Mostrar el registro sencillo del ítem

dc.contributor.authorDapper, Paulo Rodrigospa
dc.contributor.authorEhrenbring, Hinoel Zamisspa
dc.contributor.authorPacheco, Fernandaspa
dc.contributor.authorChrist, Robertospa
dc.contributor.authorCostella Menegussi, Giovannaspa
dc.contributor.authorde Oliveira, Maria Fernandaspa
dc.contributor.authorTutikian, Bernardospa
dc.date.accessioned2022-03-08T16:13:47Z
dc.date.available2022-03-08T16:13:47Z
dc.date.issued2021-12-03
dc.identifier.citationDapper, P.R.; Ehrendring, H.Z.; Pacheco, F.; Christ, R.; Menegussi, G.C.; Oliveira, M.F.d.; Tutikian, B.F. Ballistic Impact Resistance of UHPC Plates Made with Hybrid Fibers and Low Binder Content. Sustainability 2021, 13, 13410. https://doi.org/10.3390/su132313410spa
dc.identifier.issn2071-1050spa
dc.identifier.urihttps://hdl.handle.net/11323/9056spa
dc.description.abstractThis study assesses the ballistic impact strength of thin plates made of ultra-high-performance concrete (UHPC) with low cement content (250 kg/m3) and volumes of 80% steel and 20% polypropylene (PP) hybrid fibers. The plates were prepared with thicknesses of 30, 50, and 70 mm and fiber volume ratios of 1.5% and 3.0%. Compressive strength, flexural tensile strength, residual strength, and ballistic impact strength were determined using experimental methods. Test results showed that regardless of fiber content, the UHPC specimens prepared with the hybrid fibers showed similar performance against ballistic impact, exerting relatively low impact energy below 1000 J. The UHPC3.0 mixture made with 3.0% hybrid fiber content exhibited the best performance in terms of energy absorption and spalling resistance at impact energy levels greater than 4000 J. Plate sections with thicknesses of 7 mm showed class III performance (highest level), as recommended for military-based applications.eng
dc.format.extent15 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherMDPI AGspa
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.titleBallistic impact resistance of UHPC plates made with hybrid fibers and low binder contenteng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.3390/su132313410spa
dc.source.urlhttps://www.mdpi.com/2071-1050/13/23/13410spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.3390/su132313410spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeSwitzerlandspa
dc.relation.ispartofjournalSustainabilityspa
dc.relation.references1. Oliveira, M.L.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [CrossRef]spa
dc.relation.references2. Oliveira, M.L.S.; Tutikian, B.F.; Milanes, C.; Silva, L.F.O. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 2020, 248, 119250. [CrossRef]spa
dc.relation.references3. Oliveira, M.L.; Flores, E.M.; Dotto, G.L.; Neckel, A.; Silva, L.F. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J. Clean. Prod. 2021, 278, 123982. [CrossRef]spa
dc.relation.references4. Silva, L.F.; Pinto, D.; Neckel, A.; Oliveira, M.L. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 2020, 11, 2053–2060. [CrossRef]spa
dc.relation.references5. Abbas, S.; Nehdi, M.L.; Saleem, M.A. Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustaina-bility and Implementation Challenges. Int. J. Concr. Struct. Mater. 2016, 10, 271–295. [CrossRef]spa
dc.relation.references6. Müller, H.S.; Haist, M.; Vogel, M. Assessment of the sustainability potential of concrete and concrete structures con-sidering their environmental impact, performance and lifetime. Constr. Build. Mater. 2014, 67, 321–337. [CrossRef]spa
dc.relation.references7. Hooton, R.D.; Bickley, J.A. Design for durability: The key to improving concrete sustainability. Constr. Build. Mater. 2014, 67, 422–430. [CrossRef]spa
dc.relation.references8. Nanayakkara, O.; Gunasekara, C.; Sandanayake, M.; Law, D.W.; Nguyen, K.; Xia, J.; Setunge, S. Alkali activated slag concrete incorporating recycled aggregate concrete: Long term performance and sustainability aspect. Constr. Build. Mater. 2021, 271, 121512. [CrossRef]spa
dc.relation.references9. Kim, H.; Koh, T.; Pyo, S. Enhancing flowability and sustainability of ultra high performance concrete incorporating high replacement levels of industrial slags. Constr. Build. Mater. 2016, 123, 153–160. [CrossRef]spa
dc.relation.references10. Association Française de Génie Civil. Documents Scientifiques et Techniques Bétons Fibrés à Ultra-Hautes Performances— Recommendations; AFGC: Paris, France, 2013.spa
dc.relation.references11. Chellapandian, M.; Prakash, S.; Sharma, A. Strength and ductility of innovative hybrid NSM reinforced and FRP confined short RC columns under axial compression. Compos. Struct. 2017, 176, 205–216. [CrossRef]spa
dc.relation.references12. Guo, W.; Fan, W.; Shao, X.; Shen, D.; Chen, B. Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations. Compos. Struct. 2018, 185, 307–326. [CrossRef]spa
dc.relation.references13. Shin, H.; Min, K.-H.; Mitchell, D. Confinement of ultra-high-performance fiber reinforced concrete columns. Compos. Struct. 2017, 176, 124–142. [CrossRef]spa
dc.relation.references14. Huang, W.; Kazemi-Kamyab, H.; Sun, W.; Scrivener, K. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cem. Concr. Compos. 2017, 77, 86–101. [CrossRef]spa
dc.relation.references15. Yoo, D.-Y.; Banthia, N. Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Constr. Build. Mater. 2017, 149, 416–431. [CrossRef]spa
dc.relation.references16. Wu, H.; Ren, G.; Fang, Q.; Liu, J. Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC. Constr. Build. Mater. 2018, 173, 251–261. [CrossRef]spa
dc.relation.references17. Torregrosa, E.E.C. Dosage Optimization and Bolted Connections for UHPFRC Ties. Ph.D. Thesis, Universitat Politecnica de Valencia, València, Spain, 2015.spa
dc.relation.references18. Christ, R. Desenvolvimento de Compósitos Cimentícios Avançados à Base de Pós-Reativos Com Misturas Híbridas de Fibras e Reduzido Impacto Ambiental. Master’s Thesis, Universidade do Vale do Rio do Sinos, São Leopoldo, Brazil, 2014.spa
dc.relation.references19. Meng, W.; Valipour, M.; Khayat, K.H. Optimization and performance of cost-effective ultra-high performance concrete. Mater. Struct. 2016, 50, 1–16. [CrossRef]spa
dc.relation.references20. Wang, X.-Y.; Park, K.-B. Analysis of compressive strength development of concrete containing high volume fly ash. Constr. Build. Mater. 2015, 98, 810–819. [CrossRef]spa
dc.relation.references21. Figueiredo, A.D. Concreto Reforçado Com Fibras. Professorship. Habilitation Thesis, Universidade de São Paulo, São Paulo, Brazil, 2011.spa
dc.relation.references22. Yu, R.; Spiesz, P.; Brouwers, H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cem. Concr. Compos. 2015, 55, 383–394. [CrossRef]spa
dc.relation.references23. Othman, H.; Marzouk, H. Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads. Int. J. Impact Eng. 2018, 114, 20–31. [CrossRef]spa
dc.relation.references24. Kim, D.J.; Park, S.H.; Ryu, G.S.; Koh, K.T. Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers. Constr. Build. Mater. 2011, 25, 4144–4155. [CrossRef]spa
dc.relation.references25. Nguyen, D.L.; Ryu, G.S.; Koh, K.T.; Kim, D.J. Size and geometry dependent tensile behavior of ultra-high-performance fiberreinforced concrete. Compos. Part B Eng. 2014, 58, 279–292. [CrossRef]spa
dc.relation.references26. Richardson, A.; Coventry, K.; Lamb, T.; Mackenzie, D. The addition of synthetic fibres to concrete to improve impact/ballistic toughness. Constr. Build. Mater. 2016, 121, 612–621. [CrossRef]spa
dc.relation.references27. Quinino, U.C.D.M. Investigação Experimental Das Propriedades mecâNicas de Compósitos de Concreto com Adições Híbridas de Fibras. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2015.spa
dc.relation.references28. Máca, P.; Sovják, R.; Konvalinka, P. Mix design of UHPFRC and its response to projectile impact. Int. J. Impact Eng. 2014, 63, 158–163. [CrossRef]spa
dc.relation.references29. Wu, H.; Fang, Q.; Gong, J.; Liu, J.; Zhang, J.; Gong, Z. Projectile impact resistance of corundum aggregated UHP-SFRC. Int. J. Impact Eng. 2015, 84, 38–53. [CrossRef]spa
dc.relation.references30. Mehdipour, I.; Khayat, K.H. Effect of Supplementary Cementitious Material Content and Binder Dispersion on Pack-ing Density and Compressive Strength of Sustainable Cement Paste. ACI Mater. J. 2016, 113, 361–372.spa
dc.relation.references31. Liu, J.; Wu, C.; Chen, X. Numerical study of ultra-high performance concrete under non-deformable projectile penetration. Constr. Build. Mater. 2017, 135, 447–458. [CrossRef]spa
dc.relation.references32. Liu, J.; Wu, C.; Su, Y.; Li, J.; Shao, R.; Chen, G.; Liu, Z. Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts. Eng. Struct. 2018, 173, 166–179. [CrossRef]spa
dc.relation.references33. Peng, G.-F.; Niu, X.-J.; Shang, Y.-J.; Zhang, D.-P.; Chen, X.-W.; Ding, H. Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties. Cem. Concr. Res. 2018, 109, 147–158. [CrossRef]spa
dc.relation.references34. Pacheco, F.; Christ, R.; Gil, A.M.; Tutikian, B.F. SEM and 3D microtomography application to investigate the distribution of fibers in advanced cementitious composites. Rev. IBRACON Estrut. Mater. 2019, 9, 824–832. [CrossRef]spa
dc.relation.references35. ASTM. C1609: Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete; ASTM International: West Conshohocken, PA, USA, 2012.spa
dc.relation.references36. Almansa, E.M.; Cánovas, M.F. Behaviour of normal and steel fiber-reinforced concrete under impact of small projectiles. Cem. Concr. Res. 1999, 29, 1807–1814. [CrossRef]spa
dc.relation.references37. Richardson, A.; Coventry, K. Dovetailed and hybrid synthetic fibre concrete—Impact, toughness and strength performance. Constr. Build. Mater. 2015, 78, 439–449. [CrossRef]spa
dc.relation.references38. Rahman, N.A.; Abdullah, S.; Zamri, W.F.H.; Abdullah, M.F.; Omar, M.Z.; Sajuri, Z. Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact. Lat. Am. J. Solids Struct. 2016, 13, 1658–1676. [CrossRef]spa
dc.relation.references39. ASTM. D8101: Standard Test Method for Measuring the Penetration Resistance of Composite Materials to Impact by a Blunt Projectile; ASTM International: West Conshohocken, PA, USA, 2018.spa
dc.relation.references40. ASTM. E3112: Standard Test Method for Ballistic-Resistant Products and Shoot Packs; ASTM International: West Conshohocken, PA, USA, 2017.spa
dc.relation.references41. Law Enforcement Standards Laboratory of the National Bureau of Standards. NIJ 0108.01:Ballistic Resistant Protective Materials; National Institute of Justice: Washington, DC, USA, 1985.spa
dc.relation.references42. Wang, R.; Gao, X. Relationship between Flowability, Entrapped Air Content and Strength of UHPC Mixtures Containing Different Dosage of Steel Fiber. Appl. Sci. 2016, 6, 216. [CrossRef]spa
dc.relation.references43. Ehrenbring, H.Z.; Quinino, U.C.D.M.; Oliveira, L.F.S.; Tutikian, B.F. Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concretes. Struct. Concr. 2019, 20, 1064–1075. [CrossRef]spa
dc.relation.references44. Banyhussan, Q.; Yıldırım, G.; Bayraktar, E.; Demirhan, S.; ¸Sahmaran, M. Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content. Constr. Build. Mater. 2016, 125, 41–52. [CrossRef]spa
dc.relation.references45. Ren, F.; Mattus, C.H.; Wang, J.-A.; DiPaolo, B.P. Effect of projectile impact and penetration on the phase composition and microstructure of high performance concretes. Cem. Concr. Compos. 2013, 41, 1–8. [CrossRef]spa
dc.relation.references46. Tai, Y. Flat ended projectile penetrating ultra-high strength concrete plate target. Theor. Appl. Fract. Mech. 2009, 51, 117–128. [CrossRef]spa
dc.subject.proposalSustainabilityeng
dc.subject.proposalComposite materialseng
dc.subject.proposalImpacteng
dc.subject.proposalStructural elementseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage15spa
dc.relation.citationstartpage1spa
dc.relation.citationissue23spa
dc.relation.citationvolume13spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional (CC BY 4.0)