Mostrar el registro sencillo del ítem

dc.contributor.authorRamírez Restrepo, Rafael Antoniospa
dc.contributor.authorSagastume, Alexisspa
dc.contributor.authorCabello Eras, Juan Joséspa
dc.contributor.authorHernández, Bspa
dc.contributor.authorDuarte Forero, Jorgespa
dc.date.accessioned2022-01-28T21:11:58Z
dc.date.available2022-01-28T21:11:58Z
dc.date.issued2021
dc.identifier.issn2405-8440spa
dc.identifier.urihttps://hdl.handle.net/11323/9012spa
dc.description.abstractImproving the thermal efficiency of internal combustion engines is essential to reduce the operating costs and complaints with the increasing environmental requirements. Thermoelectric generators came up as an opportunity to reuse part of the heat loss with the exhausts. This paper evaluates the performance of a thermoelectric generator to improve the efficiency of a stationary diesel engine under different rotational speeds and torques. The data was obtained through CFD simulations and validated with experiments. The proposed solution uses a cooling system to control the temperature of the thermoelectric modules. The results show that the torque and the rotational speed of the engine are the most significant performance parameters of the thermoelectric generator, while the influence of the cooling water temperature has a minor but still significant influence. Additionally, the results show a change from 1.3% to 6.2% in the thermoelectric generator efficiency, while the exergy efficiency varies between 1.8% and 7.9%. The exergy balance indicates that most of the exergy is loss because of the irreversibilities in the thermoelectric generator and of the exergy loss with the exhausts. The exergy loss can be reduced by optimizing the design of the heat exchanger. Since the thermoelectric generator improved the engine efficiency by a marginal 0.2%-0.8%. Therefore, it is important to further research how to improve the design of heat exchangers for thermoelectric generators to increase their energy conversion efficiency and their impact on the energy efficiency of internal combustion engines.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceHeliyonspa
dc.subjectEnergy efficiencyspa
dc.subjectInternal combustion enginespa
dc.subjectThermoelectric generatorspa
dc.subjectThermoelectric modulespa
dc.titleExperimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel enginesspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://pubmed.ncbi.nlm.nih.gov/34765787/spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doiDOI: 10.1016/j.heliyon.2021.e08273spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] Y. Azoumah, J. Blin, T. Daho, Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels, Renew. Energy. 34 (2009) 1494–1500. https://doi.org/10.1016/j.renene.2008.10.026.spa
dc.relation.references[2] K. Eckart, P. Henshaw, Jatropha curcas L. and multifunctional platforms for the development of rural subSaharan Africa, Energy Sustain. Dev. 16 (2012) 303–311. https://doi.org/10.1016/j.esd.2012.03.002.spa
dc.relation.references[3] S.S. Sidibé, J. Blin, G. Vaitilingom, Y. Azoumah, Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review, Renew. Sustain. Energy Rev. 14 (2010) 2748–2759. https://doi.org/10.1016/j.rser.2010.06.018.spa
dc.relation.references[4] D. Agarwal, A.K. Agarwal, Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine, Appl. Therm. Eng. 27 (2007) 2314–2323. https://doi.org/10.1016/j.applthermaleng.2007.01.009.spa
dc.relation.references[5] G.A. Diaz, J.D. Forero, J. Garcia, A. Rincon, A. Fontalvo, A. Bula, R.V. Padilla, Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics, J. Energy Resour. Technol. 139 (2017) 032903. https://doi.org/10.1115/1.4035021.spa
dc.relation.references[6] E. Hanff, M.-H. Dabat, J. Blin, Are biofuels an efficient technology for generating sustainable development in oil-dependent African nations? A macroeconomic assessment of the opportunities and impacts in Burkina Faso, Renew. Sustain. Energy Rev. 15 (2011) 2199–2209. https://doi.org/10.1016/j.rser.2011.01.014.spa
dc.relation.references[7] G. Baquero, B. Esteban, J.-R. Riba, A. Rius, R. Puig, An evaluation of the life cycle cost of rapeseed oil as a straight vegetable oil fuel to replace petroleum diesel in agriculture, Biomass and Bioenergy. 35 (2011) 3687–3697. https://doi.org/10.1016/j.biombioe.2011.05.028.spa
dc.relation.references[8] R. Escobar-Yonoff, D. Maestre-Cambronel, S. Charry, A. Rincón-Montenegro, I. Portnoy, Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation, Heliyon. 7 (2021) e06506. https://doi.org/10.1016/j.heliyon.2021.e06506.spa
dc.relation.references[9] F. Consuegra, A. Bula, W. Guillín, J. Sánchez, J. Duarte Forero, Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines, Energies. 12 (2019) 1437. https://doi.org/10.3390/en12081437.spa
dc.relation.references[10] A. Ziolkowski, Automotive Thermoelectric Generator impact on the efficiency of a drive system with a combustion engine, MATEC Web Conf. 118 (2017) 00024. https://doi.org/10.1051/matecconf/201711800024.spa
dc.relation.references[11] A. Mejía, M. Leiva, A. Rincón-Montenegro, A. Gonzalez-Quiroga, J. Duarte-Forero, Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends, Case Stud. Therm. Eng. 19 (2020) 100613. https://doi.org/10.1016/j.csite.2020.100613.spa
dc.relation.references[12] G. Valencia Ochoa, C. Acevedo Peñaloza, J. Duarte Forero, Combustion and Performance Study of LowDisplacement Compression Ignition Engines Operating with Diesel–Biodiesel Blends, Appl. Sci. 10 (2020) 907. https://doi.org/10.3390/app10030907.spa
dc.relation.references[13] Z.-G. Shen, L.-L. Tian, X. Liu, Automotive exhaust thermoelectric generators: Current status, challenges and future prospects, Energy Convers. Manag. 195 (2019) 1138–1173. https://doi.org/10.1016/j.enconman.2019.05.087.spa
dc.relation.references[14] J. Vazquez, M. a Sanz-Bobi, R. Palacios, A. Arenas, State of the art of thermoelectric generators based on heat recovered from the exhaust gases of automobiles, 7th Eur. Work. Thermoelectr. (2002).spa
dc.relation.references[15] D. Maestre-Cambronel, J. Guzmán Barros, A. Gonzalez-Quiroga, A. Bula, J. Duarte-Forero, Thermoeconomic analysis of improved exhaust waste heat recovery system for natural gas engine based on Vortex Tube heat booster and supercritical CO2 Brayton cycle, Sustain. Energy Technol. Assessments. 47 (2021) 101355. https://doi.org/10.1016/j.seta.2021.101355.spa
dc.relation.references[16] G. Von Maltitz, W. Stafford, Assessing opportunities and constraints for biofuel development in subSaharan Africa, CIFOR, 2011.spa
dc.relation.references[17] B. Hernández-Comas, D. Maestre-Cambronel, C. Pardo-García, M.D.S. Fonseca-Vigoya, J. Pabón-León, Influence of Compression Rings on the Dynamic Characteristics and Sealing Capacity of the Combustion Chamber in Diesel Engines, Lubricants. 9 (2021) 25–57. https://doi.org/10.3390/lubricants9030025.spa
dc.relation.references[18] A. Domingues, H. Santos, M. Costa, Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle, Energy. 49 (2013) 71–85. https://doi.org/10.1016/j.energy.2012.11.001.spa
dc.relation.references[19] U. Larsen, T.-V. Nguyen, T. Knudsen, F. Haglind, System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines, Energy. 64 (2014) 484–494. https://doi.org/10.1016/j.energy.2013.10.069.spa
dc.relation.references[20] V. Chintala, S. Kumar, J.K. Pandey, A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle, Renew. Sustain. Energy Rev. 81 (2018) 493–509. https://doi.org/10.1016/j.rser.2017.08.016.spa
dc.relation.references[21] G. Valencia Ochoa, J. Piero Rojas, J. Duarte Forero, Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine, Energies. 13 (2020) 267. https://doi.org/10.3390/en13010267.spa
dc.relation.references[22] G. Valencia Ochoa, J. Cárdenas Gutierrez, J. Duarte Forero, Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine, Resources. 9 (2020) 2. https://doi.org/10.3390/resources9010002.spa
dc.relation.references[23] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog. 6 (2018) 268–289. https://doi.org/10.1016/J.TSEP.2018.04.017.spa
dc.relation.references[24] S.. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications, Appl. Therm. Eng. 23 (2003) 913–935. https://doi.org/10.1016/S1359-4311(03)00012-7.spa
dc.relation.references[25] R. Ramírez, A. Sagastume, J.J. Cabello, K. Valencia, B. Hernández, J. Duarte, Evaluation of the energy recovery potential of thermoelectric generators in diesel engines, J. Clean. Prod. 241 (2019) 118412– 118419. https://doi.org/10.1016/j.jclepro.2019.118412.spa
dc.relation.references[26] R. Saidur, M. Rezaei, W.K. Muzammil, M.H. Hassan, S. Paria, M. Hasanuzzaman, Technologies to recover exhaust heat from internal combustion engines, Renew. Sustain. Energy Rev. 16 (2012) 5649–5659. https://doi.org/10.1016/j.rser.2012.05.018.spa
dc.relation.references[27] T.Y. Kim, A.A. Negash, G. Cho, Experimental study of energy utilization effectiveness of thermoelectric generator on diesel engine, Energy. 128 (2017) 531–539. https://doi.org/10.1016/j.energy.2017.04.060.spa
dc.relation.references[28] A. Massaguer, E. Massaguer, M. Comamala, T. Pujol, L. Montoro, M.D. Cardenas, D. Carbonell, A.J. Bueno, Transient behavior under a normalized driving cycle of an automotive thermoelectric generator, Appl. Energy. 206 (2017) 1282–1296. https://doi.org/10.1016/j.apenergy.2017.10.015.spa
dc.relation.references[29] B. Li, K. Huang, Y. Yan, Y. Li, S. Twaha, J. Zhu, Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles, Appl. Energy. 205 (2017) 868–879. https://doi.org/10.1016/j.apenergy.2017.08.092.spa
dc.relation.references[30] M. Comamala, I.R. Cózar, A. Massaguer, E. Massaguer, T. Pujol, Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator, Energies. 11 (2018) 3274. https://doi.org/10.3390/en11123274.spa
dc.relation.references[31] D. Luo, R. Wang, W. Yu, Z. Sun, X. Meng, Modelling and simulation study of a converging thermoelectric generator for engine waste heat recovery, Appl. Therm. Eng. 153 (2019) 837–847. https://doi.org/10.1016/j.applthermaleng.2019.03.060.spa
dc.relation.references[32] C. Liu, Y.D. Deng, X.Y. Wang, X. Liu, Y.P. Wang, C.Q. Su, Multi-objective optimization of heat exchanger in an automotive exhaust thermoelectric generator, Appl. Therm. Eng. 108 (2016) 916–926. https://doi.org/10.1016/j.applthermaleng.2016.07.175.spa
dc.relation.references[33] A. Marvão, P.J. Coelho, H.C. Rodrigues, Optimization of a thermoelectric generator for heavy-duty vehicles, Energy Convers. Manag. 179 (2019) 178–191. https://doi.org/10.1016/j.enconman.2018.10.045.spa
dc.relation.references[34] C. Lu, S. Wang, C. Chen, Y. Li, Effects of heat enhancement for exhaust heat exchanger on the performance of thermoelectric generator, Appl. Therm. Eng. 89 (2015) 270–279. https://doi.org/10.1016/j.applthermaleng.2015.05.086.spa
dc.relation.references[35] A. Rezania, L.A. Rosendahl, S.J. Andreasen, Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink, Int. Commun. Heat Mass Transf. 39 (2012) 1054–1058. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.010.spa
dc.relation.references[36] M.A. Karri, E.F. Thacher, B.T. Helenbrook, Exhaust energy conversion by thermoelectric generator: Two case studies, Energy Convers. Manag. 52 (2011) 1596–1611. https://doi.org/10.1016/j.enconman.2010.10.013.spa
dc.relation.references[37] D. Li, Y. Xuan, Q. Li, H. Hong, Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems, Energy. 126 (2017) 343–351. https://doi.org/10.1016/j.energy.2017.03.042.spa
dc.relation.references[38] A. Makki, S. Omer, Y. Su, H. Sabir, Numerical investigation of heat pipe-based photovoltaic-- thermoelectric generator (HP-PV/TEG) hybrid system, Energy Convers. Manag. 112 (2016) 274–287.spa
dc.relation.references[39] H. Yang, G. Shu, H. Tian, X. Ma, T. Chen, P. Liu, Optimization of thermoelectric generator (TEG) integrated with three-way catalytic converter (TWC) for harvesting engine’s exhaust waste heat, Appl. Therm. Eng. 144 (2018) 628–638. https://doi.org/10.1016/j.applthermaleng.2018.07.091.spa
dc.relation.references[40] G. Shu, X. Ma, H. Tian, H. Yang, T. Chen, X. Li, Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery, Energy. 160 (2018) 612–624. https://doi.org/10.1016/j.energy.2018.06.175.spa
dc.relation.references[41] F. Frobenius, G. Gaiser, U. Rusche, B. Weller, Thermoelectric Generators for the Integration into Automotive Exhaust Systems for Passenger Cars and Commercial Vehicles, J. Electron. Mater. 45 (2016) 1433–1440. https://doi.org/10.1007/s11664-015-4059-z.spa
dc.relation.references[42] S. Lan, Z. Yang, R. Chen, R. Stobart, A dynamic model for thermoelectric generator applied to vehicle waste heat recovery, Appl. Energy. 210 (2018) 327–338. https://doi.org/10.1016/j.apenergy.2017.11.004.spa
dc.relation.references[43] F. Zhou, J. Fu, D. Li, J. Liu, C.F. Lee, Y. Yin, Experimental study on combustion, emissions and thermal balance of high compression ratio engine fueled with liquefied methane gas, Appl. Therm. Eng. 161 (2019) 114125. https://doi.org/10.1016/j.applthermaleng.2019.114125.spa
dc.relation.references[44] T.Y. Kim, J. Kwak, B. Kim, Application of compact thermoelectric generator to hybrid electric vehicle engine operating under real vehicle operating conditions, Energy Convers. Manag. 201 (2019) 112150. https://doi.org/10.1016/j.enconman.2019.112150.spa
dc.relation.references[45] Y. Wang, S. Li, X. Xie, Y. Deng, X. Liu, C. Su, Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger, Appl. Energy. 218 (2018) 391–401. https://doi.org/10.1016/j.apenergy.2018.02.176.spa
dc.relation.references[46] A. Montecucco, J. Siviter, A.R. Knox, The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel, Appl. Energy. 123 (2014) 47–54. https://doi.org/10.1016/J.APENERGY.2014.02.030.spa
dc.relation.references[47] M.A. Rosen, Clarifying thermodynamic efficiencies and losses via exergy, Exergy, An Int. J. 2 (2002) 3–5.spa
dc.relation.references[48] M. Ghazikhani, M. Hatami, D.D. Ganji, M. Gorji-Bandpy, A. Behravan, G. Shahi, Exergy recovery from the exhaust cooling in a DI diesel engine for BSFC reduction purposes, Energy. 65 (2014) 44–51. https://doi.org/10.1016/j.energy.2013.12.004.spa
dc.relation.references[49] S. Sarıkoç, İ. Örs, S. Ünalan, An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends, Fuel. 268 (2020) 117321. https://doi.org/10.1016/j.fuel.2020.117321.spa
dc.relation.references[50] G. Min, D.M. Rowe, Conversion Efficiency of Thermoelectric Combustion Systems, IEEE Trans. Energy Convers. 22 (2007) 528–534. https://doi.org/10.1109/TEC.2006.877375.spa
dc.relation.references[51] X. Niu, J. Yu, S. Wang, Experimental study on low-temperature waste heat thermoelectric generator, J. Power Sources. 188 (2009) 621–626. https://doi.org/10.1016/j.jpowsour.2008.12.067.spa
dc.relation.references[52] W.-H. Chen, P.-H. Wu, X.-D. Wang, Y.-L. Lin, Power output and efficiency of a thermoelectric generator under temperature control, Energy Convers. Manag. 127 (2016) 404–415. https://doi.org/10.1016/j.enconman.2016.09.039.spa
dc.relation.references[53] T.Y. Kim, A. Negash, G. Cho, Experimental and numerical study of waste heat recovery characteristics of direct contact thermoelectric generator, Energy Convers. Manag. 140 (2017) 273–280. https://doi.org/10.1016/j.enconman.2017.03.014.spa
dc.relation.references[54] S. Nag, A. Dhar, A. Gupta, Exhaust Heat Recovery Using Thermoelectric Generators: A Review, in: Adv. Intern. Combust. Engine Res., Springer, 2018: pp. 193–206. https://doi.org/10.1007/978-981-10-7575- 9_10.spa
dc.relation.references[55] C. Liu, X. Pan, X. Zheng, Y. Yan, W. Li, An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust, J. Energy Inst. 89 (2016) 271–281. https://doi.org/10.1016/j.joei.2015.01.019.spa
dc.relation.references[56] GlobalPetrolPrices.com, Diesel prices, GlobalPetrolPrices.Com. (2021). https://es.globalpetrolprices.com/diesel_prices/ (accessed July 31, 2021).spa
dc.relation.references[57] D.R. Karana, R.R. Sahoo, Thermal, environmental and economic analysis of a new thermoelectric cogeneration system coupled with a diesel electricity generator, Sustain. Energy Technol. Assessments. 40 (2020) 100742. https://doi.org/10.1016/j.seta.2020.100742.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal