Mostrar el registro sencillo del ítem

dc.contributor.authorFernández-Lucas, Jesússpa
dc.contributor.authorAcebrón, Ivánspa
dc.contributor.authorWu, Ruiying Y.spa
dc.contributor.authorAlfaro, Yohanaspa
dc.contributor.authorAcosta, Javierspa
dc.contributor.authorKaminski, Pierre Alexandrespa
dc.contributor.authorArroyo, Miguelspa
dc.contributor.authorJoachimiak, Andrzejspa
dc.contributor.authorNocek, Boguslawspa
dc.contributor.authorde la Mata, Isabelspa
dc.contributor.authorMancheño, José M.spa
dc.date.accessioned2022-03-10T19:04:46Z
dc.date.available2022-12-01
dc.date.available2022-03-10T19:04:46Z
dc.date.issued2020-12-01
dc.identifier.issn0141-8130spa
dc.identifier.urihttps://hdl.handle.net/11323/9064spa
dc.description.abstractNucleoside 2′-deoxyribosyltransferases (NDTs) catalyze the cleavage of glycosidic bonds of 2′-deoxynucleosides and the following transfer of the 2′-deoxyribose moiety to acceptor nucleobases. Here, we report the crystal structures and biochemical properties of the first tetrameric NDTs: the type I NDT from the mesophilic bacterium Enterococcus faecalis V583 (EfPDT) and the type II NDT from the bacterium Desulfotalea psychrophila (DpNDT), the first psychrophilic NDT. This novel structural and biochemical data permitted an exhaustive comparative analysis aimed to shed light into the basis of the high global stability of the psychrophilic DpNDT, which has a higher melting temperature than EfPDT (58.5 °C versus 54.4 °C) or other mesophilic NDTs. DpNDT possesses a combination of unusual structural motifs not present neither in EfPDT nor any other NDT that most probably contribute to its global stability, in particular, a large aliphatic isoleucine-leucine-valine (ILV) bundle accompanied by a vicinal disulfide bridge and also an intersubunit disulfide bridge, the first described for an NDT. The functional and structural features of DpNDT do not fit the standard features of psychrophilic enzymes, which lead us to consider the implication of (sub)cellular levels together with the protein level in the adaptation of enzymatic activity to low temperatures.eng
dc.format.extent13 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherElsevierspa
dc.rightsCopyright © 2022 Elsevier B.V.spa
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleBiochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: insights into cold-adaptationeng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.1016/j.ijbiomac.2021.09.164spa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S0141813021020924?via%3Dihubspa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doi10.1016/j.ijbiomac.2021.09.164spa
dc.identifier.eissn1879-0003spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeNetherlandsspa
dc.relation.ispartofjournalInternational Journal of Biological Macromoleculesspa
dc.relation.references[1] S.A. Short, S.R. Armstrong, S.E. Ealick, D.J.T. Porter Active site amino acids that participate in the catalytic mechanism of nucleoside 2′-deoxyribosyltransferase J. Biol. Chem., 271 (1996), pp. 4978-4987, 10.1074/jbc.271.9.4978spa
dc.relation.references[2] A. Fresco-Taboada, I. De La Mata, M. Arroyo, J. Fernández-Lucas New insights on nucleoside 2′-deoxyribosyltransferases: a versatile biocatalyst for one-pot one-step synthesis of nucleoside analogs Appl. Microbiol. Biotechnol., 97 (2013), pp. 3773-3785, 10.1007/s00253-013-4816-yspa
dc.relation.references[3] P.A. Kaminski Functional cloning, heterologous expression, and purification of two different N-deoxyribosyltransferases from lactobacillus helveticus J. Biol. Chem., 277 (2002), pp. 14400-14407, 10.1074/jbc.M111995200spa
dc.relation.references[4] M.D. Erion, K. Takabayashi, H.B. Smith, J. Kessi, S. Wagner, S. Hönger, S.L. Shames, S.E. Ealick Purine nucleoside phosphorylase. 1. Structure - function studies Biochemistry, 36 (1997), pp. 11725-11734, 10.1021/bi961969wspa
dc.relation.references[5] R.F. Chawdhri, D.W. Hutchinson, A.O.L. Richards Nucleoside deoxyribosyltransferase and inosine phosphorylase activity in lactic acid bacteria Arch. Microbiol., 155 (1991), pp. 409-411, 10.1007/BF00243463spa
dc.relation.references[6] K.A. Lawrence, M.W. Jewett, P.A. Rosa, F.C. Gherardini Borrelia burgdorferi bb0426 encodes a 2′-deoxyribosyltransferase that plays a central role in purine salvage Mol. Microbiol., 72 (2009), pp. 1517-1529, 10.1111/j.1365-2958.2009.06740.xspa
dc.relation.references[7] A. Fresco-Taboada, J. Fernández-Lucas, C. Acebal, M. Arroyo, F. Ramón, I. De La Mata, J.M. Mancheño 2′-deoxyribosyltransferase from bacillus psychrosaccharolyticus: a mesophilic-like biocatalyst for the synthesis of modified nucleosides from a psychrotolerant bacterium Catalysts, 8 (2018), 10.3390/catal8010008spa
dc.relation.references[8] J. Del Arco, P.A. Sánchez-Murcia, J.M. Mancheño, F. Gago, J. Fernández-Lucas Characterization of an atypical, thermostable, organic solvent- and acid-tolerant 2´-deoxyribosyltransferase from chroococcidiopsis thermalis Appl. Microbiol. Biotechnol., 102 (2018), pp. 6947-6957spa
dc.relation.references[9] D.J. Steenkamp, T.J.F. Halbich Substrate specificity of the purine-2’-deoxyribonucleosidase of crithidia luciliae Biochem. J., 287 (1992), pp. 125-129, 10.1042/bj2870125spa
dc.relation.references[10] N. Crespo, P.A. Sánchez-Murcia, F. Gago, J. Cejudo-Sanches, M.A. Galmes, J. Fernández-Lucas, J.M. Mancheño 2′-deoxyribosyltransferase from leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases Appl. Microbiol. Biotechnol., 101 (2017), pp. 7187-7200, 10.1007/s00253-017-8450-yspa
dc.relation.references[11] J. Bosch, M.A. Robien, C. Mehlin, E. Boni, A. Riechers, F.S. Buckner, W.C. Van Voorhis, P.J. Myler, E.A. Worthey, G. DeTitta, J.R. Luft, A. Lauricella, S. Gulde, L.A. Anderson, O. Kalyuzhniy, H.M. Neely, J. Ross, T.N. Earnest, M. Soltis, L. Schoenfeld, F. Zucker, E.A. Merritt, E. Fan, C.L.M.J. Verlinde, W.G.J. Hol Using fragment cocktail crystallography to assist inhibitor design of trypanosoma brucei nucleoside 2-deoxyribosyltransferase J. Med. Chem., 49 (2006), pp. 5939-5946, 10.1021/jm060429mspa
dc.relation.references[12] S.R. Armstrong, W.J. Cook, S.A. Short, S.E. Ealick Crystal structures of nucleoside 2-deoxyribosyltransferase in native and ligand-bound forms reveal architecture of the active site Structure, 4 (1996), pp. 97-107, 10.1016/S0969-2126(96)00013-5spa
dc.relation.references[13] R. Anand, P.A. Kaminski, S.E. Ealick Structures of purine 2′-deoxyribosyltransferase, substrate complexes, and the ribosylated enzyme intermediate at 2.0 Å resolution Biochemistry, 43 (2004), pp. 2384-2393, 10.1021/bi035723kspa
dc.relation.references[14] D. Georlette, V. Blaise, T. Collins, S. D’Amico, E. Gratia, A. Hoyoux, J.C. Marx, G. Sonan, G. Feller, C. Gerday Some like it cold: biocatalysis at low temperatures FEMS Microbiol. Rev., 28 (2004), pp. 25-42, 10.1016/j.femsre.2003.07.003spa
dc.relation.references[15] W.H. Eschenfeldt, L. Stols, C.S. Millard, A. Joachimiak, M.I. Donnelly A family of LIC vectors for high-throughput cloning and purification of proteins S.A. Doyle (Ed.), High Throughput Protein Expr. Purif, Humana Press (2009), pp. 105-115spa
dc.relation.references[16] M.M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem., 72 (1976), pp. 248-254spa
dc.relation.references[17] L. Stols, C.S. Millard, I. Dementieva, M.I. Donnelly Production of selenomethionine-labeled proteins in two-liter plastic bottles for structure determination J. Struct. Funct. Genom., 5 (2004), pp. 95-102, 10.1023/B:JSFG.0000029196.87615.6espa
dc.relation.references[18] J. Fernández-Lucas, C. Acebal, J.V. Sinisterra, M. Arroyo, I. De La Mata Lactobacillus reuteri 2’-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides Appl. Environ. Microbiol., 76 (2010), pp. 1462-1470, 10.1128/AEM.01685-09spa
dc.relation.references[19] J. Fernández-Lucas, A. Fresco-Taboada, C. Acebal, I. De La Mata, M. Arroyo Enzymatic synthesis of nucleoside analogues using immobilized 2′-deoxyribosyltransferase from lactobacillus reuteri Appl. Microbiol. Biotechnol., 91 (2011), pp. 317-327, 10.1007/s00253-011-3221-7spa
dc.relation.references[20] P.H. Brown, P. Schuck Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation Biophys. J., 90 (2006), pp. 4651-4661, 10.1529/biophysj.106.081372spa
dc.relation.references[21] T.M. Laue, B. Shah, T.M. Ridgeway, S.L. Pelletier Computer aided interpretation of analytical sedimentation data for proteins S.E. Harding, J.C. Horton, A.J. Rowe (Eds.), Anal. Ultracentrifugation Biochem. Polym. Sci, Royal Society of Chemistry, Cambridge, UK (1992), pp. 90-125spa
dc.relation.references[22] A.P. Minton Alternative strategies for the characterization of associations in multicomponent solutions via measurement of sedimentation equilibrium Progr. Colloid Polym. Sci., 107 (1997), pp. 11-19spa
dc.relation.references[23] S. Mazurenko, J. Stourac, A. Kunka, S. Nedeljkovi, D. Bednar, Z. Prokop, J. Damborsky CalFitter : A Web Server for Analysis of Protein Thermal Denaturation Data, 46 (2018), pp. 344-349, 10.1093/nar/gky358spa
dc.relation.references[24] W. Minor, M. Cymborowski, Z. Otwinowski, M. Chruszcz HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes Acta Crystallogr. Sect. D Biol. Crystallogr., 62 (2006), pp. 859-866, 10.1107/S0907444906019949spa
dc.relation.references[25] W. Kabsch Acta Crystallogr. D Biol. Crystallogr., 66 (2010), pp. 125-132, 10.1107/S0907444909047337spa
dc.relation.references[26] P.R. Evans An introduction to data reduction: space-group determination, scaling and intensity statistics Acta Crystallogr. Sect. D Biol. Crystallogr., 67 (2011), pp. 282-292, 10.1107/S090744491003982Xspa
dc.relation.references[27] T.R. Schneider, G.M. Sheldrick Substructure solution with SHELXD Acta Crystallogr. Sect. D Biol. Crystallogr., 58 (2002), pp. 1772-1779, 10.1107/S0907444902011678spa
dc.relation.references[28] Z. Otwinowski Daresbury Study Weekend Proceedings SERC Daresbury Laboratory, Warrington, UK (1991)spa
dc.relation.references[29] K. Cowtan DM: an automated procedure for phase improvement by density modification Jt. CCP4 ESF-EACBM Newsl. Protein Crystallogr., 31 (1994), pp. 34-38spa
dc.relation.references[30] P. Emsley, B. Lohkamp, W.G. Scott, K. Cowtan Features and development of coot Acta Crystallogr. Sect. D Biol. Crystallogr., 66 (2010), pp. 486-501, 10.1107/S0907444910007493spa
dc.relation.references[31] A.J. McCoy, R.W. Grosse-Kunstleve, P.D. Adams, M.D. Winn, L.C. Storoni, R.J. Read Phaser crystallographic software J. Appl. Crystallogr., 40 (2007), pp. 658-674, 10.1107/S0021889807021206spa
dc.relation.references[32] G.N. Murshudov, P. Skubák, A.A. Lebedev, N.S. Pannu, R.A. Steiner, R.A. Nicholls, M.D. Winn, F. Long, A.A. Vagin REFMAC5 for the refinement of macromolecular crystal structures Acta Crystallogr. Sect. D Biol. Crystallogr., 67 (2011), pp. 355-367, 10.1107/S0907444911001314spa
dc.relation.references[33] P.V. Afonine, R.W. Grosse-Kunstleve, N. Echols, J.J. Headd, N.W. Moriarty, M. Mustyakimov, T.C. Terwilliger, A. Urzhumtsev, P.H. Zwart, P.D. Adams Towards automated crystallographic structure refinement with phenix.refine Acta Crystallogr. Sect. D Biol. Crystallogr., 68 (2012), pp. 352-367, 10.1107/S0907444912001308spa
dc.relation.references[34] P.D. Adams, P.V. Afonine, G. Bunkoczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.W. Hung, G.J. Kapral, R.W. Grosse-Kunstleve, A.J. McCoy, N.W. Moriarty, R. Oeffner, R.J. Read, D.C. Richardson, J.S. Richardson, T.C. Terwilliger, P.H. Zwart PHENIX: a comprehensive python-based system for macromolecular structure solution Acta Crystallogr. Sect. D: Biol. Crystallogr., 66 (2010), pp. 213-221, 10.1107/s0907444909052925spa
dc.relation.references[35] E. Krissinel, K. Henrick Inference of macromolecular assemblies from crystalline state J. Mol. Biol., 372 (2007), pp. 774-797, 10.1016/j.jmb.2007.05.022spa
dc.relation.references[36] W.G. Touw, C. Baakman, J. Black, T.A.H. Te Beek, E. Krieger, R.P. Joosten, G. Vriend A series of PDB-related databanks for everyday needs Nucleic Acids Res., 43 (2015), pp. D364-D368, 10.1093/nar/gku1028spa
dc.relation.references[37] W.L. DeLano The PyMOL Molecular Graphics System (2008)spa
dc.relation.references[38] J. Kuever, F.A. Rainey, F. Widdle Desulfotalea Knoblauch, Sahm and Jorgensen 1999, 1641VP G.M. Garrity (Ed.), Bergey´s Man. Syst. Bacteriol (2005), pp. 997-999spa
dc.relation.references[39] T. Oikawa, T. Kazuoka, K. Soda Paradoxical thermostable enzymes from psychrophile: molecular characterization and potentiality for biotechnological application J. Mol. Catal. B Enzym., 23 (2003), pp. 65-70, 10.1016/S1381-1177(03)00073-0spa
dc.relation.references[40] Y. Miyamoto, T. Masaki, S. Chohnan Characterization of N-deoxyribosyltransferase from Lactococcus lactis subsp. lactis Biochim. Biophys. Acta, Proteins Proteomics, 1774 (2007), pp. 1323-1330, 10.1016/j.bbapap.2007.08.008spa
dc.relation.references[41] P.A. Kaminski, P. Dacher, L. Dugué, S. Pochet In vivo reshaping the catalytic site of nucleoside 2′- deoxyribosyltransferase for dideoxy- and didehydronucleosides via a single amino acid substitution J. Biol. Chem., 283 (2008), pp. 20053-20059, 10.1074/jbc.M802706200spa
dc.relation.references[42] E. Pérez, P.A. Sánchez-Murcia, J. Jordaan, M.D. Blanco, J.M. Mancheño, F. Gago, J. Fernández-Lucas Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-DeoxyribosylTransferase from trypanosoma brucei ChemCatChem, 10 (2018), pp. 4406-4416, 10.1002/cctc.201800775spa
dc.relation.references[43] A.E. Fedøy, N. Yang, A. Martinez, H.K.S. Leiros, I.H. Steen Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability J. Mol. Biol., 372 (2007), pp. 130-149, 10.1016/j.jmb.2007.06.040spa
dc.relation.references[44] H.K.S. Leiros, A.E. Fedøy, I. Leiros, I.H. Steen The complex structures of isocitrate dehydrogenase from clostridium thermocellum and desulfotalea psychrophila suggest a new active site locking mechanism FEBS Open Bio., 2 (2012), pp. 159-172, 10.1016/j.fob.2012.06.003spa
dc.relation.references[45] D. Odokonyero, A. Sakai, Y. Patskovsky, V.N. Malashkevich, A.A. Fedorov, J.B. Bonanno, E.V. Fedorov, R. Toro, R. Agarwal, C. Wang, N.D.S. Ozerova, W.S. Yew, J.M. Sauder, S. Swaminathan, S.K. Burley, S.C. Almo, M.E. Glasner Loss of quaternary structure is associated with rapid sequence divergence in the OSBS family Proc. Natl. Acad. Sci. U. S. A., 111 (2014), pp. 8535-8540, 10.1073/pnas.1318703111spa
dc.relation.references[46] Á. Svingor, J. Kardos, I. Hajdú, A. Németh, P. Závodszky A better enzyme to cope with cold: comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHS J. Biol. Chem., 276 (2001), pp. 28121-28125, 10.1074/jbc.M104432200spa
dc.relation.references[47] Y. Yamanaka, T. Kazuoka, M. Yoshida, K. Yamanaka, T. Oikawa, K. Soda Thermostable aldehyde dehydrogenase from psychrophile, cytophaga sp. KUC-1: enzymological characteristics and functional properties Biochem. Biophys. Res. Commun., 298 (2002), pp. 632-637, 10.1016/S0006-291X(02)02523-8spa
dc.relation.references[48] T. Kazuoka, Y. Masuda, T. Oikawa, K. Soda Thermostable aspartase from a marine psychrophile, cytophaga sp. KUC-1: molecular characterization and primary structure J. Biochem., 133 (2003), pp. 51-58, 10.1093/jb/mvg012spa
dc.relation.references[49] P.A. Fields Review: protein function at thermal extremes: balancing stability and flexibility Comp. Biochem. Physiol. A Mol. Integr. Physiol., 129 (2001), pp. 417-431, 10.1016/S1095-6433(00)00359-7spa
dc.relation.references[50] G. Feller Molecular adaptations to cold in psychrophilic enzymes Cell. Mol. Life Sci., 60 (2003), pp. 648-662, 10.1007/s00018-003-2155-3spa
dc.relation.references[51] K.S. Siddiqui, R. Cavicchioli Cold-adapted enzymes Annu. Rev. Biochem., 75 (2006), pp. 403-433, 10.1146/annurev.biochem.75.103004.142723spa
dc.relation.references[52] A. Sadana A deactivation model involving pH for immobilized and soluble enzymes Biotechnol. Lett., 1 (1979), pp. 465-470, 10.1007/BF01388428spa
dc.relation.references[53] S. Ganguly, K.K. Kundu Protonation/deprotonation energetics of uracil, thymine, and cytosine in water from e.m.f./spectrophotometric measurements Can. J. Chem., 72 (1994), pp. 1120-1126, 10.1139/v94-143spa
dc.relation.references[54] V. Verdolino, R. Cammi, B.H. Munk, H.B. Schlegel Calculation of pKa values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model J. Phys. Chem. B, 112 (2008), pp. 16860-16873, 10.1021/jp8068877spa
dc.relation.references[55] Z. Li, L. Jaroszewski, M. Iyer, M. Sedova, A. Godzik FATCAT 2.0: towards a better understanding of the structural diversity of proteins Nucleic Acids Res., 48 (2020), pp. W60-W64, 10.1093/nar/gkaa443spa
dc.relation.references[56] J.P. Gallivan, D.A. Dougherty Cation-π interactions in structural biology Proc. Natl. Acad. Sci. U. S. A., 96 (1999), pp. 9459-9464, 10.1073/pnas.96.17.9459spa
dc.relation.references[57] E.M. Duffy, W.L. Jorgensen, P.J. Kowalczyk Do denaturants interact with aromatic hydrocarbons in water? J. Am. Chem. Soc., 115 (1993), pp. 9271-9275, 10.1021/ja00073a050spa
dc.relation.references[58] J.S. Richardson, L.L. Videau, C.J. Williams, D.C. Richardson Broad analysis of vicinal disulfides: occurrences, conformations with cis or with trans peptides, and functional roles including sugar binding J. Mol. Biol., 429 (2017), pp. 1321-1335, 10.1016/j.jmb.2017.03.017spa
dc.relation.references[59] W.T. Booth, C.R. Schlachter, S. Pote, N. Ussin, N.J. Mank, V. Klapper, L.R. Offermann, C. Tang, B.K. Hurlburt, M. Chruszcz Impact of an N-terminal polyhistidine tag on protein thermal stability ACS Omega, 3 (2018), pp. 760-768, 10.1021/acsomega.7b01598spa
dc.relation.references[60] S.V. Kathuria, Y.H. Chan, R.P. Nobrega, A. Özen, C.R. Matthews Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: sequence determinants of structure and stability Protein Sci., 25 (2016), pp. 662-675, 10.1002/pro.2860spa
dc.relation.references[61] J.N. Sarakatsannis, Y. Duan Statistical characterization of salt bridges in proteins Proteins Struct. Funct. Genet., 60 (2005), pp. 732-739, 10.1002/prot.20549spa
dc.relation.references[62] C. Vetriani, D.L. Maeder, N. Tolliday, K.S.P. Yip, T.J. Stillman, K.L. Britton, D.W. Rice, H.H. Klump, F.T. Robb Protein thermostability above 100 ° C : a key role for ionic interactions Proc. Natl. Acad. Sci. U. S. A., 95 (1998), pp. 12300-12305spa
dc.relation.references[63] P. Leuenberger, S. Ganscha, A. Kahraman, V. Cappelletti, P.J. Boersema, C.Von Mering, M. Claassen, P. Picotti Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability Science (80-.), 355 (2017), 10.1126/science.aai7825spa
dc.relation.references[64] D.A. Drummond, J.D. Bloom, C. Adami, C.O. Wilke, F.H. Arnold Why highly expressed proteins evolve slowly Proc. Natl. Acad. Sci. U. S. A., 102 (2005), pp. 14338-14343, 10.1073/pnas.0504070102spa
dc.relation.references[65] D.A. Drummond, C.O. Wilke The evolutionary consequences of erroneous protein synthesis Nat. Rev. Genet., 10 (2009), pp. 715-724, 10.1038/nrg2662spa
dc.subject.proposal2′-Deoxyribosyltransferaseseng
dc.subject.proposalCrystal structureeng
dc.subject.proposalPsychrophilic enzymeseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage150spa
dc.relation.citationstartpage138spa
dc.relation.citationvolume192spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Copyright © 2022 Elsevier B.V.
Excepto si se señala otra cosa, la licencia del ítem se describe como Copyright © 2022 Elsevier B.V.