gulson, Brian L., 2007. Preliminary findings of chemistry and bioaccessibility in base metal smelter slags. Sci. Total Environ. 382 (1), 30–42.spa
dc.relation.referencesMorrison, Anthony L., Swierczek, Zofia, Gulson, Brian L., 2016. Visualisation and quantification of heavy metal accessibility in smelter slags: the influence of morphology on availability. Environ. Pollut. 210, 271–281.spa
dc.relation.referencesNatural Resources Canada, 2019. https://www.nrcan.gc.ca/science-data/scienceresearch/earth-sciences/earth-sciences-resources/earth-sciences-federalprograms/lead-facts/20518. Neubauer, Elisabeth, Schenkeveld, Walter D.C., Plathe, Kelly L., Rentenberger, Christian, von der Kammer, Frank, Kraemer, Stephan M., Hofmann, Thilo, 2013. The influence of pH on iron speciation in podzol extracts: iron complexes with natural organic matter, and iron mineral nanoparticles. Sci. Total Environ. 461- 462, 108–116.spa
dc.relation.referencesOjelede, M.E., Annegarn, H.J., Kneen, M.A., 2012. Evaluation of Aeolian emissions from gold mine tailings on the Witwatersrand. Aeolian Res. 3 (4), 477–486.spa
dc.relation.referencesO’Reilly, S.E, Hochella, Michael F, 2003. Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim. Cosmochim. Acta 67 (23), 4471–4487.spa
dc.relation.referencesOstergren, J.D., Brown, G.E., Parks, G.A., Tingle, T.N., 1999. Quantitative speciation of lead in selected mine tailings from Leadville. CO, Environmental Science Technology 33, 1627–1636.spa
dc.relation.referencesOuattara, A.A., Yao, K.M., Soro, M.P., Diaco, T., Trokourey, A., 2018. Arsenic and trace metals in three west African rivers: concentrations, partitioning, and distribution in particle-size fractions. Arch. Environ. Contam. Toxicol. 75, 449–463.spa
dc.relation.referencesPédrot, M., Dia, A., Davranche, M., Bouhnik-Le Coz, M., Henin, O., Gruau, G., 2008. Insights into colloid-mediated trace element release at the soil/water interface. J. Colloid Interface Sci. 325, 187–197.spa
dc.relation.referencesPerdrial, N., Perdrial, J.N., Delphin, J.-E., Elsass, F., Liewig, N., 2010. Temporal and spatial monitoring of mobile nanoparticles in a vineyard soil: evidence of nanoaggregate formation. Eur. J. Soil Sci. 61, 456–468.spa
dc.relation.referencesPelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., Douay, F., 2011. Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environ. Geochem. Health 33, 477–493.spa
dc.relation.referencesPiña, A.A., Villaseñor, G.T., Jacinto, P.S., Fernández, M.M., 2002. Scanning and transmission electron microscope of suspended lead-rich particles in the air of San Luis Potosi, Mexico. Atmos. Environ. 36, 5235–5243.spa
dc.relation.referencesPlathe, K.L., von der Kammer, F., Hassellöv, M., Moore, J., Muruyama, M., Hofmann, T., Hochella Jr., M.F., 2010. Using FlFFF and aTEM to determine trace metal – nanoparticle associations in riverbed sediment. J. Environ. Chem. 7, 82–93.spa
dc.relation.referencesPlathe, K.L., von der Kammer, F., Hassellov, M., Moore, J.N., Murayama, M., Hofmann, T., Hochella Jr., M.F., 2013. The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: Field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation. Geochim. Cosmochim. Acta 102, 213–225.spa
dc.relation.referencesPlumlee, G.S., Morman, S.A., 2011. Mine wastes and human health. Elements 7, 399–404.spa
dc.relation.referencesPokrovsky, O.S., Schott, J., Dupre, B., 2006. Trace element fractionation and transport in boreal rivers and soil pore waters of permafrost-dominated basaltic terrain in Central Siberia. Geochem. Cosmochim. Acta 70, 3239–3260.spa
dc.relation.referencesReed, W.R., Westman, E.C., 2005. A model for predicting the dispersion of dust from a haul truck. Int. J. Surf. Mining Reclamation and Environ. 19, 66–74.spa
dc.relation.referencesRen, Z., Sivry, Y., Tharaud, M., Cordier, L., Li, Y., Dai, J., Benedetti, M.F., 2017. Speciation and reactivity of lead and zinc in heavily and poorly contaminated soils: stable isotope dilution, chemical extraction and model views. Environ. Pollut. 225, 654–662.spa
dc.relation.referencesResongles, E., Casiot, C., Freydier, R., Le Gall, M., Elbaz-Poulichet, F., 2015. Variation of dissolved and particulate metal(loid) (As, Cd, Pb, Sb, Tl, Zn) concentrations under varying discharge during a Mediterranean flood in a former mining watershed, the Gardon River (France). J. Geochem. Explor. 158, 132–142.spa
dc.relation.referencesRich, V., 1995. The International Lead Trade. Woodhead Publishing, Cambridge. Roelofs, F., Vogelsberger, W., 2004. Dissolution kinetics of synthetic amorphous silica in biological-like media and its theoretical description. J. Phys. Chem. B 108, 11308–11316.spa
dc.relation.referencesRomero, F.M., Villalobos, M., Aguirre, R., Gutierrez, M.E., 2008. Solid-phase control on lead bioaccessibility in smelter-impacted soils. Arch. Environ. Contam. Toxicol. 55, 566–575.spa
dc.relation.referencesRossi, E., 2008. Low level environmental lead exposure–a continuing challenge. The Clin. Biochem. Rev. 29, 63–70.spa
dc.relation.referencesRoulier, S., Robinson, B., Kuster, E., Schulin, R., 2008. Analysing the preferential transport of lead in a vegetated roadside soil using lysimeter experiments and a dual porosity model. Eur. J. Soil Sci. 59, 61–70.spa
dc.relation.referencesRoussel, C., Neel, C., Bril, H., 2000. Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci. Total Environ. 263, 209–219.spa
dc.relation.referencesRuby, M.V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D.E., Casteel, S.W., Berti, W., Carpenter, M., Edwards, D., Cragin, D., Chappell, W., 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ. Sci. Technol. 33, 3697–3705.spa
dc.relation.referencesSánchez-Peña, N.E., Narváez-Semanate, J.L., Pabón-Patiño, D., Fernández-Mera, J.E., Oliveira, M.L., Da Boit, K., Tutikian, B., Crissien, T., Pinto, D., Serrano, I., Ayala, C., Duarte, A., Ruiz, J., Silva, L.F., 2018. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 191, 1048–1055.spa
dc.relation.referencesSauvé, S., McBride, M., Hendershot, W., 1998. Soil solution speciation of lead(II): effects of organic matter and pH. Soil Sci. Soc. Am. J. 62, 618–621.spa
dc.relation.referencesSchindler, M., Fayek, M., Hawthorne, F.C., 2010. Uranium in opaline rock-coatings at the Uranium Ore Deposit Nopal 1, Pena Blanca, Mexico: Indications for the uptake and retardation of radionuclides. Geochim. Cosmochim. 74, 187–202.spa
dc.relation.referencesSchindler, M., Mantha, N.M., Kyser, K.T., Murayama, M., Hochella Jr., M.F., 2012. Shining light on black rock-coatings in smelter-impacted areas. Geosci. Can. 39, 148–157.spa
dc.relation.referencesSchindler, M., Kamber, B.S., 2012. High-resolution lake sediment reconstruction of industrial impact in a world-class mining and smelting center, Sudbury, Ontario, Canada. Appl. Geochem. 37, 102–116.spa
dc.relation.referencesSchindler, M., Dorn, R., 2017. Coatings on rocks and minerals: The interface between lithosphere and the bio-, hydro- and atmosphere. Elements 13, 155–158.spa
dc.relation.referencesSchindler, M., Hochella Jr., M.F., 2017. Sequestration of Pb- Zn- Sb- and As-bearing incidental nanoparticles in mineral surface coatings and mineralized organic matter in soils. Environ. Sci.: Processes Impacts 19, 1016–1027.spa
dc.relation.referencesSchindler, M., Mantha, H., Hochella (Jr), M.F., 2019. The formation of spinel-group minerals in contaminated soils: the sequestration of metal(loid)s by unexpected incidental nanoparticles. Geochem. Trans. 20, 1–13.spa
dc.relation.referencesScheckel, K.G., Ryan, J.A., 2002. Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environ. Sci. Technol. 36, 2198–2204.spa
dc.relation.referencesSchmidt, J., Vogelsberger, W., 2006. Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. J. Phys. Chem. B 110, 3955–3963.spa
dc.relation.referencesSchraufnagel, D.E., Balmes, J.R., Cowl, C.T., De Matteis, S., Jung, S.H., Mortimer, K., Perez-Padilla, R., Rice, M.B., Riojas-Rodriguez, H., Sood, A., Thurston, G.D., To, T., Vanker, A., Wuebbles, D.J., 2018a. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, Part 1: the damaging effects of air pollution. Chest S0012–3692, 32723–32725.spa
