Mostrar el registro sencillo del ítem

dc.contributor.authordiaz torres, yamilespa
dc.contributor.authorReyes Calvo, Royspa
dc.contributor.authorHernández Herrera, Hernánspa
dc.contributor.authorÁlvarez Guerra, Mario A.spa
dc.contributor.authorGómez Sarduy, Julio Rafaelspa
dc.contributor.authorSilva Ortega, Jorge Ispa
dc.date.accessioned2022-01-16T20:22:29Z
dc.date.available2022-01-16T20:22:29Z
dc.date.issued2021
dc.identifier.issn2352-4847spa
dc.identifier.urihttps://hdl.handle.net/11323/8973spa
dc.description.abstractThe article presents a novel methodology for designing chiller plants for a hotel facility to determine the optimal distribution of the chillers cooling capacity that compose the plant. The methodology proposes three phases. In the first, the statistical analysis allowed to determine the cooling demand required in the facility, where the constructed thermal demand profiles reflect future operating conditions, and to obtain the individual cooling capacities of the chillers. In the second phase, the black box models were built to simulate the chillers energy performance and, using a mathematical algorithm allows to obtain a combination of chiller plants. The third phase constitutes the energy evaluation through the solution of a mathematical optimization problem and using a genetic algorithm. This was carried out under the sequence approach and the optimal load of each machine against the working conditions. This analysis allows calculating the performance, the life cycle cost, and the indirect environmental impact. The paper proposes a case study to demonstrate the feasibility of applying the methodology to the initial design stage, achieving a saving of 14,4%. Finally, using statistical analysis, the method allows comparing the relationship between each chiller plant considering the design and operating parameters.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceEnergy Reportsspa
dc.subjectGenetic algorithmspa
dc.subjectChiller plantspa
dc.subjectCooling capacityspa
dc.subjectOptimal chiller loading and sequencespa
dc.subjectHotel facilitiesspa
dc.titleProcedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual designspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S2352484721005539spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.egyr.2021.07.090spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] L.M. VegaB Castellanos, Yanez JP. Modeling and identification of the cooling dynamics of a tropical island hotel. Energy Build 2015;92:9–28.spa
dc.relation.references[2] Ji-Hye R, Won-Hwa H, Youn-Kyu S. Characteristic analysis of peak load in electricity on large scale hotels considering the energy efficiency. Int J Smart Home 2014;8(3):207–22.spa
dc.relation.references[3] Wang F, Lin H, Tu W, Wang Y, Huang Y. Energy modeling and chillers sizing of HVAC system for a hotel building. Procedia Eng 2015;121:1812–8.spa
dc.relation.references[4] Gang W, Wang S, Augenbroe G, Xiao F. Robust optimal design of district cooling systems and the impacts of uncertainty and reliability. Energy Build 2016;122:11–22.spa
dc.relation.references[5] Yu FW, Chan KT. Strategy for designing more energy efficient chiller plants serving air-conditioned buildings. Build Environ 2007;42(10):3737–46.spa
dc.relation.references[6] Torres YD, Plasencia MÁG, Felipe PRV, Sánchez GC, González MD. Chiller plant design. Review of the aspects that involve its efficient design. Ing Energética 2020;41(1):7.spa
dc.relation.references[7] ANSI/ASHRAE/IES Standard 901-2013. Energy Standard for buildings Except Low-Rise Residential Buildings. I-P edition.spa
dc.relation.references[8] Chan RK, Lee EW, Yuen RK. An integrated model for the design of air-cooled chiller plants for commercial buildings. Build Environ 2011;46(1):196–209.spa
dc.relation.references[9] Taylor S. Fundamentals of design and control of central chilled-water plans (IP). Atlanta ASHRAE; 2017, Capitulo 6. [consulted 20 2020].spa
dc.relation.references[10] Bitondo M, Tosí J. Chiller control plant. Syracuse. New Cork. EUA: Carrier Corporation; 1999.spa
dc.relation.references[11] Haviland JR. Central plant retrofit considerations. Energy Eng 2002;99(3):48–58.spa
dc.relation.references[12] Mathew P, Greenberg S. Labs21 sustainable design programming checklist version 1.0. (No. LBNL-55506). Berkeley, CA (US): Ernest Orlando Lawrence Berkeley National Laboratory; 2005.spa
dc.relation.references[13] Stanford III HW. HVAC water chillers and cooling towers: Fundamentals, application, and operation. CRC Press; 2011.spa
dc.relation.references[14] Yu FW, Chan KT. Low-energy design for air-cooled chiller plants in air-conditioned buildings. Energy Build 2006;38(4):334–9.spa
dc.relation.references[15] Gang W, Wang S, Xiao F, Gao DC. Robust optimal design of building cooling systems considering cooling load uncertainty and equipment reliability. Appl Energy 2015a;159:265–75.spa
dc.relation.references[16] Gang W, Wang S, Yan C, Xiao F. Robust optimal design of building cooling systems concerning uncertainties using mini-max regret theory. Sci Technol Built Environ 2015b;21(6):789–99.spa
dc.relation.references[17] Cheng Q, Yan C, Wang S. Robust optimal design of chiller plants based on cooling load distribution. Energy Procedia 2015;75:1354–9.spa
dc.relation.references[18] Kang Y, Augenbroe G, Li Q, Wang Q. Effects of scenario uncertainty on chiller sizing method. Appl Therm Eng 2017;123:187–95.spa
dc.relation.references[19] Cheng Q, Wang S, Yan C, Xiao F. Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings. Appl Energy 2017;185:1613–24.spa
dc.relation.references[20] Huang P, Huang G, Augenbroe G, Li S. Optimal configuration of multiple-chiller plants under cooling load uncertainty for different climate effects and building types. Energy Build 2018;158:684–97.spa
dc.relation.references[21] Li H, Wang S, Xiao F. Probabilistic optimal design and on-site adaptive commissioning of building air-conditioning systems concerning uncertainties. Energy Procedia 2019;158:2725–30.spa
dc.relation.references[22] Shiming D. Sizing replacement chiller plants2. ASHRAE J 2002;44(6):47.spa
dc.relation.references[23] Zheng ZX, Li JQ. Optimal chiller loading by improved invasive weed optimization algorithm for reducing energy consumption. Energy Build 2018;161:80–8.spa
dc.relation.references[24] Zheng ZX, Li JQ, Duan PY. Optimal chiller loading by improved artificial fish swarm algorithm for energy saving. Math Comput Simulation 2019;155:227–43.spa
dc.relation.references[25] Handbook, ASHRAE. Fundamentals. In: Ventilating and air-conditioning engineers. ASHRAE–American Society of Heating; 2017.spa
dc.relation.references[26] Torres YD, Herrera HH, Plasencia MAAG, Novo EP, Cabrera LP, et al. Heating ventilation and air-conditioned configurations for hotels an approach review for the design and exploitation. Energy Rep 2020a;6:487–97.spa
dc.relation.references[27] Lapin L. Statistics: Meaning and method. 2nd ed.. Harcourt Brace Jovanovich; 1980.spa
dc.relation.references[28] Correia R, Diaz Y. Análisis estadístico de perfiles de demanda térmica (Tesis de Grado), Cuba: Universidad de Cienfuegos.; 2020.spa
dc.relation.references[29] Torres YD, Justiz MS, Francisco JL, Lazo DÁ, Torres YM, Guerra MA. Methodology for the preparation and selection of black box mathematical models for the energy simulation of screw type chillers. Ing Mec 2020b;23(3):1–6.spa
dc.relation.references[30] Sun Y, Wang S, Xiao F. In situ performance comparison and evaluation of three chiller sequencing control strategies in a super high-rise building. Energy Build 2013;61:333–43.spa
dc.relation.references[31] Huang S, Zuo W, Sohn MD. A new method for the optimal chiller sequencing control. In: Proceedings of the 14th conference of IBPSA. Hyderabad, India: 2015. p. 316–23.spa
dc.relation.references[32] Chang YC, Lin FA, Lin CH. Optimal chiller sequencing by branch and bound method for saving energy. Energy Convers Manage 2005;46(13–14):2158–72.spa
dc.relation.references[33] Tredinnick S. Inside insights-Benefits of economic analyses (part 2): Real-world examples. Dist Energy 2011;97(3):66.spa
dc.relation.references[34] CIBSE A. Environmental design. The Chartered Institution of Building Services Engineers London; 2018.spa
dc.relation.references[35] Montelier S. Reducción del consumo de energía en instalaciones con sistemas de climatización centralizada Todo Agua a Flujo constante (Tesis Doctoral), Cuba: Universidad de Cienfuegos; 2008.spa
dc.relation.references[36] Cuza V. Estudio energético del Sistema de climatización del Hotel Jagua (Tesis de maestría), Cuba: Universidad de Cienfuegos; 2010.spa
dc.relation.references[37] Díaz Y, Monteagudo JP, Bravo D. Análisis energético de un sistema híbrido de producción de frío. Ing Energética 2015;36(1):38–49.spa
dc.relation.references[38] Díaz Y, Valdivia Y, Monteagudo JP, Miranda Y. Application of building energy simulation in the validation of operational strategies of HVAC systems on a tropical hotel. Ing Mec 2017;20(1):31–8.spa
dc.relation.references[39] Valdivia Nodal Y, Díaz Torres Y, Lapido Rodríguez M. Alternativas de producción de agua caliente sanitaria en instalaciones hoteleras con climatización centralizada. Rev Univ Soc 2015;7(3):88–94.spa
dc.relation.references[40] Udawatta L, Perera A, Witharana S. Analysis of sensory information for efficient operation of energy management systems in commercial hotels2. Electron J Struct Eng 2010;11:3–120.spa
dc.relation.references[41] Yang Z, Ghahramani A, Becerik-Gerber B. Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency. Energy 2016;109:641–9.spa
dc.relation.references[42] Shenzhen Hero-Tech Refrigeration Equipment Co, Ltd. 2020, https://hero-tech.en.made-in-china.com/product-group/LMQJDqIlsgkP/Air -cooled-screw-chiller-catalog-2.html.spa
dc.relation.references[43] Cardoso AI, García DM, García JF. Evaluación de la factibilidad económico-financiera del proyecto de inversión. Centro Cultural Julio Antonio Mella. Cienfuegos. Univ Soc 2019;11(5):8–18.spa
dc.relation.references[44] Meneses E, Roig A, Paz E, Alonso D, Alvarado J. Factores de emisión de CO, CO2, NOx y SO2 para instalaciones generadoras de electricidad en Cuba. Rev Cuba Meteorol 2018;24(1):1–9.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal