Mostrar el registro sencillo del ítem

dc.contributor.authorHernández-Fernández, Joaquinspa
dc.contributor.authorLopez-Martinez, Juanspa
dc.date.accessioned2022-03-04T23:06:37Z
dc.date.available2024
dc.date.available2022-03-04T23:06:37Z
dc.date.issued2022
dc.identifier.issn0165-2370spa
dc.identifier.urihttps://hdl.handle.net/11323/9051spa
dc.description.abstractIn this article, the pyrolysis and thermo-degradation of 11 virgin-polypropylene (virgin-PP) with different levels of arsenic in its polymer matrix, was carried out in a discontinuous quartz reactor at 500 °C. To quantify arsine (AsH3), 4 points were sampled during the PP synthesis process and a methodology was applied by GC with 4 detectors, which simultaneously and with a single injection allowed to quantify multiple components. AsH3 in propylene varied between 0.05 and 4.73 ppm and arsenic in virgin-PP residues between 0.001 and 4.32 ppm for PP0 and PP10. These generated an increase in the melt flow index from 3.0 to 24.51 and maintained a direct relationship with an R2 of 0.9993. The origin of thermo-oxidative degradation and the beginnings of virgin-PP pyrolysis are explained by the formation to aldehyde, ketone, alcohol, carboxylic acid functional groups, CO and CO2. These species caused TG and DTG curves to have atypical behavior for PP. For example, PP10 with an arsenic content of 4.32 ppm presented 3 degradation peaks at 80, 90 and 200 °C with a mass loss ratio of 22%, 18% and 55% °C−1 respectively. During pyrolysis the highest percentage of alkanes was found in PP0 with an average value of 62.4%, and the lowest values were found in PP8 to PP10, with oscillations between 0% and 1.4%. The total concentration of oxidized species for PP0 to PP10 was 2.26%, 32.7%, 43.1%, 50.9%, 59.3%, 66.2%, 75.0%, 83.0%, 89.1% and 97.5% respectively. In an O2 atmosphere ketones and carboxylic acids were only identified in PP0 to PP5. CO2 concentrations in PP5 to PP10 were of 100%.eng
dc.format.extent9 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospa
dc.publisherElsevierspa
dc.rights© 2021 Elsevier B.V. All rights reserved.spa
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.titleAutocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropyleneeng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.1016/j.jaap.2021.105385spa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S0165237021003715spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.1016/j.jaap.2021.105385spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeNetherlandsspa
dc.relation.ispartofjournalJournal of Analytical and Applied Pyrolysisspa
dc.relation.references[1] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization, J. Chromatogr. A 2020 (1614) 460736–460743.spa
dc.relation.references[2] R. Gras, J. Luong, M. Hawryluk, M. Monagle, Analysis of part-per-billion level of arsine and phosphine in light hydrocarbons by capillary flow technology and dielectric barrier discharge detector, J. Chromatogr. A 1217 (2010) 348–352.spa
dc.relation.references[3] G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.), Comprehensive Coordination Chemistry, Pergamon Press, Oxford, 1987.spa
dc.relation.references[4] J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination Chemistry II, Elsevier, Oxford, 2004.spa
dc.relation.references[5] C.A. McAuliffe, W. Levason, Phosphine, Arsine and Stibine Complexes of the Transition Elements, Elsevier, Amsterdam, 1979.spa
dc.relation.references[6] (a) P.W.N.M. van Leeuwen, Homogeneous Catalysis Understanding the Art, Kluwer Academic Publishers, Dordrecht, 2004; (b) R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, fourth ed., John Wiley & Sons,, 2005.spa
dc.relation.references[7] W. Levason, G. Reid, Developments in the coordination chemistry of stibine ligands, Coord. Chem. Rev 250 (2006) 2565–2594.spa
dc.relation.references[8] A.G. Orpen, N.G. Connelly, Structural systematics: the role of P-A.sigma.* orbitals in metal-phosphorus.pi.-bonding in redox-related pairs of M-PA3 complexes (A = R, Ar, OR; R = alkyl, Organometallics 9 (1990) 1206–1210.spa
dc.relation.references[9] L. Cavallo, S. Del Piero, J.-M. Duc´er´e, R. Fedele, A. Melchior, G. Morini, F. Piemontesi, M. Tolazzi, Key interactions in heterogeneous Ziegler− Natta catalytic systems: structure and energetics of TiCl4− Lewis base complexes, J. Phys. Chem. C 111 (2007) 4412–4419.spa
dc.relation.references[10] N. Bahri-Laleh, M. Nekoomanesh-Haghighi, S.A. Mirmohammadi, A DFT study on the effect of hydrogen in ethylene and propylene polymerization using a Ti-based heterogeneous Ziegler–Natta catalyst, J. Organomet. Chem. 719 (2012) 74–79.spa
dc.relation.references[11] A. Correa, N. Bahri-Laleh, L. Cavallo, How well can DFT reproduce key interactions in Ziegler–Natta systems, Macromol. Chem. Phys. 214 (2013) 1980–1989.spa
dc.relation.references[12] V. Nikolaevna Panchenko, L. Viktorovna Vorontsova, V. Aleksandrovich Zakharov, Ziegler-Natta catalysts for propylene polymerization – interaction of an external donor with the catalyst, Polyolefins J. 4 (2017) 87–97.spa
dc.relation.references[13] M. Nikolaeva, T. Mikenas, M. Matsko, V. Zakharov, Effect of AlEt3 and an external donor on the distribution of active sites according to their stereospecificity in propylene polymerization over TiCl4/MgCl2 catalysts with different titanium content, Macromol. Chem. Phys. 217 (2016) 1384–1395.spa
dc.relation.references[14] E.I. Vizen, L.A. Rishina, L.N. Sosnovskaja, F.S. Dyachkovsky, I.L. Dubnikova, T. A. Ladygina, Study of hydrogen effect in propylene polymerization on (with) the MgCl2 supported Ziegler-natta catalyst- part 2. Effect of CS2 on polymerization centres, Eur. Polym. J. 30 (1994) 1315–1318.spa
dc.relation.references[15] K. Kallio, A. Wartmann, K.H. Reichert, Reactivation of a poisoned metallocene catalyst by irradiation with visible light, Macromol. Rapid Commun. 23 (2002) 187–190.spa
dc.relation.references[16] N. Bahri-Laleh, Interaction of different poisons with MgCl2/TiCl4 based ZieglerNatta catalysts, Appl. Surf. Sci. 379 (2016) 395–401.spa
dc.relation.references[17] S. Pasynkiewicz, Reactions of organoaluminium compounds with electron donors, Pure Appl. Chem. 30 (1972) 509–522.spa
dc.relation.references[18] J. Hernandez-Fernandez, Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in Polypropylene production on an industrial scale, J. Chromatogr. A 2020 (1628) 461478–461489.spa
dc.relation.references[19] R.J.H. Clark, in: J.C. Bailar, H.J. Emeleus, R.S. Nyholm, A.F. Trotman-Dickenson (Eds.), Comprehensive Inorganic Chemistry, vol. 3, Pergamon, Oxford, 1973. Ch. 3.spa
dc.relation.references[20] C.A. McAuliffe, D.S. Barratt, in: G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.), Comprehensive Coordination Chemistry I, vol. 3, Pergamon, Oxford, 1987 (Ch. 31).spa
dc.relation.references[21] M.R. Jan, J. Shah, H. Gulab, Catalytic degradation of waste high-density polyethylene into fuel products using BaCO3 as a catalyst, Fuel Process. Technol. 91 (11) (2010) 1428–1437.spa
dc.relation.references[22] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor, J. Anal. Appl. Pyrolysis 95 (2012) 198–204.spa
dc.relation.references[23] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor, Fuel Process. Technol. 109 (2012) 90–95.spa
dc.relation.references[24] A. Marcilla, M.I. Beltr´ an, R. Navarro, Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions, Appl. Catal. B: Environ. 86 (2009) 78–86.spa
dc.relation.references[25] E. Ahmad, S. Chadar, S.S. Tomar, M.K. Akram, Catalytic degradation of waste plastic into fuel oil, Int. J. Petrol. Sci. Technol. 3 (1) (2009) 25–34.spa
dc.relation.references[26] S.H. Jung, M.H. Cho, B.S. Kang, J.S. Kim, Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor, Fuel Process. Technol. 91 (2010) 277–284.spa
dc.relation.references[27] M. Salman, R. Rehman, U. Shafique, T. Mahmud, B. Ali, Comparative thermal and catalytic recycling of low density polyethylene into diesel-like oil using different commercial catalysts, Electron. J. Environ. Agric. Food Chem. 11 (2) (2012) 96–105.spa
dc.relation.references[21] M.R. Jan, J. Shah, H. Gulab, Catalytic degradation of waste high-density polyethylene into fuel products using BaCO3 as a catalyst, Fuel Process. Technol. 91 (11) (2010) 1428–1437.spa
dc.relation.references[22] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor, J. Anal. Appl. Pyrolysis 95 (2012) 198–204.spa
dc.relation.references[23] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor, Fuel Process. Technol. 109 (2012) 90–95.spa
dc.relation.references[24] A. Marcilla, M.I. Beltr´ an, R. Navarro, Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions, Appl. Catal. B: Environ. 86 (2009) 78–86.spa
dc.relation.references[25] E. Ahmad, S. Chadar, S.S. Tomar, M.K. Akram, Catalytic degradation of waste plastic into fuel oil, Int. J. Petrol. Sci. Technol. 3 (1) (2009) 25–34.spa
dc.relation.references[26] S.H. Jung, M.H. Cho, B.S. Kang, J.S. Kim, Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor, Fuel Process. Technol. 91 (2010) 277–284.spa
dc.relation.references[27] M. Salman, R. Rehman, U. Shafique, T. Mahmud, B. Ali, Comparative thermal and catalytic recycling of low density polyethylene into diesel-like oil using different commercial catalysts, Electron. J. Environ. Agric. Food Chem. 11 (2) (2012) 96–105.spa
dc.relation.references[28] M.N. Almustapha, J.M. Andr´esen, Recovery of valuable chemicals from high density polyethylene (HDPE) polymer: a catalytic approach for plastic waste recycling, Int. J. Environ. Sci. Dev. 3 (2012) 3–267.spa
dc.relation.references[29] D.C. Tiwari, E. Ahmad, K.K. Kumar Singh, Catalytic degradation of waste plastic into fuel range hydrocarbons, Int. J. Chem. Res. 1 (2) (2009) 31–36.spa
dc.relation.references[30] M.F. Ali, M.S. Qureshi, Catalyzed pyrolysis of plastics: a thermogravimetric study, Afr, J. Pure Appl. Chem. 5 (9) (2011) 284–292.spa
dc.relation.references[31] G. De la Puente, C. Klocker, U. Sedran, Conversion of waste plastics into fuels recycling polyethylene in FCC, Appl. Catal. B: Environ. 36 (2002) 279–285.spa
dc.relation.references[32] K.H. Lee, Composition of aromatic products in the catalytic degradation of the mixture of waste polystyrene and high-density polyethylene using spent FCC catalyst, Polym. Degrad. Stab. 93 (2008) 1284–1289.spa
dc.relation.references[33] S.L. Wong, N. Ngadi, T.A.T. Abdullah, I.M. Inuwa, Conversion of low density polyethylene (LDPE) over ZSM-5 zeolite to liquid fuel, Fuel 192 (2017) 71–82.spa
dc.relation.references[34] R. Miandad, M.A. Barakat, A.S. Aburiazaiza, M. Rehan, A.S. Nizami, Catalytic pyrolysis of plastic waste: a review, Process Saf. Environ. Prot. 102 (2016) 822–838.spa
dc.relation.references[35] Y. Sakata, M.A. Uddin, A. Muto, Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts, J. Anal. Appl. Pyrolysis 51 (1999) 135–155.spa
dc.relation.references[36] S. Thornberg, R. Bernstein, A. Irwin, D. Derzon, S. Klamo, R. Clough, The genesis of CO2 and CO in the thermooxidative degradation of polypropylene, Polym. Degrad. Stab. 92 (2007) 94–102.spa
dc.relation.references[37] R. Bernstein, S. Thornberg, R. Assink, A. Irwin, J. Hochrein, J. Brown, D. Derzon, S. Klamo, R. Clough, The origins of volatile oxidation products in the thermal degradation of polypropylene, identified by selective isotopic labeling, Polym. Degrad. Stab. 92 (2007) 2076–2094.spa
dc.relation.references[38] J. Chien, C. Boss, Polymer reactions. V. Kinetics of autoxidation of polypropylene, J. Polym. Sci.,Part A: Polym. Chem. 5 (1967), 309-101.spa
dc.relation.references[39] J. Chien, C. Boss, Polymer reactions. VI. Inhibited autoxidation of polypropylene, J. Polym. Sci.,Part A: Polym. Chem. 5 (1967) 1683–1697.spa
dc.relation.references[40] J. Chien, E. Vandenberg, H. Jabloner, Polymer reactions. III. Structure of polypropylene hydroperoxide, J. Polym. Sci.,Part A: Polym. Chem. 6 (1968) 381–392.spa
dc.relation.references[41] D. Carlsson, D. Wiles, The photodegradation of polypropylene fiof pol. Photolysis of ketonic oxidation products, Macromolecules 2 (1969) 587–597.spa
dc.relation.references[42] D. Carlsson, D. Wiles, The photodegradation of polypropylene films.III. Photolysis of polypropylene hydroperoxides, Macromolecules 2 (1969) 597–606.spa
dc.relation.references[43] J. Adams, Analysis of the nonvolatile oxidation products of polypropyl-ene I. Thermal oxidation, J. Polym. Sci.,Part A: Polym. Chem. 8 (1970) 1077–1090.spa
dc.relation.references[44] J. Adams, Analysis of the nonvolatile oxidation products of polypropyl-ene II. Process degradation, J. Polym. Sci.,Part A: Polym. Chem. 8 (1970) 1269–1277.spa
dc.relation.references[45] J. Adams, Analysis of the nonvolatile oxidation products of polypropyl-ene III. Photodegradation, J. Polym. Sci. Part A: Polym. Chem. 8 (1970) 1279–1288.spa
dc.relation.references[46] C. Decker, F. Mayo, Aging and degradation of polyolefins. II.ϒ-Initiatedoxidations of atactic polypropylene, J. Polym. Sci. Part A: Polym. Chem. 11 (1973) 2847–2877.spa
dc.relation.references[47] E. Niki, C. Decker, F. Mayo, Aging and degradation of polyolefins. I.Peroxideinitiated oxidations of atactic polypropylene, J. Polym. Sci. Part A: Polym. Chem. 11 (1973) 2813–2845.spa
dc.relation.references[48] G. Geuskens, M. Kabamba, Photo-oxidation of polymers - part V: a newchain scission mechanism in polyolefins, Polym. Degrad. Stab. 4 (1982) 69–76.spa
dc.relation.references[49] M. Iring, F. Tudos, Thermal oxidation of polyethylene and polypropylene:effects of chemical structure and reaction conditions on the oxidation process, Prog. Polym. Sci. 15 (1990) 217–262.spa
dc.relation.references[50] J. Hernandez-Fernandez, ´ E. Rodríguez, Determination of phenolic antioxidants additives in wastewater from polypropylene production using solid-phase extraction with high performance liquid chromatography, J. Chromatogr. A 2019 (1607) 460442–460448.spa
dc.relation.references[51] J. Hernandez-Fern ´ andez, ´ E. Rayon, ´ J. Lopez, ´ M. Arrieta, Enhancing the thermal stability of polypropylene by blending with low amounts of natural antioxidant, Macromol. Mater. Eng 304 (2019) 1900379–1900391.spa
dc.relation.references[52] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis, J. Anal. Appl. Pyrolysis 155 (2021) 105052–105064.spa
dc.relation.references[53] J. Suh, N. Kang, J. Lee, Direct determination of arsine in gases by inductively coupled plasma–dynamic reaction cell–mass spectrometry, Talanta 78 (2009) 321–325.spa
dc.relation.references[54] L. Helsen, Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review, Environ. Pollut. 137 (2005) 305–315.spa
dc.relation.references[55] M. Pantsar-Kallio, A. Korpela, Analysis of gaseous arsenic species and stability studies of arsine and trimethylarsine by gas chromatography-mass spectrometry, Anal. Chim. Acta 410 (2000) 65–70.spa
dc.relation.references[56] R. Firor, B. Quimby, Dual-Channel Gas Chromatographic System for the Determination of Low-level Sulfur in Hydrocarbon Gases, Agilent Technologies Application Note 5988-8904EN, Agilent Technologies publisher, Wilmington, Delaware, USA, 2003.spa
dc.relation.references[57] M. Pantsar-Kallio, P. Manninen, Simultaneous determination of toxic arsenic and chromium species in water samples by ion chromatography-inductively coupled plasma mass spectrometry, J. Chromatogr. A 779 (1997) 139–146.spa
dc.relation.references[58] G. Lopez, M. Artetxe, M. Amutio, J. Bilbao, M. Olazar, Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals a review, Renew. Sustain. Energy Rev. 73 (2017) 346–368.spa
dc.relation.references[59] C. Pavon, M. Aldas, J. Lopez-Martínez, ´ J. Hern´ andez-Fernandez, ´ M. Arrieta, Films based on thermoplastic starch blended with pine resin derivatives for food packaging, Foods 10 (2021) 1171–1186.spa
dc.relation.references[60] C. Pavon, M. Aldas, J. Hernandez-Fernandez, J. Lopez-Martínez, Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices, J. Appl. Polym. Sci. (2021) 51734–51743.spa
dc.relation.references[61] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ D. Barcelo, Development and validation of a methodology for quantifying parts-per-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry, J. Chromatogr. A 2021 (1637) 461833–461844.spa
dc.relation.references[62] J. Hernandez-Fern ´ andez, ´ Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions, Atmospheric Pollut. Res. 12 (2021) 167–176.spa
dc.relation.references[63] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ D. Barcelo, Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene, J. Chromatogr. A 263 (2021) 128027–128038.spa
dc.subject.proposalArsineeng
dc.subject.proposalVirgin polypropyleneeng
dc.subject.proposalAutocatalysiseng
dc.subject.proposalDegradation starteng
dc.subject.proposalFree radicalseng
dc.subject.proposalPyrolysiseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage9spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume161spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

© 2021 Elsevier B.V. All rights reserved.
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2021 Elsevier B.V. All rights reserved.