dc.relation.referencesSchraufnagel, D.E., Balmes, J.R., Cowl, C.T., De Matteis, S., Jung, S.H., Mortimer, K., Perez-Padilla, R., Rice, M.B., Riojas-Rodriguez, H., Sood, A., Thurston, G.D., To, T., Vanker, A., Wuebbles, D.J., 2018b. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, Part 2: air pollution and organ systems. Chest S0012–3692 (18), 32722–32723.spa
dc.relation.referencesSchroder, J.L., Basta, N.T., Casteel, S.W., Evans, T.J., Payton, M.E., Si, J., 2004. Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils. J. Environ. Qual. 33, 513–521.spa
dc.relation.referencesShen, F., Liao, R., Ali, A., Mahar, A., Guo, D., Li, R., Xining, S., Awasthi, M.K., Wang, Q., Zhang, Z., 2017. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol. Environ. Saf. 139, 254– 262.spa
dc.relation.referencesShotyk, W., Weiss, D., Kramers, J.D., Frei, R., Cheburkin, A.K., Gloor, M., Reese, S., 2001. Geochemistry of the peat bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 14C yr BP. Geochim. Cosmochim. Acta 65, 2337– 2360.spa
dc.relation.referencesSiciliano, S.D., James, K., Zhang, G., Schafer, A.N., Peak, J.D., 2009. Adhesion and enrichment of metals on human hands from contaminated soil at an arctic urban brownfield. Environ. Sci. Technol. 43, 6385–6390.spa
dc.relation.referencesSimonetti, A., Gariepy, C., Banic, C., Tanabe, R., Wong, H.K.T., 2004. Pb isotopic investigation of emissions from the Horne smelter (Rouyn, Québec) – implications for atmospheric pollution in northeastern North America. Geochim. Cosmochim. Acta 68, 3285–3294.spa
dc.relation.referencesSkeaff, J.M., Thibault, Y., Hardy, D.J., 2011. A new method for the characterization and quantitative speciation of base metal smelter stack particulates. Environ. Monit. Assessment 177, 165–192.spa
dc.relation.referencesSmall, C.C., Cho, S., Hashisho, Z., Ulrich, A.C., 2015. Emissions from oil sands tailings ponds: review of tailings pond parameters and emission estimates. J. Petrol. Sci. Eng. 127, 490–501.spa
dc.relation.referencesSchneider, A.R., Cancès, B., Ponthieu, M., Sobanska, S., Benedetti, M.F., Pourret, O., Conreux, A., Calandra, I., Martinet, B., Morvan, X., Gommeaux, M., Marin, B., 2016. Lead distribution in soils impacted by a secondary lead smelter: Experimental and modelling approaches. Sci. Total Environ. 568, 155–163.spa
dc.relation.referencesSobanska, S., Ricq, N., Laboudigue, A., Guillermo, R., Bremard, C., Laureyns, J., Merlin, J.C., Wignacourt, J.P., 1999. Microchemical investigation of dust emitted by a lead smelter. Environ. Sci. Technol. 33, 1334–1339.spa
dc.relation.referencesSteckerman, T., Douay, F., Proix, N., Fourrier, H., 2000. Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environ. Pollut. 107, 377– 389.spa
dc.relation.referencesSun, H.M., Gao, B., Tian, Y., Yin, X., You, C., Wang, Y., Ma, L.Q., 2010. Kaolinite and lead in saturated porous media: facilitated and Impeded transport. J. Environ. Eng. 136, 1305–1308.spa
dc.relation.referencesSun, J., Wang, F., Sui, Y., She, Z., Zhai, W., Wang, C., Deng, Y., 2012. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals. Int. J. Nanomed. 7, 5733–5744.spa
dc.relation.referencesTelmer, K., Bonham-Carter, G.F., Kliza, D.A., Hall, G.A., 2004. The atmospheric transport and deposition of smelter emissions: Evidence from the multielement geochemistry of snow, Quebec, Canada. Geochim. Cosmochim. Acta 68, 2691–2980.spa
dc.relation.referencesThiagarajan, N., Lee, C., 2004. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition. Earth Planet. Sci. Lett. 224, 131–141.spa
dc.relation.referencesUS EPA, 2007. Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods. Office of Solid Waste and Emergency Response, US EPA, Washington. OSWER 9285.7-77.spa
dc.relation.referencesUSGS, 2021. https://www.usgs.gov/energy-and-minerals/mineral-resourcesprogram. Vítková, M., Ettler, V., Sebek, O., Mihaljevic, M., Grygar, T., Rohovec, J., 2009. The pHdependent leaching of inorganic contaminants from secondary lead smelter fly ash. J. Hazard. Mater. 167, 427–433.spa
dc.relation.referencesWani, A.L., Ara, A., Usmani, J.A., 2015. Lead toxicity: a review. Interdisciplinary Toxicology 8, 55–64.spa
dc.relation.referencesWang, Y., Yin, X., Sun, H., Wang, C., 2016. Transport of vanadium (V) in saturated porous media: effects of pH, ionic strength and clay mineral. Chem. Speciat. Bioavailab. 28, 7–12.spa
dc.relation.referencesWen, J., Tang, C., Cao, Y., Li, X., Chen, Q., 2019. Assessment of trace metals in an aquifer with river-groundwater interaction: The influence of colloidal redistribution and porous matrix change on the migration of metals. Chemosphere 223, 588–598.spa
dc.relation.referencesWong, H.K., Banic, C.M., Robert, S., Nejedly, Z., J.L. Campbell, J.L., 2006. In-stack and in-plume characterization of particulate metals emitted from a copper smelter. Geochem.: Exploration Environ. Anal., 6, 131–137.spa
dc.relation.referencesYabe, J., Nakayama, S.M.M., Ikenaka, Y., Yohannes, Y.B., Bortey-Sam, N., Oroszlany, B., Muzandu, K., Choongo, K., Kabalo, A.N., Ntapisha, J., Mweene, A., Umemura,spa
dc.relation.referencesT., Ishizuka, M., 2021. Lead poisoning in children from townships in the vicinity of a lead-zinc mine in Kabwe, Zambia. Chemosphere 119, 941–947.spa
dc.relation.referencesYabe, J., Nakayama, S.M.M., Ikenaka, Y., Yohannes, Y.B., Bortey-Sam Kabalo, A.N., Ntapisha, J., Mizukawa, H., Umemura, T., Ishizuka, M., 2018. Lead and cadmium excretion in feces and urine of children from polluted townships near a leadzinc mine in Kabwe, Zambia. Chemosphere 202, 48–55.spa
dc.relation.referencesYabe, J., Nakayama, S.M., Nakata, H., Toyomaki, H., Yohannes, Y.B., Muzandu, K., Kataba, A., Zyambo, G., Hiwatari, M., Narita, D., Yamada, D., Hangoma, P., Munyinda, N.S., Mufune, T., Ikenaka, Y., Choongo, K., Ishizuka, M., 2020. Current trends of blood lead levels, distribution patterns and exposure variations among household members in Kabwe. Zambia. Chemosphere 243, 125412.spa
dc.relation.referencesYamamoto, N., Takahashi, Y., Yoshinaga, J., Tanaka, A., Shibata, Y., 2006. Size distributions of soil particles adhered to children’s hands. Arch. Environ. Contam. Toxicol. 51, 157–163.spa
dc.relation.referencesYedjou, C.G., Tchounwou, H.M., Tchounwou, P.B., 2015. DNA damage, cell cycle arrest, and apoptosis induction caused by lead in human leukemia cells. Int. J. Environ. Res. Public Health 13 (1).spa
dc.relation.referencesYin, S., Shao, Y.,Wu, A., Liu, X.,Wang, Y., 2020. A systematic review of paste technology in metal mines for cleaner production in China. J. Cleaner Prod. 247, 119590.spa
dc.relation.referencesYin, X., Gao, B., Ma, L.Q., Saha, U.K., Sun, H., Wang, G., 2010. Colloid-facilitated Pb transport in two shooting-range soils in Florida. J. Hazard. Mater. 177, 620–625.spa
dc.relation.referencesZänker, H., Moll, H., Richter, W., Brendler, V., Hennig, C., Reich, T., Kluge, A., Hüttig, G., 2002. The colloid chemistry of acid rock drainage solution from an abandoned Zn-Pb-Ag mine. Appl. Geochem. 17, 633–648.spa
dc.relation.referencesZdanowicz, C.M., Banic, C.M., Paktunc, D.A., Kliza-Petelle, D.A., 2006. Metal emissions from a Cu smelter, Rouyn-Noranda, Québec: characterization of particles sampled in air and snow. Geochem.: Exploration Environ. Anal. 6, 147– 162.spa
dc.relation.referencesZahran, S., Laidlaw, M.A., McElmurry, S.P., Filippelli, G.M., Taylor, M., 2013. Linking source and effect: resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environ. Sci. Technol. 47, 2839–2845.spa
dc.relation.referencesZhang, H., De Yoreo, J.J., Banfield, J.F., 2014. A unified description of attachmentbased crystal growth. ACS Nano 8 (7), 6526–6530.spa
dc.relation.referencesZhang, M., Shao, L., Jones, T., Hu, Y., Adams, R., BéruBé, K., 2021. Hemolysis of PM10 on RBCs in vitro: An indoor air study in a coal-burning lung cancer epidemic area. Geosci. Frontiers, 101176.spa
dc.relation.referencesZoltai, S., 1988. Distribution of base metals in peat near a smelter at Flin Flon, Manitoba. Water Air and Soil Pollution 37, 217–228.spa
dc.relation.referencesZupancˇicˇ, N., Miler, M., Ašler, A., Pompe, N., Jarc, S., 2021. Contamination of children’s sandboxes with potentially toxic elements in historically polluted industrial city. J. Hazard. Mater. 412, 125275.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem