Mostrar el registro sencillo del ítem

dc.contributor.authorSilva Ortega, Jorge Ispa
dc.contributor.authorDaza-Guzmán, J. D.spa
dc.contributor.authorCandelo Becerra, John Edwinspa
dc.contributor.authorRueda-López, J. C.spa
dc.contributor.authorUmaña Ibáñez, Samirspa
dc.contributor.authorSalas-Navarro, Katherinnespa
dc.contributor.authorMercado Caruso, Nohora Nubiaspa
dc.date.accessioned2022-01-31T15:29:00Z
dc.date.available2022-01-31T15:29:00Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/11323/9020spa
dc.description.abstractThis paper presents a 75 bus bars system interconnected with generating units, transmission lines, distribution grids and other elements seeking to model a sub-transmission grid. The survey has been focused on estimate the operating conditions of the transmission network during the steady state and transient using simulations tools. Results can be used to prevent, identify, and solve contingencies that affect the normal operation of the network in the short, medium and long term. They are also validated with real and updated information, demonstrating their reliability to evaluate power flow, short-circuits, reliability. Information can be used as reference by utilities, national operators in their usual activities of energy planning in the power grid. This applied survey contribute in validate operating ranges on forecasts of low, medium and high demand, control of active and reactive power; measure single and three phase levels of short-circuits in all buses; estimate the reliability of the power grid using the N-1 criteria; evaluate specific cases during steady state operation.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isopor
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceEspaciosspa
dc.subjectPolynomial Matricesspa
dc.subjectEigenvalue Decompositionspa
dc.subjectDiagonalizationspa
dc.titleA 75 bus bars model to evaluate the steady state operation of a sub-transmission electrical power gridspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85014362057&origin=inward&txGid=129e6d48a98e3bbd451975cbbd138535spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesBai, H., & Miao, S. (2015). Hybrid flow betweenness approach for identification of vulnerable line in power system. IET in Generation, Transmission & Distribution, 12(9), 1324­1331. doi:10.1049/ietgtd.2014.1016spa
dc.relation.referencesBalbis­Morejon, M. (2010). Caracterización Energética y Ahorro de Energía en Instituciones Educativas. Barranquilla: Educosta.spa
dc.relation.referencesBuitrago Moyano, M., & Leon Gil, J. M. (2015). Efectos de la inversión extranjera directa sobre el crecimiento económico en Colombia: evidencia empírica 2000­2010. Apuntes del CENES, 34(59), 63­ 92.spa
dc.relation.referencesDarko Šošić, I., & Nemanja, P. (2014). Features of Power Transfer Distribution Coefficients in power System Networks. Infoteh­Jahorina, 13, 86­90.spa
dc.relation.referencesDas, J. C. (2011). Power system analysis: short­circuit load flow and harmonics. CRC Press.spa
dc.relation.referencesDiaz Cruz, J. H., & Lozano Gonzalez, B. (2014). El desempeño económico y social de los departamentos colombianos en el año 2011. Contexto ­Universidad La gran Colombia, 3(1), 86 ­ 98.spa
dc.relation.referencesGiannakis, G., Kekatos, V., Gatsis, N., Seung­Jun , K., Hao, Z., & Wollenberg, B. (2013). Monitoring and Optimization for Power Grids: A Signal Processing Perspective. IEEE in Signal Processing Magazine, 30(5), 107­128.spa
dc.relation.referencesGiraldo Gomez, C. A. (2012). Análisis de Confiabilidad en Sistemas de Potencia Usando el Software ETAP. Cali: Editorial Academica Espanola.spa
dc.relation.referencesGlover, J., & Sarma, M. (2003). Sistemas de potencia: análisis y diseño. Cengage Learning Editores.spa
dc.relation.referencesGrainger, J. J., & Stevenson, W. D. (1996). Analisis de Sistemas de Potencia. Ciudad de Mexico: McGraw­Hill.spa
dc.relation.referencesGrigoriadis, J. M.­K. (2010). Efficient Modeling and Control of Large­Scale Systems. Nueva York: Editors Javad Mohammadpour University of Houston.spa
dc.relation.referencesGuidong, Z., Zhong, L., Bo, Z., & Wolfgang A., H. (2013). Understanding the cascading failures in Indian power grids with complex networks theory. Physica A: Statistical Mechanics and its Applications, 392(15), 3273­3280. doi://dx.doi.org/10.1016/j.physa.2013.03.003.spa
dc.relation.referencesHolmgren, A. J. (2015). Using graph models to analyze the vulnerability of electric power networks. Risk Anal, 26(4), 955–969.spa
dc.relation.referencesIEC 60909. (s.f.). The Calculation of Short­Circuit Currents in Three­Phase A.C. Systems. IEC.spa
dc.relation.referencesIEEE. (2012). IEEE Std 1366 Guide for Electric Power Distribution Reliability Indices. Guia, IEEE STANDARDS ASSOCIATION, New York.spa
dc.relation.referencesIxtláhuatl Coronado, P. Z. (s.f.). FACTS: soluciones modernas para la industria eléctrica. Avance y Perspectiva: vol. 20.spa
dc.relation.referencesJHNOS, Y. H. (2008). Flexible Ac Transmission Systems (FACTS) . LONDRES: EDITED IET Power and Energy Series Volume 30.spa
dc.relation.referencesKato, Y., Mukawa, N., & Okubo, S. (1987). A Motion Picture Coding Algorithm Using Adaptive DCT Encoding Based on Coefficient Power Distribution Classification. IEEE Journal on Selected Areas in Communications, 5(7), 1090­1099.spa
dc.relation.referencesKeshtkar, H., Khushalani Solanki, S., & Solanki, J. (2014). Improving the Accuracy of Impedance Calculation for Distribution Power System. IEEE Transactions on in Power Delivery, 29(2), 570 ­ 579. doi:10.1109/TPWRD.2013.2276061spa
dc.relation.referencesMontaña, J., & Silva, J. (2013). Estimation of the Lightning Parameters in the North Region of Colombia. Proceedings of the IEEE / XII SIPDA, 11­16. doi:10.1109/SIPDA.2013.6729221spa
dc.relation.referencesMontaña, J., & Silva, J. (2014). High Frecuency Behavior of Grounding Systems Considering the Frequency Dependence of Soil Parameters. Proceedings of the 3rd. International Conference on Lightning Physics and Effects.spa
dc.relation.referencesMontoya Quintanilla, A. L., & Fischer Wayne, D. (2003). La energía eléctrica en Baja California y el futuro de las renovables: una visión multidisciplinaria. California: UABC.spa
dc.relation.referencesPaiva, P. C., Khodr, H. M., Dominguez­Navarro, J. A., & Yusta, J. M. (2005). Integral planning of primary­secondary distribution systems using mixed integer linear programming. IEEE Transactions on in Power Systems, 20(2), 1134 ­ 1143.spa
dc.relation.referencesParida, S. K., Singh, S. N., & Srivastava, S. C. (2008). Reactive power cost allocation by using a value­based approach. IET Generation, Transmission & Distribution, 3(9), 872 ­ 884.spa
dc.relation.referencesRamirez, C. (2003). Subestaciones de alta y extra alta tensión. Bogotá: Mejía Villegas SA.spa
dc.relation.referencesSilva, J. (2012). Caracterización y estudio del modelo IEEE9 orientado hacia el análisis de estabilidad transitoria. INGECUC, 8(1), 173­190.spa
dc.relation.referencesSilva, J. I., & Ospino, A. (2015). Set of Elements, Parameters and Considerations to get the successful inclusion of the Smart Grids in Colombian Power System. Revecitec, 5(2), 125­134.spa
dc.relation.referencesSolanki, J., Hessam, K., & Khushalani Solanki, S. (2014). Improving the Accuracy of Impedance Calculation for Distribution Power System. IEEE Transaction on Power Delivery, 29(2), 570 ­ 580.spa
dc.relation.referencesStarr, C. (1974). Research Planning for Electric Power. IEEE Transaction on Nuclear Science, 21(1), 14­17.spa
dc.relation.referencesUnidad de Planeación Minero­Energética (UPME). (2014). Plan de expansión de referencia generación y transmisión 2014­2028. Bogota.spa
dc.relation.referencesVargas, M., Rondon, D., Herrera, J., Montana, J., Jimenez, D., Camargo, M., . . . Duarte, O. (2005). Grounding system modeling in EMTP/ATP based on its frequency response. IEEE Russia Power Tech,, 1(5), 27­30.spa
dc.relation.referencesYung, W., Wenyuan, L., & Jiping, L. (2010). Reliability Analysis of Wide­Area Measurement System. IEEE TRANSACTIONS ON POWER DELIVERY, 25(3), 1483­1491.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3148]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International