Mostrar el registro sencillo del ítem

dc.contributor.authorHoffmann Sampaio, Carlosspa
dc.contributor.authorAmbrós, Wesleispa
dc.contributor.authorCAZACLIU, Bogdanspa
dc.contributor.authorOliva, Josepspa
dc.contributor.authorVeras, Moacirspa
dc.contributor.authorMiltzarek, Gérson Luisspa
dc.contributor.authorSilva Oliveira, Luis Felipespa
dc.contributor.authorSalvador Kuerten, Arianespa
dc.contributor.authorLiendo, Maria Alejandraspa
dc.date.accessioned2022-01-22T21:48:04Z
dc.date.available2022-01-22T21:48:04Z
dc.date.issued2021-08-21
dc.identifier.issn2075-163Xspa
dc.identifier.urihttps://hdl.handle.net/11323/8995spa
dc.description.abstractThe paper presents a comparison of the concentration methods conventional jig, air jig, and sensor-based sorting to treat construction and demolition waste. All tests were made with concrete, brick, and gypsum particles and the tests aim to separate these materials into different size ranges, depending on the method. The equipment tested, conventional jig, air jig, and sensor-based sorting present good results to concentrate construction and demolition waste particles, with different concentrations and mass recoveries. The results show particularly good mass recoveries and particle concentration for conventional jig, especially for concrete and gypsum particles. Sensor-based sorting should preferably use concentration circuits for best results.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceMineralsspa
dc.subjectConstruction and demolition wastespa
dc.subjectSensor-based sortingspa
dc.subjectWet jigspa
dc.subjectAirspa
dc.subjectJigspa
dc.titleConstruction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: a comparisonspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.mdpi.com/2075-163X/11/8/904spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.3390/min11080904spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Müller, A.; Sokolova, S.N.; Vereshagin, V.I. Characteristics of lightweight aggregates from primary and recycled raw materials. Constr. Build. Mater. 2008, 22, 703–712. [CrossRef]spa
dc.relation.references2. Müller, A.; Angulo, S.C. Determination of construction and demolition recycled aggregates composition, in considering their heterogeneity. Mater. Struct. 2009, 42, 739–748.spa
dc.relation.references3. Landmann, M.; Müller, A.; Palzer, U.; Leydolph, B. Limitations of Liberation Techniques for Mineral Construction and Demolition Wastes. In Proceedings of the EURASIA 2014, Waste Management Symposium, Istambul, Turkey, 28–30 April 2014.spa
dc.relation.references4. Sampaio, C.H.; Cazacliu, B.; Miltzarek, G.L.; Huchet, F.; Guen, C.O.P.L.; Petter, C.O.; Paranhos, R.; Ambrós, W.M.; Oliveira, M.L.S. Stratification in air jigs of concrete/brick/gypsum particles. Constr. Build. Mater. 2016, 109, 63–72. [CrossRef]spa
dc.relation.references5. Coelho, A.; Brito, J. Economic viability analysis of a construction and demolition waste recycling plant in Portugal—Part I: Location, materials, technology and economic analysis. J. Clean. Prod. 2013, 39, 338–352. [CrossRef]spa
dc.relation.references6. Medina, C.; Banfill, P.F.G.; de Rojas, M.I.S.; Frías, M. Rheological and calorimetric behavior of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mater. 2013, 40, 822–831. [CrossRef]spa
dc.relation.references7. Rodrigues, F.; Carvalho, M.T.; Evangelista, L.; Brito, J. Physicalechemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 2013, 52, 438–445. [CrossRef]spa
