Mostrar el registro sencillo del ítem

dc.contributor.authorGindri Ramos, Claudetespa
dc.contributor.authorSilva Oliveira, Marcos Leandrospa
dc.contributor.authorFernández Pena, Merlysspa
dc.contributor.authorMeriño Cantillo, Andreaspa
dc.contributor.authorLozano Ayarza, Liliana Patriciaspa
dc.contributor.authorKorchagin, Jacksonspa
dc.contributor.authorCampanhola Bortoluzzi, Edsonspa
dc.date.accessioned2021-11-23T19:15:56Z
dc.date.available2021-11-23T19:15:56Z
dc.date.issued2021
dc.identifier.issn2213-3437spa
dc.identifier.urihttps://hdl.handle.net/11323/8895spa
dc.description.abstractNanoparticles (NPs) from the mining of volcanic rocks have been a matter of concern around the world because they can pose environmental and human health risks. The nanoparticles are pointed as opportunities of application in a large field of knowledge. The aim of this study is to provide an overview of scientific publications on the success rates of mineral nanoparticles, the use of soil remineralizers as an alternative for replacing highly soluble fertilizers and their potential risk to human health and the environment. Nanoparticles were successful used as a filter agent and may act as carrier agent of metals and molecules through the environment compartments; rock powder was used as a litho-fertilizer in nature or enriched with nutrients and pesticides for plant disease control. However, nanoparticles were also identified as particle promoting of human diseases. Finally, this work addresses nanoparticles derived from volcanic rock mining and highlights the relevance of developing cleaner procedures to minimize exposure to these materials and is therefore of direct relevance to both the volcanic rock mining and agriculture sector and health.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceJournal of Environmental Chemical Engineeringspa
dc.subjectHealthspa
dc.subjectMiningspa
dc.subjectMineralogyspa
dc.subjectNutrientspa
dc.subjectSustainable agriculturespa
dc.titleNanoparticles generated during volcanic rock exploitation: an overviewspa
dc.typePre-Publicaciónspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S2213343721014184#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.jece.2021.106441spa
dc.date.embargoEnd2023
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] M.F. Hochella Jr., D.W. Mogk, J. Ranville, I.C. Allen, G.W. Luther, L.C. Marr, B.P. McGrail, M. Murayama, N.P. Qafoku, K.M. Rosso, N. Sahai, P.A. Schroeder, P. Vikesland, P. Westerhoff, Y. Yang Natural, incidental, and engineered nanomaterials and their impacts on the Earth system Science, 363 (2019), 10.1126/science.aau8299spa
dc.relation.references[2] D.K. McDaniel, V.M. Ringel-Scaia, H.A. Morrison, S. Coutermarsh-Ott, M. Council-Troche, J.W. Angle, J.B. Perry, G. Davis, W. Leng, V. Minarchick, Y. Yang, B. Chen, S.W. Reece, D.A. Brown, T.E. Cecere, J.M. Brown, K.M. Gowdy, M.F. Hochella Jr., I.C. Allen Pulmonary exposure to Magnéli phase titanium suboxides results in significant macrophage abnormalities and decreased lung function Front. Immunol., 10 (2019), p. 2714, 10.3389/fimmu.2019.02714spa
dc.relation.references[3] M.F. Hochella Jr., S.K. Lower, P.A. Maurice, R.L. Peen, N. Sahai, D.L. Sparks, B.S. Twining Nanominerals, mineral nanoparticles, and earth systems Science, 319 (2008), pp. 1631-1635, 10.1126/science.1141134spa
dc.relation.references[4] W. Mahakham, A.K. Sarmah, S. Maensiri, P. Theerakulpisut Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles Sci. Rep., 7 (2016), pp. 1-21, 10.1038/s41598-017-08669-5spa
dc.relation.references[5] P. Acharya, G.K. Jayaprakasha, K.M. Crosby, J.L. Jifon, B.S. Patil Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.) ACS Sustain. Chem. Eng., 7 (2019), pp. 14580-14590, 10.1021/acssuschemeng.9b02180spa
dc.relation.references[6] N. Sundaria, M. Singh, P. Upreti, R.P. Chauhan, J.P. Jaiswal, A. Kumar Seed priming with Iron oxide nanoparticles triggers Iron acquisition and biofortification in wheat (Triticum aestivum L.) grains J. Plant Growth Regul., 38 (2019), pp. 122-131, 10.1007/s00344-018-9818-7spa
dc.relation.references[7] K. Raja, R. Sowmya, R. Sudhagar, P.S. Moorthy, K. Govindaraju, K.S. Subramanian Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vignamungo) Mater. Lett., 235 (2019), pp. 164-167, 10.1016/j.matlet.2018.10.038spa
dc.relation.references[8] R. Li, J. He, H. Xie, W. Wang, S.K. Bose, Y. Sun, H. Yin Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.) Int. J. Biol. Macromol., 126 (2019), pp. 91-100, 10.1016/j.ijbiomac.2018.12.118spa
dc.relation.references[9] H. Abdel-Aziz Effect of priming with chitosan nanoparticles on germination, seedling growth and antioxidant enzymes of broad beans Int. J. Environ. Sci., 18 (2019), pp. 81-86, 10.12816/CAT.2019.28609spa
dc.relation.references[10] M. Ali, J.M. Sobze, T.H. Pham, M. Nadeem, C. Liu, L. Galagedara, R. Thomas Carbon nanoparticles functionalized with carboxylic acid improved the germination and seedling vigor in upland boreal forest species Nanomaterials, 10 (2020), p. 176, 10.3390/nano10010176spa
dc.relation.references[11] S.H. Theodoro, O.H. Leonardos Stonemeal: principles, potencial and perspective from Brazil T.J. Goreau, R.W. Larson, J. Campe (Eds.), Geotherapy: Innovative Methods of Soil Fertility Restoration, Carbon Sequestration and Reversing CO2 Increase, CRC Press, USA (2014), pp. 403-418spa
dc.relation.references[12] C.G. Ramos, D. dos, S. de Medeiros, L. Gomez, L.F.S. Oliveira, I.A.H. Schneider, R.M. Kautzmann Evaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops Nat. Resour. Res., 29 (2019), pp. 1583-1600, 10.1007/s11053-019-09529-xspa
dc.relation.references[13] A.C. Dalmora, C.G. Ramos, L.G. Plata, M.L. da Costa, R.M. Kautzmann, L.F.S. Oliveira Understanding the mobility of potential nutrients in rock mining by-products: an opportunity for more sustainable agriculture and mining Sci. Total Environ., 710 (2020), Article 136240, 10.1016/j.scitotenv.2019.136240spa
dc.relation.references[14] C.C. Okolo, F.O.R. Akamigbo, P.I. Ezeaku, J.N. Nwite, J.C. Nwite, V.C. Ezeudo, J. Ene, E.P. Ukaegbu, O.N. Udegbunam, N.C. Eze Impact of open cast mine land use on soil physical properties in Enyigba, Southeastern Nigeria and the implication for sustainable land use management, Niger J. Soil Sci., 25 (2015), pp. 95-101spa
dc.relation.references[15] N. Haque, T. Norgate Estimation of greenhouse gas emissions from ferroalloy production using life cycle assessment with particular reference to Australia J. Clean. Prod., 39 (2013), pp. 220-230, 10.1016/j.jclepro.2012.08.010spa
dc.relation.references[16] M.S. Tonello, J. Korchagin, E.C. Bortoluzzi Environmental agate mining impacts and potential use of agate residue in rangeland J. Clean. Prod., 280 (2021), Article 124263, 10.1016/j.jclepro.2020.124263spa
dc.relation.references[17] T. Norgate, N. Haque Energy and greenhouse gas impacts of mining and mineral processing operations J. Clean. Prod., 18 (2010), pp. 266-274, 10.1016/j.jclepro.2009.09.020spa
dc.relation.references[18] W. Cornwall Catastrophic failures raise alarm about dams containing muddy mine wastes Science, 20 (2020), 10.1126/science.abe3917spa
dc.relation.references[19] C.C. Okolo, T.D.T. Oyedotun, F.O.R. Akamigbo Open cast mining: threat to water quality in rural community of Enyigba in south-eastern Nigeria Appl. Water Sci., 8 (2018), p. 204, 10.1007/s13201-018-0849-9spa
dc.relation.references[20] A. Cortés, L.F.S. Oliveira, V. Ferrari, S.R. Taffarel, G. Feijoo, M.T. Moreira Environmental assessment of viticulture waste valorisation through composting as a biofertilisation strategy for cereal and fruit crops Environ. Pollut., 264 (2020), Article 114794, 10.1016/j.envpol.2020.114794spa
dc.relation.references[21] T.P. Souza, G. Watte, A.M. Gusso, R. Souza, J.D.S. Moreira, M.M. Knorst Silicosis prevalence and risk factors in semi-precious stone mining in Brazil Am. J. Ind. Med., 60 (2017), pp. 529-536, 10.1002/ajim.22719spa
dc.relation.references[22] T.P. Souza, R. Souza, G. Watte, J.A. de Souza, J.D.S. Moreira, M.M. Knorst Lung function and functional exercise capacity in underground semi-precious stone mineworkers Work, 66 (2020), pp. 193-200, 10.3233/WOR-203163spa
dc.relation.references[23] A.K. Patra, S. Gautam, P. Kumar Emissions and human health impact of particulate matter from surface mining operation—a review Environ. Technol. Innov., 5 (2016), pp. 233-249, 10.1016/j.eti.2016.04.002spa
dc.relation.references[24] M. Chang, Y. Liu, C. Zhou, H. Che Hazard assessment of a catastrophic mine waste debris flow of Hou Gully, Shimian, China Eng. Geol., 275 (2020), Article 105733, 10.1016/j.enggeo.2020.105733spa
dc.relation.references[25] A. Pompermaier, A.C.C.V. Varela, M. Fortuna, S. Mendonça-Soares, G. Koakoski, R. Aguirre, T.A. Oliveira, E. Sordi, D.F. Moterle, A.R. Pohl, V.C. Rech, E.C. Bortoluzzi, L.J.G. Barcellos, L.J.G Water and suspended sediment runoff from vineyard watersheds affecting the behavior and physiology of zebrafish Sci. Total Environ., 757 (2021), Article 143794, 10.1016/j.scitotenv.2020.143794spa
dc.relation.references[26] S. Bai, Q. Hua, L.J. Cheng, Q.Y. Wang, T. Elwert Improve sustainability of stone mining region in developing countries based on cleaner production evaluation: methodology and a case study in Laizhou region of China J. Clean. Prod., 207 (2019), pp. 929-950, 10.1016/j.jclepro.2018.10.026spa
dc.relation.references[27] H. Ritchie, M. Roser, CO₂ and Greenhouse Gas Emissions, 2020. 〈https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions〉.spa
dc.relation.references[28] E.T. Asr, R. Kakaie, M. Ataei, M.R.T. Mohammadi A review of studies on sustainable development in mining life cycle J. Clean. Prod., 229 (2019), pp. 213-231, 10.1016/j.jclepro.2019.05.029spa
dc.relation.references[29] J.A. Aznar-Sánchez, J.F. Velasco-Muñoz, L.J. Belmonte-Ureña, F. Manzano-Agugliaro Innovation and technology for sustainable mining activity: a worldwide research assessment J. Clean. Prod., 221 (2019), pp. 38-54, 10.1016/j.jclepro.2019.02.243spa
dc.relation.references[30] M. Tost, M. Hitch, V. Chandurkar, P. Moser, S. Feiel The state of environmental sustainability considerations in mining J. Clean. Prod., 182 (2018), pp. 969-977, 10.1016/j.jclepro.2018.02.051spa
dc.relation.references[31] D. Folle, R.A. Silva, J. Boita, D. Carissimo, I.A.H. Schneider Waste generation in agate processing: use of SiO2 as a support material for Fe3O4 Int. J. Struct. Civ. Eng. Res., 2 (2015), pp. 327-331spa
dc.relation.references[32] F.S. Vilasbôas, C.R. Santos, I.A.H. Schneider Environmental issues on the industrial processing of raw agate Geomaterials, 7 (2017), pp. 13-24, 10.4236/gm.2017.71002spa
dc.relation.references[33] L.M. Rosenstengel, L.A. Hartmann Geochemical stratigraphy of lavas and fault-block structures in the Ametista do Sul geode mining district, Paraná volcanic province, southern Brazil Ore Geol. Rev., 48 (2012), pp. 332-348, 10.1016/j.oregeorev.2012.05.003spa
dc.relation.references[34] A.P. Nordin, J. Da Silva, C. De Souza, L.A.B. Niekraszewicz, J.F. Dias, J.F, K. Da Boit, M.L.S. Oliveira, I. Grivicich, A.L. Garcia, L.F.S. Oliveira, F.R. Da Silva In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage J. Hazard. Mater., 346 (2018), pp. 263-272, 10.1016/j.jhazmat.2017.12.026spa
dc.relation.references[35] D.A.C. Manning How will minerals feed the world in 2050? Proc. Geol. Assoc., 126 (2015), pp. 14-17, 10.1016/j.pgeola.2014.12.005spa
dc.relation.references[36] L. Dalacorte, P.A.V. Escosteguy, E.C. Bortoluzzi Sorption of copper and zinc from aqueous solution by metabasalt residue and its mineralogical behavior Water Air Soil Pollut., 230 (2019), p. 90, 10.1007/s11270-019-4141-xspa
dc.relation.references[37] J. Korchagin, L. Caner, E.C. Bortoluzzi Variability of amethyst mining waste: a mineralogical and geochemical approach to evaluate the potential use in agriculture J. Clean. Prod., 210 (2019), pp. 749-758, 10.1016/j.jclepro.2018.11.039spa
dc.relation.references[38] R. Miloš Distribution and origin of clay minerals during hydrothermal alteration of ore deposits M. Valášková, S. Martynkova (Eds.), Clay Minerals in Nature – Their Characterization, Modification and Application, 5, InTech (2012), p. 325, 10.5772/48312 Chapiter 5spa
dc.relation.references[39] J. Korchagin, E.C. Bortoluzzi, D.F. Moterle, C. Petry, L. Caner Evidences of soil geochemistry and mineralogy changes caused by eucalyptus rhizosphere Catena, 175 (2019), pp. 132-143, 10.1016/j.catena.2018.12.001spa
dc.relation.references[40] E.C. Bortoluzzi, D.R. Santos, M.A. Santanna, L. Caner Mineralogy and nutrient desorption of suspended sediments during a storm event J. Soils Sediment., 13 (2013), pp. 1093-1105, 10.1007/s11368-013-0692-4spa
dc.relation.references[41] A.L. Duarte, K. Da Boit, M.L.S. Oliveira, E.C. Teixeira, I.L. Schneider, L.F. Silva Hazardous elements and amorphous nanoparticles in historical estuary coal mining area Geosci. Front., 10 (2019), pp. 927-939, 10.1016/j.gsf.2018.05.005spa
dc.relation.references[42] J.C. Prata, J.P. da Costa, I. Lopes, A.C. Duarte, T. Rocha-Santos Environmental exposure to microplastics: an overview on possible human health effects Sci. Total Environ., 702 (2020), Article 134455, 10.1016/j.scitotenv.2019.134455spa
dc.relation.references[43] Z.Y. Zhang, L. Huang, F. Liu, M.K. Wang, G.M. Ndzana, Z.J. Liu Transformation of clay minerals in nanoparticles of several zonal soils in China J. Soils Sediment., 19 (2019), pp. 211-220, 10.1007/s11368-018-2013-4spa
dc.relation.references[44] M.S. Tonello, T.S. Hebner, R.W. Sterner, S. Brovold, T. Tiecher, E.C. Bortoluzzi, G.H. Merten Geochemistry and mineralogy of southwestern Lake Superior sediments with an emphasis on phosphorus lability J. Soils Sediment., 20 (2020), pp. 1060-1073, 10.1007/s11368-019-02420-5spa
dc.relation.references[45] C.M. Cutruneo, M.L. Oliveira, C.R. War, J.C. Hower, I.A. de Brum, C.H. Sampaio, L.F. Silva A mineralogical and geochemical study of three Brazilian coal cleaning rejects: demonstration of electron beam applications Int. J. Coal Geol., 130 (2014), pp. 33-52, 10.1016/J.COAL.2014.05.009spa
dc.relation.references[46] J. Wilcox, B. Wang, E. Rupp, R. Taggart, H. Hsu-Kim, M. Oliveira, C. Cutruneo, S. Taffarel, L.F. Silva, S. Hopps, G. Thomas, J. Hower Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: environmental processes recorded at the macro and nanometer scale Energy Fuel, 29 (2015), pp. 7168-7177, 10.1021/acs.energyfuels.5b02033spa
dc.relation.references[47] L.T. Al-Hadede, S.A. Khaleel, S.K. Hasan Some applications of nanotechnology in agriculture Biochem. Cell. Arch., 20 (2020), pp. 1447-1454, 10.35124/bca.2020.20.1.1447spa
dc.relation.references[48] A.C. Dalmora, C.G. Ramos, X. Querol, R.M. Kautzmann, M.L.S. Oliveira, S.R. Taffarel, T. Moreno, L.F.O. Silva Nanoparticulate mineral matter from basalt dust wastes Chemosphere, 144 (2016), pp. 2013-2017, 10.1016/j.chemosphere.2015.10.047spa
dc.relation.references[49] L.F. Silva, X. Querol, K. Da Boit, S. Fdez-Ortiz De Vallejuelo, J.M. Madariaga Brazilian coal mining residues and sulphide oxidation by Fenton s reaction: an accelerated weathering procedure to evaluate possible environmental impact J. Hazard. Mater., 186 (2011), pp. 516-525, 10.1016/j.jhazmat.2010.11.032 ArticleDownload PDFView Record in ScopusGoogle Scholarspa
dc.relation.references[50] L.F. Silva, M. Wollenschlager, M. Oliveira A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil Environ. Geochem. Health, 33 (2011), pp. 55-65, 10.1007/s10653-010-9322-xspa
dc.relation.references[51] L.F.O. Silva, M. Santosh, M. Schindler, J. Gasparotto, G.L. Dotto, M.L.S. Oliveira, M.F. Hochella Jr. Nanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: a review and perspective Gondwana Res., 92 (2021), pp. 184-201, 10.1016/j.gr.2020.12.026 ArticleDownload PDFView Record in ScopusGoogle Scholarspa
dc.relation.references[52] . Ribeiro, D. Flores, C. Ward, L.F.O. Silva Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal Sci. Total Environ., 408 (2010), pp. 6032-6041, 10.1016/j.scitotenv.2010.08.046spa
dc.relation.references[53] B.K. Saikia, C.R. Ward, M.L. Oliveira, J.C. Hower, B.P. Baruah, M. Braga, L.F. Silva Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals Int. J. Coal Geol., 121 (2014), pp. 26-34, 10.1016/j.coal.2013.11.007spa
dc.relation.references[54] H. Wang, X. Li, Y. Chen, Z. Li, D.W. Hedding, W. Nel, J. Ji, J. Chen Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: a case study from Xuyi County, eastern China Sci. Total Environ., 729 (2020), Article 139058, 10.1016/j.scitotenv.2020.139058spa
dc.relation.references[55] B. Ren, Y. Zhou, A.S. Hursthouse, R. Deng Research on the characteristics and mechanism of the cumulative release of antimony from an antimony smelting slag stacking area under rainfall leaching J. Anal. Methods Chem., 2017 (2017), pp. 1-8, 10.1155/2017/7206876spa
dc.relation.references[56] Y. Zhou, B. Ren, A.S. Hursthouse, S. Zhou Antimony ore tailings: heavy metals, chemical speciation, and leaching characteristics Pollut. J. Environ. Stud., 28 (2019), pp. 485-495, 10.15244/pjoes/85006spa
dc.relation.references[57] Z. Yang, Y. Li, Y. Ning, S. Yang, Y. Tang, Y. Zhang, X. Wang Effects of oxidant and particle size on uranium leaching from coal ash J. Radioanal. Nucl. Chem., 317 (2018), pp. 801-810, 10.1007/s10967-018-5963-5spa
dc.relation.references[58] B. Liu, T. Peng, H. Sun Leaching behavior of U, Mn, Sr, and Pb from diferente particle-size fractions of uranium mill tailings Environ. Sci. Pollut. Res., 24 (2017), pp. 1-12, 10.1007/s11356-017-8921-9spa
dc.relation.references[59] L.F.O. Silva, J.C. Hower, G.L. Dotto, M.L.S. Oliveira, D. Pinto Titanium nanoparticles in sedimented dust aggregates from urban children’s parks around coal ashes wastes Fuel, 285 (2021), Article 119162, 10.1016/j.fuel.2020.119162spa
dc.relation.references[60] M.L. Oliveira, E.M.M. Flores, G.L. Dotto, A. Neckel, L.F.O. Silva Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): the protagonist of black crusts produced on historic buildings J. Clean. Prod., 278 (2021), Article 123982, 10.1016/j.jclepro.2020.123982spa
dc.relation.references[61] C. Ward Analysis, origin and significance of mineral matter in coal: an updated review Int. J. Coal Geol., 165 (2016), pp. 1-27, 10.1016/j.coal.2016.07.014spa
dc.relation.references[62] M.V. Permana, 2756-6044-2-Pb, Jurnal Dinamika Manajemen, 4 (2013), 115–131, [Online]. 〈https://journal.unnes.ac.id/nju/index.php/jdm〉.spa
dc.relation.references[63] D.J. Beerling, J.R. Leake, S.P. Long, J.D. Scholes, J. Ton, P.N. Nelson, M. Bird, E. Kantzas, L.L. Taylor, B. Sarkar, M. Kelland, E. DeLucia, I. Kantola, C. Muller, G. Rau, J. Hamsen Farming with crops and rocks to address global climate, food and soil security Nat. Plants, 4 (2018), pp. 138-147, 10.1038/s41477-018-0108-yspa
dc.relation.references[64] D.J. Beerling, E.P. Kantzas, M.R. Lomas Potential for large-scale CO2 removal via enhanced rock weathering with croplands Nature, 583 (2020), pp. 242-248, 10.1038/s41586-020-2448-9spa
dc.relation.references[65] C.G. Ramos, A.G. de Mello, R.M. Kautzmann A preliminary study of acid volcanic rocks for stonemeal application Environ. Nanotechnol. Monit. Manag., 1–2 (2014), pp. 30-35, 10.1016/j.enmm.2014.03.002spa
dc.relation.references[66] C.G. Ramos, J.C. Hower, E. Blanco, M.L.S. Oliveira, S.H. Theodoro Possibilities of using silicate rock powder: an overview Geosci. Front. (2021), Article 101185, 10.1016/j.gsf.2021.101185spa
dc.relation.references[67] V. Martins, D.R.G. Silva, G. Marchi, M.C.A. Leite, E.D.S. Martins, A.S.F. Gonçalves, L.R.G. Guilherme Effect of alternative multinutrient sources on soil chemical properties Rev. Bras. Cienc. Solo, 39 (2015), pp. 194-204, 10.1590/01000683rbcs20150587spa
dc.relation.references[68] V. Ferrari, S.R. Taffarel, E. Espinosa-Fuentes, M.L.S. Oliveira, B.K. Saikia, L.F.S. Oliveira Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers J. Clean. Prod., 208 (2019), pp. 297-306, 10.1016/j.jclepro.2018.10.032spa
dc.relation.references[69] S.H. Theodoro, F.P. Medeiros, M. Ianniruberto, T.K.B. Jacobson Soil remineralization and recovery of degraded areas: an experience in the tropical region J. S. Am. Earth Sci., 107 (2020), p. 103014, 10.1016/j.jsames.2020.103014spa
dc.relation.references[70] G.P. Gillman, D.C. Burkett, R.J. Coventry A laboratory study of application of basalt dust to highly weathered soils: effect on soil cation chemistry Aust. J. Soil Res., 39 (2001), pp. 799-811, 10.1071/SR00073spa
dc.relation.references[71] G.P. Gillman, D.C. Burkett, R.J. Coventry Amending highly weathered soils with finely ground basalt rock J. Appl. Geochem., 17 (2002), pp. 987-1001, 10.1016/S0883-2927(02)00078-1spa
dc.relation.references[72] W. Mushtaq, A. Shakeel, M.A. Fazili, I. Chakrabartty, M. Sevindik Pros and cons of nanotechnology K. Hakeem, T. Pirzadah (Eds.), Nanobiotechnology in Agriculture, Nanotechnology in the Life Sciences, Springer, Cham (2020), pp. 207-222, 10.1007/978-3-030-39978-8_13spa
dc.relation.references[73] A. Ramezanian, A.S. Dahlin, C.D. Campbell, S. Hillier, B. Mannerstedt-Fogelfors, I. Öborn Addition of a volcanic rock dust to soils has no observable effects on plant yield and nutrient status or on soil microbial activity Plant Soil, 367 (2013), pp. 419-436, 10.1007/s11104-012-1474-2spa
dc.relation.references[74] L. Gomez-Plata, C.G. Ramos, M.L. Silva Oliveira, L.F.Silva Oliveira Release kinetics of multi-nutrients from volcanic rock mining by-products: evidences for their use as a soil remineralizer J. Clean. Prod., 279 (2021), Article 123668, 10.1016/j.jclepro.2020.123668spa
dc.relation.references[75] P.S. Bindraban, C.O. Dimkpa, J.C. White, F.A. Franklin, A. Melse-Boonstra, N. Koele, R. Pandey, J. Rodenburg, K. Senthilkumar, P. Demokritou, S. Schmidt Safeguarding human and planetary health demands a fertilizer sector transformation Plants People Planet, 2 (2020), pp. 302-309, 10.1002/ppp3.10098spa
dc.relation.references[76] E.C. Bortoluzzi, C.A.S. Pérez, J.D. Ardisson, T. Tiecher, L. Caner Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils Appl. Clay Sci., 104 (2015), pp. 196-204, 10.1016/j.clay.2014.11.032spa
dc.relation.references[77] A. Somavilla, L. Caner, E.C. Bortoluzzi, M.A. Santanna, D.R. dos Santos P-Legacy effect of soluble fertilizer added with limestone and phosphate rock on grassland soil in subtropical climate region Soil Tillage Res., 211 (2021), Article 105021, 10.1016/j.still.2021.105021spa
dc.relation.references[78] P.S. Pavinato, M.R. Cherubin, A. Soltangheisi, G.C. Rocha, D.R. Chadwick, D.L. Jones Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil Sci. Rep., 10 (2020), p. 15615, 10.1038/s41598-020-72302-1spa
dc.relation.references[79] P.S. Pavinato, M. Rodrigues, A. Soltangheisi, L.R. Sartor, P.J.A. Withers Effects of cover crops and phosphorus sources on maize yield, phosphorus uptake, and phosphorus use efficiency Agron. J., 109 (2017), pp. 1039-1047, 10.2134/agronj2016.06.0323spa
dc.relation.references[80] M. Dutta, J. Saikia, S.R. Taffarel, F.B. Waanders, D. De Medeiros, C.M. Cutruneo, L.F.O. Silva, B.K. Saikia Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage Geosci. Front., 8 (2017), pp. 1285-1297, 10.1016/j.gsf.2016.11.014spa
dc.relation.references[81] M. Dutta, N. Islam, S. Rabha, B. Narzary, M. Bordoloi, D. Saikia, L.F.O. Silva, B.K. Saikia Acid mine drainage in an Indian high-sulfur coal mining area: cytotoxicity assay and remediation study J. Hazard. Mater., 389 (2020), Article 121851, 10.1016/j.jhazmat.2019.121851spa
dc.relation.references[82] A.D. Harley, R.J. Gilkes Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview Nutr. Cycl. Agroecosyst., 56 (2000), pp. 11-36, 10.1023/A:1009859309453spa
dc.relation.references[83] S.H. Theodoro, O.H. Leonardos The use of rocks to improve family agriculture in Brazil Acad. Bras. Cienc., 78 (2006), pp. 721-730, 10.1590/S0001-37652006000400008spa
dc.relation.references[84] J.M.G. Nunes, R.M. Kautzmann, C. Oliveira Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil) J. Clean. Prod., 84 (2014), pp. 649-656, 10.1016/j.jclepro.2014.04.032spa
dc.relation.references[85] M. Anda, J. Shamshuddin, C.I. Fauziah Improving chemical properties of a highly weathered soil using finely ground basalt rocks Catena, 124 (2015), pp. 147-161, 10.1016/j.catena.2014.09.012spa
dc.relation.references[86] A.C. Dalmora, C.G. Ramos, M.L.S. Oliveira, L.F.S. Oliveira, I.A.H. Schneider, R.M. Kautzmann Application of andesite rock as a clean source of fertilizer for eucalyptus crop: evidence of sustainability J. Clean. Prod., 256 (2020), Article 120432, 10.1016/j.jclepro.2020.120432spa
dc.relation.references[87] J.B. Gill Orogenic Andesites and Plate Tectonics Springer - Verlag, Berlin (1981)spa
dc.relation.references[88] C. Coroneos, P. Hinsinger, R.J. Gilkes Granite powder as a source of potassium for plants: a glasshouse bioassay comparing two pasture species Fertil. Res., 45 (1995), pp. 143-152, 10.1007/BF00790664spa
dc.relation.references[89] P.K. Pufahl, L.A. Groat Sedimentary and Igneous Phosphate Deposits: Formation and Exploration: An Invited Paper Econ. Geol., 112 (2017), pp. 483-516, 10.2113/econgeo.112.3.483spa
dc.relation.references[90] A. Soltangheisi, A.P.B. Teles, L.R. Sartor, P.S. Pavinato Cover Cropping May Alter Legacy Phosphorus Dynamics Under Long-Term Fertilizer Addition Front. Environ. Sci., 8 (2020), 10.3389/fenvs.2020.00013spa
dc.relation.references[91] D. Cordell, J.O. Drangert, S. White The story of phosphorus: Global food security and food for thought Glob. Environ. Change, 19 (2009), pp. 292-305, 10.1016/j.gloenvcha.2008.10.009spa
dc.relation.references[92] A.E. Kateb, C. Stalder, A. Rüggeberg, C. Neururer, J.E. Spangenberg, S. Spezzaferri Impact of industrial phosphate waste discharge on the marine environment in the Gulf of Gabes (Tunisia) PLoS One, 13 (2018), Article e0197731, 10.1371/journal.pone.0197731spa
dc.relation.references[93] A. Ditta How helpful is nanotechnology in agriculture? Adv. Nat. Sci.: Nanosci. Nanotechnol., 3 (2012), Article 033002, 10.1088/2043-6262/3/3/033002spa
dc.relation.references[94] H. Brammer, F.O. Nachtergaele Implications of soil complexity for environmental monitoring Int. J. Environ. Sci., 72 (2015), pp. 56-73, 10.1080/00207233.2014.967509spa
dc.relation.references[95] C.G. Ramos, X. Querol, M.L.S. Oliveira, K. Pires, R.M. Kautzmann, L.F.S. Oliveira A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer Sci. Total Environ., 512–513 (2015), pp. 371-380, 10.1016/j.scitotenv.2014.12.070spa
dc.relation.references[96] C.G. Ramos, X. Querol, A.C. Dalmora, K.C.J. Pires, I.A.H. Shneider, L.F.S. Oliveira, R.M. Kautzmann Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer J. Clean. Prod., 142 (2017), pp. 2700-2706, 10.1016/j.jclepro.2016.11.006spa
dc.relation.references[97] H. Li, K. Watanabe, X. Xi, K. Yonezu Geochemistry of volcanic rocks at zhaokalong iron-copper-polymetallic ore deposit, Qinghai Province, China: implications for the tectonic background Procedia Environ. Sci., 6 (2013), pp. 58-63, 10.1016/j.proeps.2013.01.008spa
dc.relation.references[98] Y. Masuda, K.I. Aoki Trace element variations in the volcanic rocks from the Nasu zone, northeast Japan Earth Planet. Sci. Lett., 44 (1979), pp. 139-149, 10.1016/0012-821X(79)90014-1spa
dc.relation.references[99] J. Ribeiro, K. Da boit, D. Flores, M.A. Kronbauer, L.F.O. Silva Extensive FE-SEM/EDS, HR-TEM/EDS and tof-sims studies of micron- to nanoparticles in anthracite fly ash Sci. Total Environ., 452–453 (2013), pp. 98-107, 10.1016/j.scitotenv.2013.02.010spa
dc.relation.references[100] J. Ribeiro, S.R. Taffarel, C.H. Sampaio, D. Flores, L.F.O. Silva Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal Int. J. Coal Geol., 109–110 (2013), pp. 15-23, 10.1016/j.coal.2013.01.007spa
dc.relation.references[101] S. Gautam, A.K. Patra, S.P. Sahu, M. Hitch Particulate matter pollution in opencast coal mining areas: a threat to human health and environment Int. J. Min. Reclam. Environ., 32 (2018), pp. 75-92, 10.1080/17480930.2016.1218110spa
dc.relation.references[102] O. Ramírez, A.M. Sánchez de la Campa, F. Amato, L.F. Silva, J.D. de la Rosa Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity Sci. Total Environ., 652 (2019), pp. 434-446, 10.1016/j.scitotenv.2018.10.214spa
dc.relation.references[103] M. Civeira, R. Pinheiro, A. Gredilla, S. De Vallejuelo, M. Oliveira, C. Ramos, S. Taffarel, R. Kautzmann, J. Madariaga, L.F. Silva The properties of the nano-minerals and hazardous elements: potential environmental impacts of Brazilian coal waste fire Sci. Total Environ., 544 (2016), pp. 892-900, 10.1016/j.scitotenv.2015.12.026spa
dc.relation.references[104] G.E. Brown, G. Calas Environmental mineralogy – Understanding element behavior in ecosystems C. R. Geosci., 343 (2011), pp. 90-112, 10.1016/j.crte.2010.12.005spa
dc.relation.references[105] B. Cerqueira, F.A. Vega, C. Serra, L.F.O. Silva, M.L. Andrade Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a bt horizon surfaces J. Hazard. Mater., 195 (2011), pp. 422-431, 10.1016/j.jhazmat.2011.08.059spa
dc.relation.references[106] B. Cerqueira, F.A. Vega, L.F.O. Silva, L. Andrade Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine Sci. Total Environ., 421–422 (2012), pp. 220-229, 10.1016/j.scitotenv.2012.01.055spa
dc.relation.references[107] D. Lago, F.A. Veja, L.F. Silva, A. Luisa Lead distribution between soil geochemical phases and its fractionation in pb-treated soils Fresenius Environ. Bull., 23 (2014), p. 1025spa
dc.relation.references[108] D. Arenas-Lago, F.A. Vega, L.F. Silva, M.L. Andrade Copper distribution in surface and subsurface soil horizons Environ. Sci. Pollut. Res., 21 (2014), pp. 10997-11008, 10.1007/s11356-014-3084-4spa
dc.relation.references[109] Z. Asif, Z. Chen Environmental management in North American mining sector Environ. Sci. Pollut. Res., 23 (2016), pp. 167-179, 10.1007/s11356-015-5651-8spa
dc.relation.references[110] H.I. Gomes, W.M. Mayes, M. Rogerson, D.I. Stewart, I.T. Burke Alkaline residues and the environment: a review of impacts, management practices and opportunities J. Clean. Prod., 112 (2016), pp. 3571-3582, 10.1016/j.jclepro.2015.09.111spa
dc.relation.references[111] M.M.E.C.G.G.A. Tayebi-Khorami Re-thinking mining waste through an integrative approach led by circular economy aspirations Minerals, 9 (2019), p. 286, 10.3390/min9050286spa
dc.relation.references[112] C.J. Chen, Y.C. Chuang, T.M. Lin, H.Y. Wu Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers Cancer Res., 45 (1985), pp. 5895-5899 View PDFView Record in ScopusGoogle Scholarspa
dc.relation.references[113] M. Civeira, R. Pinheiro, A. Gredilla, S. De Vallejuelo, M. Oliveira, C. Ramos, S. Taffarel, R. Kautzmann, J. Madariaga, L.F. Silva The properties of the nano-minerals and hazardous elements: potential environmental impacts of Brazilian coal waste fire Sci. Total Environ., 544 (2016), pp. 892-900, 10.1016/j.scitotenv.2015.12.026spa
dc.relation.references[114] J. Lin, D. Pan, S.J. Davis, Q. Zhang, K. He, C. Wang, D.G. Streets, D.J. Wuebbles, D. Guan China’s international trade and air pollution in the United States Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 1736-1741, 10.1073/pnas.1312860111spa
dc.relation.references[115] K. Martinello, M. Oliveira, F. Molossi, C. Ramos, E. Teixeira, R. Kautzmann, L.F. Silva Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing Sci. Total Environ., 470–471 (2014), pp. 444-452, 10.1016/j.scitotenv.2013.10.007 ArticleDownload PDFView Record in ScopusGoogle Scholarspa
dc.relation.references[116] K. Martinello, J.C. Hower, D. Pinto, C.E. Schnorr, G.L. Dotto, M.L.S. Oliveira, C.G. Ramos Artisanal ceramic factories using wood combustion: a nanoparticles and human health study Geosci. Front. (2021), Article 101151, 10.1016/j.gsf.2021.10spa
dc.relation.references[117] N. Islam, S. Rabha, L.F.O. Silva, B.K. Saikia Air quality and PM10-associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches Environ. Geochem. Health, 41 (2019), pp. 2039-2053, 10.1007/s10653-019-00256-zspa
dc.relation.references[118] J. Gasparotto, K. Da, B. Martinello Coal as an energy source and its impacts on human health Energy Geosci., 2 (2020), pp. 113-120, 10.1016/j.engeos.2020.07.003spa
dc.relation.references[119] I. Manisalidis, E. Stavropoulou, A. Stavropoulos, E. Bezirtzoglou Environmental and health impacts of air pollution: a review Front. Public Health, 8 (2020), p. 14, 10.3389/fpubh.2020.00014spa
dc.relation.references[120] Ma.I.-W. Hendryx, A. Kestrel Increased risk of depression for people living in coal mining areas of central Appalachia Ecopsychology, 5 (2013), pp. 179-187, 10.1089/eco.2013.0029spa
dc.relation.references[121] A.C. Joaquim, M. Lopes, L. Stangherlin, K. Castro, L.B. Ceretta, W.C. Longen, F. Ferraz, I.D.S. Perry Mental health in underground coal miners Arch. Environ. Occup. Health, 73 (2018), pp. 334-343, 10.1080/19338244.2017.1411329spa
dc.relation.references[122] J.C. Rojas, N.E. Sánchez, I. Schneider, E.C. Teixeira, L.F.O. Silva Exposure to nanometric pollutants in primary schools: environmental implications Urban Clim., 27 (2019), pp. 412-419, 10.1016/j.uclim.2018.12.011spa
dc.relation.references[123] B.S. Van Gosen, T.A. Blitz, G.S. Plumlee, G.P. Meeker, M.P. Pierson Geologic occurrences of erionite in the United States: an emerging national public health concern for respiratory disease Environ. Geochem. Health, 35 (2013), pp. 419-430, 10.1007/s10653-012-9504-9spa
dc.relation.references[124] M. Carbone, Y.I. Baris, P. Bertino, B. Brass, S. Comertpay, A.U. Dogan, G. Gaudino, S. Jube, S. Kanodia, C.R. Partridge, H.I. Pass, Z.S. Rivera, I. Steele, M. Tuncer, S. Way, H. Yang, A. Miller Erionite exposure in North Dakota and Turkish villages with mesothelioma Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 13618-13623, 10.1073/pnas.1105887108spa
dc.relation.references[125] R. Matassa, G. Familiari, M. Relucenti, E. Battaglione, C. Downing, A. Pacella, G. Cametti, P. Ballirano A deep look into erionite fibres: an electron microscopy investigation of their self-assembly Sci. Rep., 5 (2015), p. 16757, 10.1038/srep16757spa
dc.relation.references[126] C. Marshall, D.J. Large, N.G. Heavens Coal-derived rates of atmospheric dust deposition during the Permian Gondwana Res., 31 (2016), pp. 20-29, 10.1016/J.GR.2015.10.002spa
dc.relation.references[127] A.U. Dogan, M. Dogan, J.A. Hoskins Erionite series minerals: mineralogical and carcinogenic properties Environ. Geochem. Health, 30 (2008), pp. 367-381, 10.1007/s10653-008-9165-xspa
dc.relation.references[128] B.K. Saikia, C.R. Ward, M.L. Oliveira, J.C. Hower, F. De Leao, M.N. Johnston, L.F. Silva Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach Int. J. Coal Geol., 137 (2015), pp. 19-37, 10.1016/j.coal.2014.11.002 ArticleDownload PDFView Record in ScopusGoogle Scholarspa
dc.relation.references[129] M. Intawongse, J.R. Dean Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract Food Addit. Contam., 23 (2006), pp. 36-48, 10.1080/02652030500387554spa
dc.relation.references[130] N.E. Sánchez-Peña, J.L. Narváez-Semanate, D. Pabón-Patiño, J.E. Fernández-Mera, M.L. Oliveira, K. Da Boit, B. Tutikian, T. Crissien, D. Pinto, I. Serrano, C. Ayala, A. Duarte, J. Ruiz, L.F. Silva Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: experimental evidence Chemosphere, 191 (2018), pp. 1048-1055, 10.1016/j.chemosphere.2017.08.127spa
dc.relation.references[131] R. Mohajer, M.H. Salehi, J. Mohammadi, M.H. Emami, T. Azarm, The status of lead and cadmium in soils of high prevalenct gastrointestinal cancer region of Isfahan, J. Res. Med. Sci., 18, 210–214.spa
dc.relation.references[132] D.C. Zamberlan, P.T. Halmenschelager, L.F.O. Silva, J.B.T. da Rocha Copper decreases associative learning and memory in Drosophila melanogaster Sci. Total Environ., 710 (2020), Article 135306, 10.1016/j.scitotenv.2019.135306spa
dc.relation.references[133] H. Morillas, C. García-Florentino, I. Marcaida, M. Maguregui, G. Arana, L.F. Silva, J. Madariaga In-situ analytical study of bricks exposed to marine environment using hand-held X-ray fluorescence spectrometry and related laboratory techniques Spectrochim. Acta Part B At. Spectrosc., 146 (2018), pp. 28-35, 10.1016/j.sab.2018.04.020spa
dc.relation.references[134] H. Morillas, P. Vazquez, M. Maguregui, I. Marcaida, L.F. Silva Composition and porosity study of original and restoration materials included in a coastal historical construction Constr. Build. Mater., 178 (2018), pp. 384-392, 10.1016/j.conbuildmat.2018.05.168spa
dc.relation.references[135] M.L. Oliveira, K. Da Boit, I. Schneider, E. Teixeira, T. Crissien, L.F. Silva Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies J. Clean. Prod., 188 (2018), pp. 662-669, 10.1016/j.jclepro.2018.04.050spa
dc.relation.references[136] M. Oliveira, M. Izquierdo, X. Querol, R.N. Lieberman, B.K. Saikia, L.F.O. Silva Nanoparticles from construction wastes: a problem to health and the environment J. Clean. Prod., 219 (2019), pp. 236-243, 10.1016/j.jclepro.2019.02.096spa
dc.relation.references[137] M.L.S. Oliveira, D. Pinto, B.F. Tutikian, K. Da Boit, B.K. Saikia, L.F.O. Silva Pollution from uncontrolled coal fires: continuous gaseous emissions and nanoparticles from coal mining industry J. Clean. Prod., 215 (2019), pp. 1140-1148, 10.1016/j.jclepro.2019.01.169spa
dc.relation.references[138] M.L. Oliveira, B.K. Saikia, K. da Boit, D. Pinto, B.F. Tutikian, L.F. Silva River dynamics and nanopaticles formation: a comprehensive study on the nanoparticle geochemistry of suspended sediments in the Magdalena River, Caribbean Industrial Area J. Clean. Prod., 213 (2019), pp. 819-824, 10.1016/j.jclepro.2018.12.230spa
dc.relation.references[139] I. Gestoso, E. Cacabelos, P. Ramalhosa, J. Canning-Clode Plasticrusts: a new potential threat in the Anthropocene’s rocky shores Sci. Total Environ., 687 (2019), pp. 413-415, 10.1016/j.scitotenv.2019.06.123spa
dc.relation.references[140] I.L. Schneider, E.C. Teixeira, G.L. Dotto, D. Pinto, C.X. Yang, L.F.S. Silva Geochemical study of submicron particulate matter (PM1) in a metropolitan area Geosci. Front. (2020), Article 101130, 10.1016/j.gsf.2020.12.011spa
dc.relation.references[141] C.N. Waters, J. Zalasiewicz, C. Summerhayes, A.D. Barnosky, C. Poirier, A. Gałuszka, A. Cearreta, M. Edgeworth, E.C. Ellis, M. Ellis, C. Jeandel, R. Leinfelder, J.R. McNeill, D.D. Richter, W. Steffen, J. Syvitski, D. Vidas, M. Wagreich, M. Williams, A. Zhisheng, J. Grinevald, E. Odada, N. Oreskes, A.P. Wolfe The Anthropocene is functionally and stratigraphically distinct from the Holocene Science, 351 (2016), Article aad2622spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal