Mostrar el registro sencillo del ítem

dc.contributor.authorAgudelo Gaviria, Haroldspa
dc.contributor.authorSarria-Paja, Miltonspa
dc.date.accessioned2022-03-04T13:02:35Z
dc.date.available2022-03-04T13:02:35Z
dc.date.issued2021
dc.identifier.citationH. Agudelo & M. Sarria-Paja, “Detección de cáncer de seno usando imágenes de histopatología y modelos de aprendizaje profundo pre-entrenados”, J. Comput. Electron. Sci.: Theory Appl., vol. 2, no. 2, pp. 27–36, 2021. https://doi.org/10.17981/cesta.02.02.2021.04spa
dc.identifier.urihttps://hdl.handle.net/11323/9043spa
dc.description.abstractEl cáncer es una enfermedad que se puede originar en cualquier parte del cuerpo. Comienza cuando las células infectadas crecen de forma descontrolada sobrepasando a las células sanas. El cáncer de seno, en su mayoría carcinomas, es el tipo más común entre las mujeres de todo el mundo. Los procedimientos utilizados para la detección de la enfermedad son aproximaciones diagnósticas, algunos de estos son invasivos. Usando herramientas digitales, es posible desarrollar o implementar sistemas de diagnóstico asistido para agilizar el proceso y permitir mayor confiabilidad de los análisis. El presente estudio se realiza con imágenes digitales de histopatología a partir de la base de datos de acceso abierto. Se evalúan tres escenarios, partiendo desde un esquema clásico, luego el se incluye el uso de modelos profundos pre-entrenados y finalmente se evaluá un modelo profundo con una red neuronal convolucional. El rendimiento de cada uno de los métodos sometidos a estudio se evaluaron calculando las medidas diagnósticas de precisión, sensibilidad y especificidad, logrando así encontrar el modelo que mejor se adecua a la tarea abordada. Se observa que los modelos pre-entrenados aportan información altamente discriminante a pesar de haber sido entrenados para una tarea completamente diferente. En general los modelos profundos permiten mejorar significativamente la especificidad del sistema al comparar con el enfoque clásico.spa
dc.description.abstractCancer is a disease that can start anywhere in the body. It begins when infected cells grow out of control, outpac-ing normal cells. Breast cancer is the most common type in women around the world. Most of them are carcinomas, these originate in the cells that cover the organs and tissues of the body. The procedures used to detect the disease are diagnostic approaches, and some are invasive. Using digital tools, it is possible to develop or implement assisted diagnos-tic systems to streamline the process and allow greater reli-ability of the analyzes. The present study is carried out with digital histopathology images. In this study three scenarios were evaluated, starting from a classical machine learning scheme, logistic regression combined with principal compo-nent analysis. Then we include the use of pre-trained deep models and finally a deep model based on a convolutional neural network. The performance for each approach was evaluated by calculating three diagnostic measures such as precision, sensitivity and specificity. It is observed that the pre-trained models provide highly disciminative information despite having been trained for a completely different task. In general, deep models allow to significantly improve the specificity of the system when compared with the classical approach.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospa
dc.publisherCorporación Universidad de la Costaspa
dc.rights© The author; licensee Universidad de la Costa - CUC.spa
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceComputer and Electronic Sciences: Theory and Applicationsspa
dc.titleDetección de cáncer de seno usando imágenes de histopatología y modelos de aprendizaje profundo pre-entrenadosspa
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.17981/cesta.02.02.2021.04spa
dc.source.urlhttps://revistascientificas.cuc.edu.co/CESTA/article/view/3922spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.17981/cesta.02.02.2021.04spa
dc.identifier.eissn2745-0090spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeBarranquillaspa
dc.relation.ispartofjournalComputer and Electronic Sciences: Theory and Applicationsspa
dc.relation.references[1] T. J. Key, P. K. Verkasalo & E. Banks, “Epidemiology of breast cancer,” Lancet Oncol, vol. 2, no. 3, pp. 133–140, Mar. 2001. https://doi.org/10.1016/S1470-2045(00)00254-0spa
dc.relation.references[2] M. Akram, M. Iqbal, M. Daniyal & A. U. Khan, “Awareness and current knowledge of breast cancer,” Biol Res, vol. 50, no. 1, pp. 1–23, Oct. 2017. https://doi.org/10.1186/s40659-017-0140-9spa
dc.relation.references[3] A. S. Y. Leong & A. Zhuang, “The changing role of pathology in breast cancer diagnosis and treatment,” Pathobiology, vol. 78, no. 2, pp. 99–114, 2011. https://doi.org/10.1159/000292644spa
dc.relation.references[4] A. Bereciartua, “Desarrollo de algoritmos de procesamiento de imagen avanzado para interpretación de imágenes médicas. Aplicación a segmentación de hígado sobre imágenes de Resonancia Magnética multisecuencia,” Doctoral dissertation, UPVEHU. Bilbao, ES, 2016. Disponible en http://hdl.handle.net/10810/20703spa
dc.relation.references[5] A. Mert, N. KJlJç, E. Bilgili & A. Akan, “Breast Cancer Detection with Reduced Feature Set,” Comput Math Methods Med, pp. 1–12, 2014. https://doi.org/10.1155/2015/265138spa
dc.relation.references[6] C. M. Bishop, Pattern recognition. Machine learning. SG: Springer, 2006.spa
dc.relation.references[7] A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan & A. Madabhushi, “Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks,” presented at Medical Imaging 2014: Digital Pathology, vol. 9041, SPIE, SD, CA, USA, 20 Mar. 2014, . https://doi.org/10.1117/12.2043872spa
dc.relation.references[8] C. Zhu, F. Song, Y. Wang, H. Dong, Y. Guo & J. Liu, “Breast cancer histopathology image classification through assembling multiple compact CNNs,” BMC Med Inform Decis Mak, vol. 19, no. 1, pp. 1–17, Oct. 2019. https://doi.org/10.1186/s12911-019-0913-xspa
dc.relation.references[9] Z. Hameed, S. Zahia, B. Garcia-Zapirain, J. Javier Aguirre & A. M. Vanegas, “Breast cancer histopathology image classification using an ensemble of deep learning models,” Sensors, vol. 20, no. 16, pp. 1–17, Aug. 2020. https://doi.org/10.3390/s20164373spa
dc.relation.references[10] M. A. Al-masni, , M. A. Al-antari, J.-M. Park, G. Gi, T.-Y. Kim, P. Rivera & T. S. P. Kim, “Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system,” Comput Meth Prog Bio, vol. 157, pp. 85–94, 2018. https://doi.org/10.1016/j.cmpb.2018.01.017spa
dc.relation.references[11] H. Chougrad, H. Zouaki & O. Alheyane, “Deep Convolutional Neural Networks for breast cancer screening,” Comput Methods Programs Biomed, pp. 19–30, 2018. https://doi.org/10.1016/j.cmpb.2018.01.011spa
dc.relation.references[12] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A Torre & A. Jemal, “Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA Cancer J Clin, vol. 68, no. 6, pp. 394–424, 2018. https://doi.org/10.3322/caac.21492spa
dc.relation.references[13] R. Wainschenker, J. Massa & P. Tristan, Procesamiento digital de imagenes. (2011). Clase Teórico Práctica Nº 1. Buenos Aires, Argentina: UNICEN. Obtenido de https://users.exa.unicen.edu.ar/catedras/pdi/FILES/TE/CP1.pdfspa
dc.relation.references[14] Á. Martínez, “Bases Teóricas, Digitalización y Análisis de Imágenes,” in Manual de Telepatología, L. Alfaro, M. García y A. Puras, ed., Pamplona, ES: Club de Informática Aplicada a la Sociedad Española de Anatomía Patológica, 2001. Disponible en https://www.seap.es/manual-de-telepatologiaspa
dc.relation.references[15] J. C. Russ, The image processing handbook. BR, USA: CRC press, 2006. https://doi.org/10.1201/9780203881095spa
dc.relation.references[16] G. Mandloi, “A survey on feature extraction techniques for color images,” IJCSIT, vol. 5, no. 3, pp. 4615–4620, 2014. Available from http://www.ijcsit.com/docs/Volume%205/vol5issue03/ijcsit20140503424.pdfspa
dc.relation.references[17] J. Ma & Y. Yuan, “Dimension reduction of image deep feature using PCA,” J Vis Commun Image Represent, vol. 63, no. 5, pp.102578, 2019. https://doi.org/10.1016/j.jvcir.2019.102578spa
dc.relation.references[18] G. S. Fletcher, Clinical epidemiology: the essentials. FI, USA: LWW, 2019.spa
dc.relation.references[19] Z. H. Hoo, Z. H. Candlish & D. Teare, “What is an ROC curve?,” Emerg Med J, vol. 34, pp. 357–359, 2017. https://doi.org/10.1136/emermed-2017-206735spa
dc.relation.references[20] R. Xiao, X. Cui, H. Qiao, X. Zheng, Y. Zhang, C. Zhang & X. Liu, “Early diagnosis model of Alzheimer’s disease based on sparse logistic regression with the generalized elastic net,” Biomed Signal Process Control, vol. 66, no. 3, pp. 102362, 2020. https://doi.org/10.1016/j.bspc.2020.102362spa
dc.relation.references[21] I. Goodfellow, Y. Bengio & A. Courville, Deep learning. CA, MA, USA: MIT press, 2016.spa
dc.relation.references[22] M. Coccia, “Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence,” Technol Soc, no. 60, pp. 101198, Oct. 2019. https://doi.org/10.1016/j.techsoc.2019.101198spa
dc.relation.references[23] A. Janowczyk & A. Madabhushi, “Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases,” J Pathol Inform, vol. 60, pp. 101198, 2016. https://doi.org/10.4103/2153-3539.186902spa
dc.relation.references[24] K. He, X. Zhang, S. Ren & J. Sun, “Deep residual learning for image recognition,” presented at Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, CVPR, Las Vegas, NV, USA, 27-30 Jun. 2016, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90spa
dc.relation.references[25] K. Simonyan & A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv, pp. 1–14, 2014. Available: https://arxiv.org/abs/1409.1556spa
dc.relation.references[26] Z. Zheng, J. Fu, C. Lu & Y. Zhu, “Research on rolling bearing fault diagnosis of small dataset based on a new optimal transfer learning network,” Measurement, vol. 177, pp. 109285, 2020. https://doi.org/10.1016/J.MEASUREMENT.2021.109285spa
dc.relation.references[27] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” presented at Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21-26 Jul. 2017, pp. 1251–1258. Available: https://arxiv.org/abs/1610.02357spa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalCáncer de senospa
dc.subject.proposalImágenes digitalesspa
dc.subject.proposalDiagnostico asistidospa
dc.subject.proposalDeep learningeng
dc.subject.proposalBreast cancereng
dc.subject.proposalDigital imageseng
dc.subject.proposalAssisted diagnosiseng
dc.title.translatedBreast cancer detection using digital histopathology images and pre-trained deep learning modelseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage36spa
dc.relation.citationstartpage27spa
dc.relation.citationissue2spa
dc.relation.citationvolume2spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.ispartofjournalabbrevCESTAspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Revistas Científicas [1682]
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Mostrar el registro sencillo del ítem

© The author; licensee Universidad de la Costa - CUC.
Excepto si se señala otra cosa, la licencia del ítem se describe como © The author; licensee Universidad de la Costa - CUC.