dc.relation.references8. Mendis, D.; Hewage, K.N.; Wrzesniewski, J. Reduction of construction wastes by improving construction contract management: A multinational evaluation. Waste Manag. Res. 2013, 31, 1062–1069. [CrossRef]spa
dc.relation.references9. Sabai, M.M.; Cox, M.G.D.M.; Mato, R.R.; Egmond, E.L.C.; Lichtenberg, J.J.N. Concrete block production from construction and demolition waste in Tanzania. Resour. Conserv. Recycl. 2013, 72, 9–19. [CrossRef]spa
dc.relation.references10. Yuan, H. A SWOT analysis of successful construction waste management. J. Clean. Prod. 2013, 39, 1–8. [CrossRef]spa
dc.relation.references11. Medina, C.; Zhu, W.; Howind, T.; Rojas, M.I.S.; Frías, M. Influence of mixed recycled aggregate on the physical e mechanical properties of recycled concrete. J. Clean. Prod. 2014, 68, 216–225. [CrossRef]spa
dc.relation.references12. Ferreira, S.B.; Domingues, P.C.; Soares, S.M.; Camarini, G. Recycled Plaster and Red Ceramic Waste Based Mortars. IACSIT Int. J. Eng. Technol. 2015, 7, 209. [CrossRef]spa
dc.relation.references13. Nasrullah, M.; Vainikka, P.; Hannula, J.; Hurme, M.; Kärki, J. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste. Waste Manag. 2014, 34, 2163–2170. [CrossRef]spa
dc.relation.references14. Tam, V.W.Y. Economic comparison of concrete recycling: A case study approach. Resour. Conserv. Recycl. 2008, 52, 821–828. [CrossRef]spa
dc.relation.references15. Oikonomou, N.D. Recycled concrete aggregates. Cem. Concr. Compos. 2005, 27, 315–318. [CrossRef]spa
dc.relation.references16. Kou, S.C.; Zhan, B.J.; Poon, C.S. Properties of partition wall blocks prepared with fresh concrete wastes. Constr. Build. Mater. 2012, 36, 566–571. [CrossRef]spa
dc.relation.references17. Richardson, A. Concrete with crushed, graded and washed recycled construction demolition waste as a coarse aggregate replacement. Struct. Surv. 2010, 28, 142–148. [CrossRef]spa
dc.relation.references18. Behera, M.; Bhattacharyya, S.; Minocha, A.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516.spa
dc.relation.references19. Silva, R.; Brito, J.; Dhir, R. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201–217. [CrossRef]spa
dc.relation.references20. Reis, G.S.D.; Quattrone, M.; Ambrós, W.M.; Cazacliu, B.G. Current Applications of Recycled Aggregates from Construction and Demolition: A Review. Materials 2021, 14, 1700. [CrossRef]spa
dc.relation.references21. Meng, Y.; Ling, T.-C.; Mo, K. Recycling of wastes for value-added applications in concrete blocks: An overview. Resour. Conserv. Recycl. 2018, 138, 298–312. [CrossRef]spa
dc.relation.references22. Ulubeyli, S.; Kazaz, A.; Arslan, V. Construction and Demolition Waste Recycling Plants Revisited: Management Issues. Procedia Eng. 2017, 172, 1190–1197. [CrossRef]spa
dc.relation.references23. Yuan, H.; Lu, W.; Hao, J. The evolution of construction waste sorting on-site. Renew. Sustain. Energy Rev. 2013, 20, 483–490. [CrossRef]spa
dc.relation.references24. Tischer, A.; Besiou, M.; Graubner, C.A. Efficient waste management in construction logistics: A refurbishment case study. Logist. Res. 2013, 6, 159–171. [CrossRef]spa
dc.relation.references25. Saez, P.V.; Merino, M.R.; González, A.S.A.; Amores, C.P. Best practice measures assessment for construction and demolition waste management. Build. Constr. Resour. Conserv. Recycl. 2013, 75, 52–62. [CrossRef]spa
dc.relation.references26. Poon, C.S.; Yu, A.T.W.; Ng, L.H. On-site sorting of construction and demolition waste in Hong Kong. Resour. Conserv. Recycl. 2001, 32, 157–172. [CrossRef]spa
dc.relation.references27. Coelho, A.; Brito, J. Environmental analysis of a construction and demolition waste recycling plant in Portugal—Part I: Energy consumption and CO2 emissions. Waste Manag. 2013, 33, 1258–1267. [CrossRef] [PubMed]spa
dc.relation.references28. Coelho, A.; de Brito, J. Preparation of concrete aggregates from construction and demolition waste (CDW). In Handbook of Recycled Concrete and Demolition Waste; Elsevier: Amsterdam, The Netherlands, 2013; pp. 210–245.spa
dc.relation.references29. Weimann, K.; Giese, L.B.; Mellmann, G.; Simon, F.G. Building materials from waste. Mater. Trans. 2003, 44, 1255–1258. [CrossRef]spa
dc.relation.references30. Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E.; Angulo, S. Separability studies of construction and demolition waste recycled sand. Waste Manag. 2013, 33, 656–662. [CrossRef] [PubMed]spa
dc.relation.references31. Müller, A.; Wienke, L. Measurements and Models for the Gravity Concentration of C&D Waste Through Jigging. In Proceedings of the International RILEM Conference on the Use of Recycled Materials in Building and Structures, Barcelona, Spain, 8–11 November 2004.spa
dc.relation.references32. Angulo, S.C.; John, V.M.; Ulsen, C.K.H.; Müller, A. Separação óptica do material cerâmico dos agregados mistos de resíduos de construção e demolição. Ambiente Construído Porto Alegre 2013, 13, 61–73. [CrossRef]spa
dc.relation.references33. Schnellert, T.; Kehr, K.; Müller, A. Development of a separation process for gypsum-contaminated concrete aggregates. In Proceedings of the 2nd International RILEM Conference on Progress of Recycling in the Built Environment, Rio de Janeiro, Brazil, 2011.spa
dc.relation.references34. Hendriks, C.F.; Xing, W. Quality Improvement of Granular Wastes by Separation Techniques. In Proceedings of the International RILEM Conference on the Use of Recycled Materials in Building and Structures, Barcelona, Spain, 8–11 November 2004.spa
dc.relation.references35. Cazacliu, B.; Sampaio, C.H.; Petter, C.O.; Miltzarek, G.L.; Guen, L.L.; Paranhos, R.S.; Huchet, F.; Kirchheim, A.P. The potential of using air jigging to sort recycled aggregates. J. Clean. Prod. 2014, 66, 46–53. [CrossRef]spa
dc.relation.references36. Müller, A. Bauschutt ohne Gips. Steinbruch und Sandgrube 2012, 11, 40–45.spa
dc.relation.references37. Müller, A. Gips im Griff. Miner. Process. 2010, 51, 34–43.spa
dc.relation.references38. Müller, A. Gips reduziert. Miner. Process. 2010, 51, 54–69.spa
dc.relation.references39. Woollacott, L. The impact of size segregation on packing density in jig beds: An X-ray tomographic study. Miner. Eng. 2019, 131, 98–110. [CrossRef]spa
dc.relation.references40. Waskow, R.P.; Dos Santos, V.L.; Ambrós, W.M.; Sampaio, C.H.; Passuello, A.; Tubino, R.M. Optimization and dust emissions analysis of the air jigging technology applied to the recycling of construction and demolition waste. J. Environ. Manag. 2020, 266, 11. [CrossRef]spa
dc.relation.references41. Ambros, W.; Sampaio, C.H.; Cazacliu, B.G.; Conceiçao, P.; Reis, G.S.d. Some observations on the influence of particle size and size distribution on stratification in pneumatic jigs. Powder Technol. 2019, 342, 594–606. [CrossRef]spa
dc.relation.references42. Favaretto, P.; Hidalgo, G.; Sampaio, C.; Silva, R.; Lermen, R. Characterization and Use of Construction and Demolition Waste from South of Brazil in the Production of Foamed Concrete Blocks. Appl. Sci. 2017, 7, 1090. [CrossRef]spa
dc.relation.references43. Hu, K.; Chen, Y.; Naz, F.; Zeng, C.; Cao, S. Separation studies of concrete and brick from construction and demolition waste. Waste Manag. 2019, 85, 396–404. [CrossRef]spa
dc.relation.references44. Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Villacorte-Tabelin, M.; Alonzo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021, 170, 105610. [CrossRef]spa
dc.relation.references45. Jeon, S.; Ito, M.; Tabelin, C.B.; Pongsumrankul, R.; Tanaka, S.; Kitajima, N.; Saito, A.; Park, I.; Hiroyoshi, N. A physical separation scheme to improve ammonium thiosulfate leaching of gold by separation of base metals in crushed mobile phones. Miner. Eng. 2019, 138, 168–177. [CrossRef]spa
dc.relation.references46. Phengsaart, T.; Ito, M.; Hamaya, N.; Tabelin, C.B.; Hiroyoshi, N. Improvement of jig efficiency by shape separation, and a novel method to estimate the separation efficiency of metal wires in crushed electronic wastes using bending behavior and entanglement factor. Miner. Eng. 2018, 129, 54–62. [CrossRef]spa
dc.relation.references47. Jeon, S.; Ito, M.; Tabelin, C.B.; Pongsumrankul, R.; Kitajima, N.; Park, I.; Hiroyoshi, N. Gold recovery from shredder light fraction of E-waste recycling plant by flotation-ammonium thiosulfate leaching. Waste Manag. 2018, 77, 195–202. [CrossRef] [PubMed]spa
dc.relation.references48. Phengsaart, T.; Ito, M.; Kimura, S.; Azuma, A.; Hori, K.; Tanno, H.; Jeon, S.; Park, I.; Tabelin, C.B.; Hiroyoshi, N. Development of a restraining wall and screw-extractor discharge system for continuous jig separation of mixed plastics. Miner. Eng. 2021, 168, 106918. [CrossRef]spa
dc.relation.references49. Ito, M.; Saito, A.; Murase, N.; Phengsaart, T.; Kimura, S.; Kitajima, N.; Takeuchi, M.; Tabelin, C.B.; Hiroyoshi, N. Estimation of hybrid jig separation efficiency using a modified concentration criterion based on apparent densities of plastic particles with attached bubbles. J. Mater. Cycles Waste Manag. 2020, 22, 2071–2080. [CrossRef]spa
dc.relation.references50. Veras, M.; Young, A.; Sampaio, C.H.; Petter, C. A mining breakthrough; Preconcentration by sensor-based sorting. Min. Eng. 2016, 68, 38–42.spa
dc.relation.references51. Veras, M.M.; Young, A.S.; Born, C.R.; Szewczuk, A.; Neto, A.C.B.; Petter, C.O.; Sampaio, C.H. Affinity of dual energy X-ray transmission sensors on minerals bearing heavy rare earth elements. Miner. Eng. 2020, 147, 106151. [CrossRef]spa
dc.relation.references52. Neubert, K.; Wotruba, H. Investigations on the detectability of rare-earth minerals using dual-energy X-ray transmission sorting. J. Sustain. Metall. 2017, 3, 3–12. [CrossRef]spa
dc.relation.references53. Robben, C.; Wotruba, W. Sensor-Based Ore Sorting Technology in Mining—Past, Present and Future. Minerals 2019, 9, 523. [CrossRef]spa
dc.relation.references54. Vegas, I.; Broos, K.; Nielsen, P.; Lambertz, O.; Lisbona, A. Upgrading the quality of mixed recycled aggregates from construction and demolition waste by using near-infrared sorting technology. Constr. Build. Mater. 2015, 75, 121–128. [CrossRef]spa
dc.relation.references55. Lessard, J.; Sweetser, W.; Bartram, K.; Figuero, J.; McHugh, L. Bridging the gap: Understanding the economic impact of ore sorting on a mineral processing circuit. Miner. Eng. 2016, 91, 92–99. [CrossRef]spa
dc.relation.references56. Knapp, H.; Neubert, K.; Schropp, C.; Wotruba, H. Viable Applications of Sensor-Based Sorting for the Processing of Mineral Resources. ChemBioEng Rev. 2014, 1, 86–95. [CrossRef]spa
dc.relation.references57. Maier, G.; Pfaff, F.; Pieper, C.; Gruna, R.; Noack, B.; Kruggel-Emden, H.; Längle, T.; Hanebeck, U.D.; Wirtz, S.; Scherer, V.; et al. Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking. IEEE Trans. Ind. Electron. 2021, 68, 1548–1559. [CrossRef]spa
dc.relation.references58. Lyman, G.J. Review of jigging principles and control. Coal Prep. 1992, 11, 145–165. [CrossRef]spa
dc.relation.references59. Agricola, G. De Re Metallica; Hoover, H.C., Hoover, L.H., Eds.; Dover Publications: Mineola, NY, USA, 1950; p. 1556.spa
dc.relation.references60. Mayer, F. Fundamentals of Potential Theory of the Jigging Process. In Proceedings of the 7th International Mineral Processing Congress, New York, NY, USA, 1964; pp. 75–86.spa
dc.relation.references61. Mayer, F.W. Neue Erkenntnisse über den Setzvorgang auf Grung der Potential-Theorie. Glückauf 1960, 96, 1297–1301.spa
dc.relation.references62. Sampaio, C.H.; Tavares, L.M.M. Beneficiamento Gravimétrico: Uma Introdução aos Processos de Concentração Mineral e Reciclagem de Materiais por Densidade; UFRGS: Porto Alegre, Brazil, 2005.spa
dc.relation.references63. Dalm, M.; Buxton, M.W.N.; van Ruitenbeek, F.J.A.; Voncken, J.H.L. Application of near-infrared spectroscopy to sensor based sorting of a porphyry copper ore. Miner. Eng. 2014, 58, 7–16. [CrossRef]spa
dc.relation.references64. Robben, C.; de Korte, J.; Wotruba, H.; Robben, M. Experiences in Dry Coarse Coal Separation Using X-Ray-Transmission-Based Sorting. Int. J. Coal Prep. Util. 2014, 34, 210–219. [CrossRef]spa
dc.relation.references65. Cutmore, N.; Eberhardt, J. The Future of Ore Sorting in Mineral Processing. In Proceedings of the International Conference on the Sustainable Processing of Minerals, Cairns, Australia, 29–31 May 2002; pp. 287–289.spa
dc.relation.references66. Berwanger, M.; Gaastra, M. Technical and physical principles of sensor technologies applied in the raw materials industry. In Sensor Technologies: Impulses for the Raw Materials Industry; RWTH: Aachen, Germany, 2014.spa
dc.relation.references67. Wotruba, H.; Knapp, H.; Neubert, K.; Schropp, C. Anwendung der sensorgestützten Sortierung für die Aufbereitung mineralischer Rohstoffe. Chemie Inginieur Technik 2014, 86, 773–783. [CrossRef]spa
dc.relation.references68. Paranhos, R.S.; Cazacliu, B.G.; Sampaio, C.H.; Petter, C.O.; Neto, R.O.; Huchet, F. A sorting method to value recycled concrete. J. Clean. Prod. 2016, 112, 2249–2258. [CrossRef]spa
dc.relation.references69. Ambrós, W.M. Jigging: A Review of Fundamentals and Future Directions. Minerals 2020, 10, 998. [CrossRef]spa
dc.relation.references70. Sampaio, C.H.; Cazacliu, B.G.; Ambrós, W.M.; Kronbauer, M.A.; Tubino, R.M.; Molin, D.C.D.; Oliva, J.; Miltzarek, G.L.; Waskow, R.P.; Santos, V.L.D. Demolished concretes recycling by the use of pneumatic jigs. Waste Manag. Res. 2020, 1, 0734242X2090283.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3148]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal