Mostrar el registro sencillo del ítem

dc.contributor.authorPavón, Cristinaspa
dc.contributor.authorAldás, Miguelspa
dc.contributor.authorHernández-Fernández, Joaquínspa
dc.contributor.authorLópez Martínez, Juanspa
dc.date.accessioned2022-01-19T20:30:01Z
dc.date.available2022-01-19T20:30:01Z
dc.date.issued2022-03-05
dc.identifier.issn0021-8995spa
dc.identifier.issn1097-4628spa
dc.identifier.urihttps://hdl.handle.net/11323/8979spa
dc.description.abstractThere is a growing interest in the use of non-polluting compounds, which come from renewable sources, and which performance in their scope is equivalent to their synthetic similes. In this work, five types of rosins from different sources were studied, verifying the existence of differences that can be inferred in their subsequent use and application as material additives. For the study, rosins were analyzed using gas-mass chromatographic techniques, infrared spectrophotometry (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and color characterization. The results showed that the samples are composed of either abietic acid or by its structural isomers in contents higher than 80%. FTIR shows that the main difference in the gum rosins is related to the proclivity to absorb environmental moisture and that this technique is not enough to differentiate them. Moreover, the DSC reveals that the gum rosins present enthalpy relaxation effects due to their manufacturing process. The TGA showed that gum rosins are thermally stable until 200°C, therefore they can be successfully blended with thermoplastic polymers. Finally, the color characterization shows little differences between the samples, being CA the gum rosin with the greatest total color differences.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceJournal of Applied Polymer Sciencespa
dc.subjectBiomaterialsspa
dc.subjectDifferential scanning calorimetryspa
dc.subjectGas chromatographyspa
dc.subjectGum rosinspa
dc.subjectResinsspa
dc.subjectThermogravimetric analysisspa
dc.titleComparative characterization of gum rosins for their use as sustainable additives in polymeric matricesspa
dc.typePre-Publicaciónspa
dc.source.urlhttps://onlinelibrary.wiley.com/doi/abs/10.1002/app.51734spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1002/app.51734spa
dc.date.embargoEnd2024-03-05
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1 (2021) Harima Chemicals Group Inc. Rosin Production and Rosin Market (accessed August 17 https://www.harima.co.jp/en/pine_chemicals/rosin3.htmlspa
dc.relation.references2 Yadav, B.K., Gidwani, B., Vyas, A. Rosin: Recent advances and potential applications in novel drug delivery system (2016) Journal of Bioactive and Compatible Polymers, 31 (2), pp. 111-126. Cited 36 times. doi: 10.1177/0883911515601867spa
dc.relation.references3 Mitchell, G., Gaspar, F., Mateus, A., Mahendra, V., Sousa, D. (2018) Advanced Materials from Forestsspa
dc.relation.references4 Gallo Corredor, J., Sarria Villa, R. (2014) J. Cienc. e Ing., 6, p. 65.spa
dc.relation.references5 Karlberg, A.-T. (2000) Handbook of Occupational Dermatology, p. 509. Cited 116 times. Springer Berlin Heidelberg, Berlin, Heidelberg, pspa
dc.relation.references6 da Silva, K., de Lima, J., Fett-Neto, A. (2013) Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, p. 1. Springer, Berlin, pspa
dc.relation.references7 Silvestre, A.J.D., Gandini, A. Rosin: Major sources, properties and applications (2008) Monomers, Polymers and Composites from Renewable Resources, pp. 67-88. Cited 46 times. http://www.sciencedirect.com.ezproxy.cuc.edu.co/science/book/9780080453163 ISBN: 978-008045316-3 doi: 10.1016/B978-0-08-045316-3.00004-1spa
dc.relation.references8 Wiyono, B., Tachibana, S., Tinambunan, D. (2016) Indones. J. For. Res., 3, p. 7.spa
dc.relation.references9 Cabaret, T., Boulicaud, B., Chatet, E., Charrier, B. Study of rosin softening point through thermal treatment for a better understanding of maritime pine exudation (2018) European Journal of Wood and Wood Products, 76 (5), pp. 1453-1459. Cited 10 times. http://www.springer.com.ezproxy.cuc.edu.co/life+sci/forestry/journal/107 doi: 10.1007/s00107-018-1339-3spa
dc.relation.references10 Mason Joye, N.J., Lawrence, R.V. Resin Acid Composition Of Pine Oleoresins (1967) Journal of Chemical and Engineering Data, 12 (2), pp. 279-282. Cited 61 times. doi: 10.1021/je60033a034spa
dc.relation.references11 Wiyono, B., Tachibana, S., Tinambunan, D. (2006) Indones. J. For. Res., 3, p. 7. Cited 23 times.spa
dc.relation.references12 Valto, P., Knuutinen, J., Alén Overview of analytical procedures for fatty and resin acids in the papermaking process (Open Access) (2012) BioResources, 7 (4), pp. 6041-6076. Cited 21 times. http://www.ncsu.edu/bioresources/BioRes_07/BioRes_07_4_6041_Valto_KA_Overview_Anal_Fatty_Resin_Acids_Papermaking_3080.pdf doi: 10.15376/biores.7.4.6041-6076spa
dc.relation.references13 Mills, J.S., White, R. Natural resins of art and archaeology their sources, chemistry, and identification (1977) Studies in Conservation, 22 (1), pp. 12-31. Cited 154 times. doi: 10.1179/sic.1977.003spa
dc.relation.references14 Maiti, S., Ray, S.S., Kundu, A.K. Rosin: a renewable resource for polymers and polymer chemicals (1989) Progress in Polymer Science, 14 (3), pp. 297-338. Cited 99 times. doi: 10.1016/0079-6700(89)90005-1spa
dc.relation.references15 Wilbon, P.A., Chu, F., Tang, C. Progress in renewable polymers from natural terpenes, terpenoids, and rosin (2013) Macromolecular Rapid Communications, 34 (1), pp. 8-37. Cited 443 times. doi: 10.1002/marc.201200513spa
dc.relation.references16 Karlberg, A.-T. Colophony: Rosin in unmodified and modified form (2012) Kanerva's Occupational Dermatology, Second Edition, 1, pp. 467-479. Cited 14 times. http://dx.doi.org.ezproxy.cuc.edu.co/10.1007/978-3-642-02035-3 ISBN: 978-364202035-3; 978-364202034-6 doi: 10.1007/978-3-642-02035-3_41spa
dc.relation.references17 Pratapwar, A., Sakarkar, D. (2015) J. Qual. Assur. Pharma Anal., 1, p. 100. Cited 3 times.spa
dc.relation.references18 Baek, W.-I., Nirmala, R., Barakat, N.A.M., El-Newehy, M.H., Al-Deyab, S.S., Kim, H.Y. Electrospun cross linked rosin fibers (2011) Applied Surface Science, 258 (4), pp. 1385-1389. Cited 12 times. http://www.journals.elsevier.com.ezproxy.cuc.edu.co/applied-surface-science/ doi: 10.1016/j.apsusc.2011.09.082spa
dc.relation.references19 Kumar, S., Gupta, S.K. Rosin: a naturally derived excipient in drug delivery systems. (2013) Polimery w medycynie, 43 (1), pp. 45-48. Cited 18 times.spa
dc.relation.references20 Arrieta, M.P., Samper, M.D., Jiménez-López, M., Aldas, M., López, J. Combined effect of linseed oil and gum rosin as natural additives for PVC (2017) Industrial Crops and Products, 99, pp. 196-204. Cited 50 times. www.elsevier.com/inca/publications/store/5/2/2/8/2/5 doi: 10.1016/j.indcrop.2017.02.009spa
dc.relation.references21 De La Rosa-Ramírez, H., Aldas, M., Ferri, J.M., López-Martínez, J., Samper, M.D. Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity (2020) Journal of Applied Polymer Science, 137 (44), art. no. 49346. Cited 9 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-4628 doi: 10.1002/app.49346spa
dc.relation.references22 Aldas, M., Pavon, C., López-Martínez, J., Arrieta, M.P. Pine resin derivatives as sustainable additives to improve the mechanical and thermal properties of injected moulded thermoplastic starch (Open Access) (2020) Applied Sciences (Switzerland), 10 (7), art. no. 2561. Cited 12 times. https://res.mdpi.com/d_attachment/applsci/applsci-10-02561/article_deploy/applsci-10-02561.pdf doi: 10.3390/app10072561spa
dc.relation.references23 Aldas, M., Ferri, J.M., Lopez-Martinez, J., Samper, M.D., Arrieta, M.P. Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater-Bi type bioplastic (Open Access) (2020) Journal of Applied Polymer Science, 137 (4), art. no. 48236. Cited 18 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-4628 doi: 10.1002/app.48236spa
dc.relation.references24 Pavon, C., Aldas, M., de la Rosa-Ramírez, H., López-Martínez, J., Arrieta, M.P. Improvement of pbat processability and mechanical performance by blending with pine resin derivatives for injection moulding rigid packaging with enhanced hydrophobicity (Open Access) (2020) Polymers, 12 (12), art. no. 2891, pp. 1-19. Cited 7 times. https://www.mdpi.com/2073-4360/12/12/2891/pdf doi: 10.3390/polym12122891spa
dc.relation.references25 Aldas, M., Ferri, J.M., Motoc, D.L., Peponi, L., Arrieta, M.P., López-Martínez, J. Gum rosin as a size control agent of poly(Butylene adipate-co-terephthalate) (pbat) domains to increase the toughness of packaging formulations based on polylactic acid (pla) (Open Access) (2021) Polymers, 13 (12), art. no. 1913. https://www.mdpi.com/2073-4360/13/12/1913/pdf doi: 10.3390/polym13121913spa
dc.relation.references26 Pavon, C., Aldas, M., López-Martínez, J., Ferrándiz, S. New materials for 3D-printing based on polycaprolactone with gum rosin and beeswax as additives (Open Access) (2020) Polymers, 12 (2), art. no. 334. Cited 18 times. https://res.mdpi.com/d_attachment/polymers/polymers-12-00334/article_deploy/polymers-12-00334.pdf doi: 10.3390/polym12020334spa
dc.relation.references27 Nirmala, R., Woo-il, B., Navamathavan, R., Kim, H.Y., Park, S.-J. Preparation and characterizations of rosin based thin films and fibers (2015) Journal of Nanoscience and Nanotechnology, 15 (6), art. no. A87, pp. 4653-4659. Cited 5 times. http://docserver.ingentaconnect.com/deliver/connect/asp/15334880/v15n6/s87.pdf?expires=1421028420&id=80425286&titleid=4286&accname=Elsevier+BV&checksum=54A1C0FD78389A5E5BEE2F4B603E2323 doi: 10.1166/jnn.2015.9596spa
dc.relation.references28 Pavon, C., Aldas, M., De La Rosa-Ramírez, H., Samper, M.D., Arrieta, M.P., López-Martínez, J. (2021) Polym. Adv. Technol., 32, p. 5397.spa
dc.relation.references29 Pavon, C., Aldas, M., Rayón, E., Arrieta, M.P., López-Martínez, J. Deposition of gum rosin microspheres on polypropylene microfibres used in face masks to enhance their hydrophobic behaviour (Open Access) (2021) Environmental Technology and Innovation, 24, art. no. 101812. http://www.journals.elsevier.com.ezproxy.cuc.edu.co/environmental-technology-and-innovation/ doi: 10.1016/j.eti.2021.101812spa
dc.relation.references30 Weatherall, I.L., Coombs, B.D. (1992) Skin Color Measurements in Terms of CIELAB Color Space Values, 99.spa
dc.relation.references31 El-Ghazawy, R.A., El-Saeed, A.M., Al-Shafey, H.I., Abdul-Raheim, A.-R.M., El-Sockary, M.A. Rosin based epoxy coating: Synthesis, identification and characterization (2015) European Polymer Journal, 69, pp. 403-415. Cited 41 times. doi: 10.1016/j.eurpolymj.2015.06.025spa
dc.relation.references32 Azémard, C., Vieillescazes, C., Ménager, M. Effect of photodegradation on the identification of natural varnishes by FT-IR spectroscopy (2014) Microchemical Journal, 112, pp. 137-149. Cited 59 times. doi: 10.1016/j.microc.2013.09.020spa
dc.relation.references33 Correa, J.S., dos Santos, R.R., Anaissi, F.J. Purification and characterization of colophony extracted of Pinus elliottii (Engelm, var. elliottii) (Open Access) (2018) Orbital, 10 (3), pp. 200-203. Cited 4 times. http://www.orbital.ufms.br/index.php/Chemistry/article/download/1100/pdf doi: 10.17807/orbital.v10i3.1100spa
dc.relation.references34 Kizil, R., Irudayaraj, J., Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy (2002) Journal of Agricultural and Food Chemistry, 50 (14), pp. 3912-3918. Cited 678 times. doi: 10.1021/jf011652pspa
dc.relation.references35 Favvas, E.P., Kouvelos, E.P., Papageorgiou, S.K., Tsanaktsidis, C.G., Mitropoulos, A.C. Characterization of natural resin materials using water adsorption and various advanced techniques (2015) Applied Physics A: Materials Science and Processing, 119 (2), pp. 735-743. Cited 10 times. http://www.springer.com.ezproxy.cuc.edu.co/materials/journal/339 doi: 10.1007/s00339-015-9022-6spa
dc.relation.references36 Sifontes, A.B., Gutierrez, B., Mónaco, A., Yanez, A., Díaz, Y., Méndez, F.J., Llovera, L., (...), Brito, J.L. Preparation of functionalized porous nano-γ-Al2O3 powders employing colophony extract (Open Access) (2014) Biotechnology Reports, 4 (1), pp. 21-29. Cited 37 times. http://www.journals.elsevier.com.ezproxy.cuc.edu.co/biotechnology-reports/ doi: 10.1016/j.btre.2014.07.001spa
dc.relation.references37 Gill, P., Moghadam, T.T., Ranjbar, B. Differential scanning calorimetry techniques: Applications in biology and nanoscience (2010) Journal of Biomolecular Techniques, 21 (4), pp. 167-193. Cited 243 times. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977967/pdf/jbt167.pdfspa
dc.relation.references38 Chiu, M.H., Berezowski, N.S., Prenner, E.J. DSC applications: Macromolecules (2013) Drug-Biomembrane Interaction Studies: The Application of Calorimetric Techniques, pp. 237-263. Cited 3 times. http://www.sciencedirect.com.ezproxy.cuc.edu.co/science/book/9781907568053 ISBN: 978-190756805-3 doi: 10.1533/9781908818348.237spa
dc.relation.references39 Kodre, K., Attarde, S., Yendhe, P., Patil, R., Barge, V. (2014) Res. Rev. J. Pharm. Anal., 3, p. 11. Cited 19 times.spa
dc.relation.references40 Groenewoun, W.M. (2001) Characterisation of Polymers by Thermal Analysis, p. 10. Cited 62 times. Elsevier, Amsterdam, pspa
dc.relation.references41 Hohne, G.W.H., Hemminger, W., Flammersheim, H.-J. (2019) Differential Scanning Calorimetry, 53.spa
dc.relation.references42 Runt, J., Huang, J. Chapter 8 Polymer blends and copolymers (2002) Handbook of Thermal Analysis and Calorimetry, 3, pp. 273-294. Cited 8 times. http://www.elsevier.com.ezproxy.cuc.edu.co/wps/find/bookdescription.cws_home/BS_HATAC/description#description ISBN: 978-044451286-4 doi: 10.1016/S1573-4374(02)80011-5spa
dc.relation.references43 Parker, M.J. (2000) Comprehensive Composite Materials, p. 183.spa
dc.relation.references44 Lazzarotto, M., Zavattieri Ruiz, H., da Silveira Lazzarotto, R.S., Schnitzler, E., Teixeirade Moraes, M.L., Cambuim, J., dos Santos, W., (...), de Aguiar, A.V. (2014) IX Congresso Brasileiro de Análise Térmica e Calorimetria 09 a 12 de novembro de 2014 – Serra Negra–SP-Brasil Use, p. 1. ppspa
dc.relation.references45 Tsanaktsidis, C.G., Favvas, E.P., Scaltsoyiannes, A.A., Christidis, S.G., Katsidi, E.X., Scaltsoyiannes, A.V. Natural resins and their application in antifouling fuel technology: Part I: Improving the physicochemical properties of diesel fuel using natural resin polymer as a removable additive (2013) Fuel Processing Technology, 114, pp. 135-143. Cited 17 times. doi: 10.1016/j.fuproc.2013.03.043 View at Publisherspa
dc.relation.references46 Aldas, M., Pavon, C., Ferri, J.M., Arrieta, M.P., López-Martínez, J. Films based on mater-bi® compatibilized with pine resin derivatives: Optical, barrier, and disintegration properties (Open Access) (2021) Polymers, 13 (9), art. no. 1506. Cited 2 times. https://www.mdpi.com/2073-4360/13/9/1506/pdf doi: 10.3390/polym13091506spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal