Mostrar el registro sencillo del ítem

dc.contributor.authorMoreno-Ríos, Andrea L.spa
dc.contributor.authorTejeda-Benitez, Leslyspa
dc.contributor.authorBustillo Lecompte, Ciro Fernandospa
dc.date.accessioned2022-03-24T14:09:11Z
dc.date.available2022-03-24T14:09:11Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/11323/9086spa
dc.description.abstractAir pollution by particulate matter (PM) is one of the main threats to human health, particularly in large cities where pollution levels are continually exceeded. According to their source of emission, geography, and local meteorology, the pollutant particles vary in size and composition. These particles are conditioned to the aerodynamic diameter and thus classified as coarse (2.5–10 μm), fine (0.1–2.5 μm), and ultrafine (<0.1 μm), where the degree of toxicity becomes greater for smaller particles. These particles can get into the lungs and translocate into vital organs due to their size, causing significant human health consequences. Besides, PM pollutants have been linked to respiratory conditions, genotoxic, mutagenic, and carcinogenic activity in human beings. This paper presents an overview of emission sources, physicochemical characteristics, collection and measurement methodologies, toxicity, and existing control mechanisms for ultrafine particles (UFPs) in the last fifteen years.eng
dc.format.extent15 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherChina University of Geosciences (Beijing) and Peking Universityspa
dc.rights© 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.spa
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleSources, characteristics, toxicity, and control of ultrafine particles: an overvieweng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.1016/j.gsf.2021.101147spa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1674987121000116spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.1016/j.gsf.2021.101147spa
dc.identifier.eissn2588-9192spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.pissn1674-9871spa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeChinaspa
dc.relation.ispartofjournalGeoscience Frontiersspa
dc.relation.referencesAbbas, I., Badran, G., Verdin, A., Ledoux, F., Roumié, M., Courcot, D., Garçon, G., 2018. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity. Environ. Chem. Lett. 16, 439–475. https://doi.org/10.1007/s10311-017-0697-0.spa
dc.relation.referencesAbdel-Shafy, H.I., Mansour, M.S.M., 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25 (1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.spa
dc.relation.referencesAbramesko, V., Tartakovsky, L., 2017. Ultrafine particle air pollution inside dieselpropelled passenger trains. Environ. Pollut. 226, 288–296. https://doi.org/10.1016/j.envpol.2017.03.072.spa
dc.relation.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I., Lara, S.R., Silva, L.F.O., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170. https://doi.org/10.1016/j.envpol.2017.01.075.spa
dc.relation.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Braga, M., Rolim, S.B.A., Silva, L.F.O., Beddows, D.C.S., Harrison, R.M., Querol, X., 2019. Cluster analysis of urban ultrafine particles size distributions. Atmos. Pollut. Res. 10 (1), 45–52. https://doi.org/10.1016/j.apr.2018.06.006.spa
dc.relation.referencesAllen, J.L., Oberdörster, G., Morris-Schaffer, K., Wong, C., Klocke, C., Sobolewski, M., Conrad, K., Mayer-Proschel, M., Cory-Slechta, D.A., 2017. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 59, 140–154. https://doi.org/10.1016/j.neuro.2015.12.014.spa
dc.relation.referencesAzarmi, F., Kumar, P., 2016. Ambient exposure to coarse and fine particle emissions from building demolition. Atmos. Environ. 137, 62–79. https://doi.org/10.1016/j.atmosenv.2016.04.029.spa
dc.relation.referencesAzarmi, F., Kumar, P., Mulheron, M., 2014. The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities. J. Hazard. Mater. 279, 268–279. https://doi.org/10.1016/j.jhazmat.2014.07.003.spa
dc.relation.referencesAzarmi, F., Kumar, P., Marsh, D., Fuller, G., 2016. Assessment of the long-term impacts of PM10 and PM2.5 particles from construction works on surrounding areas. Environ. Sci.: Process. Impacts 18 (2), 208–221. https://doi.org/10.1039/c5em00549c.spa
dc.relation.referencesBadran, G., Ledoux, F., Verdin, A., Abbas, I., Roumie, M., Genevray, P., Landkocz, Y., Guidice, J.M.L., Garçon, G., Courcot, D., 2020. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere 243, 125440. https://doi.org/10.1016/j.chemosphere.2019.125440.spa
dc.relation.referencesBhargava, A., Tamrakar, S., Aglawe, A., Lad, H., Kumar, R.S., Kumar, D., Tiwari, R., Chaudhury, K., Yu, I., Kumar, P., 2018. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage. Environ. Pollut. 234, 406–419. https://doi.org/10.1016/j.envpol.2017.11.093.spa
dc.relation.referencesBhargava, A., Shukla, A., Bunkar, N., Shandilya, R., Lodhi, L., Kumari, R., Gupta, P.K., Rahman, A., Chaudhury, K., Tiwari, R., Goryacheva, I.Y., Mishra, P.K., 2019. Exposureto ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. Environ. Pollut. 252, 39–50. https://doi.org/10.1016/j.envpol.2019.05.065.spa
dc.relation.referencesBillet, S., Landkocz, Y., Martin, P.J., Verdin, A., Ledoux, F., Lepers, C., André, V., Cazier, F., Sichel, F., Shirali, P., Gosset, P., Courcot, D., 2018. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. J. Environ. Sci. 71, 168–178. https://doi.org/10.1016/j.jes.2018.04.022.spa
dc.relation.referencesBliss, B., Tran, K.I., Sioutas, C., Campbell, A., 2018. Ambient ultrafine particles actívate human monocytes: Effect of dose, differentiation state and age of donors. Environ.Res. 161, 314–320. https://doi.org/10.1016/j.envres.2017.11.019.spa
dc.relation.referencesBourdrel, T., Bind, M.A., Béjot, Y., Morel, O., Argacha, J.F., 2017. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110 (11), 634–642. https://doi.org/10.1016/j.acvd.2017.05.003.spa
dc.relation.referencesBriffa, J., Sinagra, E., Blundell, R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6 (9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691.spa
dc.relation.referencesBuiarelli, F., Di Filippo, P., Massimi, L., Pomata, D., Riccardi, C., Simonetti, G., Sonego, E., 2019. Ultrafine, fine and coarse airborne particle mass concentration in workplaces. Atmos. Pollut. Res. 10 (5), 1685–1690. https://doi.org/10.1016/j.apr.2019.06.009.spa
dc.relation.referencesBuonanno, G., Stabile, L., Avino, P., Belluso, E., 2011. Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Manage. 31 (11), 2253–2262. https://doi.org/10.1016/j.wasman.2011.06.017.spa
dc.relation.referencesBurtscher, H., Schüepp, K., 2012. The occurrence of ultrafine particles in the specific environment of children. Paediatr. Respir. Rev. 13 (2), 89–94. https://doi.org/10.1016/j.prrv.2011.07.004.spa
dc.relation.referencesBuzea, C., Pacheco, I., 2019. 28 - Toxicity of nanoparticles. In: Pacheco-Torgal, F., Diamanti, M.V., Nazari, A., Granqvist, C.G., Pruna, A., Amirkhanian, S. (Eds.), Nanotechnology in Eco-efficient Construction. Woodhead Publishing Series in Civil and Structural Engineering, Cambridge, pp. 705–754 https://doi.org/10.1016/b978-0-08-102641-0.00028-1.spa
dc.relation.referencesBuzea, C., Pacheco, I.I., Robbie, K., 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2, MR17–MR71. https://doi.org/10.1116/1.2815690.spa
dc.relation.referencesBzdek, B.R., Pennington, M.R., Johnston, M.V., 2012. Single particle chemical analysis of ambient ultrafine aerosol: A review. J. Aerosol Sci. 52, 109–120. https://doi.org/10.1016/j.jaerosci.2012.05.001.spa
dc.relation.referencesCastro-Rodriguez, J.A., Forno, E., Rodriguez-Martinez, C.E., Celedón, J.C., 2016. Risk and Protective Factors for Childhood Asthma: What Is the Evidence? J. Allergy Clin. Immunol. In Practice 4 (6), 1111–1122. https://doi.org/10.1016/j.jaip.2016.05.003.spa
dc.relation.referencesCervellati, F., Benedusi, M., Manarini, F., Woodby, B., Russo, M., Valacchi, G., Pietrogrande, M.C., 2020. Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes. Chemosphere 240, 124746. https://doi.org/10.1016/j.chemosphere.2019.124746.spa
dc.relation.referencesChen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., Chen, C., 2016. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta (BBA), General Subjects 1860 (12), 2844–2855. https://doi.org/10.1016/j.bbagen.2016.03.019.spa
dc.relation.referencesChen, C., Zhao, Y., Zhang, Y., Zhao, B., 2017. Source strength of ultrafine and fine particle due to Chinese cooking. Procedia Eng. 205, 2231–2237. https://doi.org/10.1016/j.proeng.2017.10.062.spa
dc.relation.referencesChen, Q.Y., DesMarais, T., Costa, M., 2019. Metals and mechanisms of carcinogénesis. Annu. Rev. Pharmacol. Toxicol. 59, 537–554. https://10.1146/annurev-pharmtox010818-021031.spa
dc.relation.referencesChen, X.C., Cao, J.J., Ward, T.J., Tian, L.W., Ning, Z., Kumar, N.G., Aquilina, N.J., Lam, S.H.Y., Qu, L., Ho, K.F., 2020. Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong. Sci.Total Environ 742, 140501. https://doi.org/10.1016/j.scitotenv.2020.140501.spa
dc.relation.referencesCheng, Z., Liang, X., Liang, S., Yin, N., Faiola, F., 2020. A human embryonic stem cell-based in vitro model revealed that ultrafine carbon particles may cause skin inflammation and psoriasis. J. Environ. Sci 87, 194–204. https://doi.org/10.1016/j.jes.2019.06.016.spa
dc.relation.referencesChu, B., Matti Kerminen, V., Bianchi, F., Yan, C., Petäjä, T., Kulmala, M., 2019. Atmospheric new particle formation in China. Atmos. Chem. Phys. 19 (1), 115–138. https://doi.org/10.5194/acp-19-115-2019.spa
dc.relation.referencesChung, M.C., Tsai, M.H., Que, D.E., Bongo, S.J., Hsu, W.L., Tayo, L.L., Lin, Y.H., Lin, S.L., Gou, Y.Y., Hsu, Y.C., Hou, W.C., Huang, K.L., Chao, H.R., 2019. Fine particulate matterinduced toxic effects in an animal model of caenorhabditis elegans. Aerosol Air Qual. Res. 19 (5), 1068–1078. https://doi.org/10.4209/aaqr.2019.03.0127.spa
dc.relation.referencesCiveira, M., Pinheiro, R., Gredilla, A., De Vallejuelo, S., Oliveira, M., Ramos, C., Taffarel, S., Kautzmann, R., Madariaga, J., Silva, L.F., 2016. The properties of the nano-minerals and hazardous elements: potential environmental impacts of brazilian coal waste fire. Sci. Total Environ. 544, 892–900. https://doi.org/10.1016/j.scitotenv.2015.12.026.spa
dc.relation.referencesClifford, S., Mazaheri, M., Salimi, F., Ezz, W.N., Yeganeh, B., Low-Choy, S., Walker, K., Mengersen, K., Marks, G., Morawska, L., 2018. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environ. Int. 114, 167–180. https://doi.org/10.1016/j.envint.2018.02.019.spa
dc.relation.referencesCory-Slechta, D.A., Allen, J.L., Conrad, K., Marvin, E., Sobolewski, M., 2018. Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. NeuroToxicology 69, 217–231. https://doi.org/10.1016/j.neuro.2017.12.003.spa
dc.relation.referencesCrobeddu, B., Aragao-Santiago, L., Bui, L.C., Boland, S., Baeza, A.S., 2017. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular. Environ. Pollut. 230, 125–133. https://doi.org/10.1016/j.envpol.2017.06.051.spa
dc.relation.referencesCui, J., Halbrook, R.S., Zang, S., Han, S., Li, X., 2018. Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution. Ecotoxicology 27 (2), 169–174. https://doi.org/10.1007/s10646-017-1882-4.spa
dc.relation.referencesCutruneo, C.M.N.L., Oliveira, M.L.S., Ward, C.R., Hower, J.C., de Brum, I.A.S., Sampaio, C.H., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F.O., 2014. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol. 130, 33–52. https://doi.org/10.1016/j.coal.2014.05.009.spa
dc.relation.referencesDa, Costa Oliveira, J.R., Base, L.H., de Abreu, L.C., Filho, C.F., Ferreira, C., Morawska, L., 2019. Ultrafine particles and children’s health: Literature review. Paediatr. Respir. Rev. 32, 73–81. https://doi.org/10.1016/j.prrv.2019.06.003.spa
dc.relation.referencesDall’Osto, M., Thorpe, A., Beddows, D.C.S., Harrison, R.M., Barlow, J.F., Dunbar, T., Williams, P.I., Coe, H., 2011. Remarkable dynamics of nanoparticles in the urban atmosphere. Atmos. Chem. Phys. 11 (13), 6623–6637. https://doi.org/10.5194/acp-11-6623-2011.spa
dc.relation.referencesDalmora, A.C., Ramos, C.G., Querol, X., Kautzmann, R.M., Oliveira, M.L.S., Taffarel, S.R., Moreno, T., Silva, L.F.O., 2016. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere (Oxford) 144, 2013–2017. https://doi.org/10.1016/j.hemosphere.2015.10.047.spa
dc.relation.referencesDe Kok, T.M.C.M., Driece, H.A.L., Hogervorst, J.G.F., Briedé, J.J., 2006. Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies. Mutat. Res. Rev. Mutat. Res. 613 (2-3), 103–122. https://doi.org/10.1016/j.mrrev.2006.07.001.spa
dc.relation.referencesAQEG, 2017. Ultrafine Particles (UFP) in the UK. Air Quality Expert Group (AQEG). Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland. https://uk-air.defra. gov.uk/assets/documents/reports/cat09/1807261113_180703_UFP_Report_FINAL_for_publication.pdf (accessed 30 December 2020).spa
dc.relation.referencesDe Oliveira Galvão, M.F., de Oliveira Alves, N., Ferreira, P.A., Caumo, S., de Castro Vasconcellos, P., Artaxo, P., de Souza Hacon, S., Roubicek, D.A., Batistuzzo de Medeiros, S.R., 2018. Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks. Environ. Pollut. 233, 960970. doi:https://doi.org/10.1016/j.envpol.2017.09.068spa
dc.relation.referencesDe Roma, A., Neola, B., Serpe, F.P., Sansone, D., Picazio, G., Cerino, P., Esposito, M., 2017. Land Snails (Helix aspersa) as Bioindicators of Trace Element Contamination in Campania (Italy). O. A. Lib. Journal 4 (2), e3339. https://doi.org/10.4236/oalib.1103339.spa
dc.relation.referencesDe Vallejuelo, S.F.O., Gredilla, A., da Boit, K., Teixeira, E.C., Sampaio, C.H., Madariaga, J.M., Silva, L.F., 2017. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment. Chemosphere 169, 725–733. https://doi.org/10.1016/j.chemosphere.2016.09.125.spa
dc.relation.referencesDias, C.L., Oliveira, M.L.S., Hower, J.C., Taffarel, S.R., Kautzmann, R.M., Silva, L.F.O., 2014. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. Int. J. Coal Geol. 122, 50–60. https://doi.org/10.1016/j.coal.2013.12.011.spa
dc.relation.referencesDonaldson, K., Stone, V., Clouter, A., Renwick, L., Macnee, W., 2001. Ultrafine particles. Occup. Environ. Med. 58, 211–216. https://doi.org/10.1136/oem.58.3.211.spa
dc.relation.referencesEhn, M., Thornton, J.A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L.B., Jørgensen, S., Kjaergaard, H.G., Canagaratna, M., Maso, M.D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.M., Kulmala, M., Worsnop, D.R., Wildt, J., Mentel, T.F., 2014. A large source of low-volatility secondary organic aerosol. Nature. 506, 476–479. https://ezproxy.cuc.edu.co:2067/10.1038/nature13032.spa
dc.relation.referencesFeng, B., Li, L., Xu, H., Wang, T., Wu, R., Chen, J., Zhang, Y., Liu, S., Ho, S.S.H., Huang, W., 2019. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. J. Environ. Sci. 77, 11–19. https://doi.org/10.1016/j.jes.2017.12.025.spa
dc.relation.referencesFernández-Camacho, R., Rodríguez, S., de la Rosa, J., Sánchez de la Campa, A.M., Alastuey, A., Querol, X., González-Castanedo, Y., Garcia-Orellana, I., Nava, S., 2012. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. Atmos. Environ. 61, 507–517. https://doi.org/10.1016/j.atmosenv.2012.08.003.spa
dc.relation.referencesFleischer, N.L., Merialdi, M., van Donkelaar, A., Vadillo-Ortega, F., Martin, R.V., Betran, A.P., Souza, J.P., O’Neill, M.S., 2014. Outdoor air pollution, preterm birth, and low birth weight: Analysis of the world health organization global survey on maternal and perinatal health. Environ. Health Perspect. 122 (4), 425–430. https://doi.org/10.1289/ehp.1306837.spa
dc.relation.referencesForti, L., Jeuland, N., Raux, S., Pasquereau, M., 2005. Analysis of the particulates emitted by internal combustion engines. Oil Gas Sci. Technol 60 (6), 995–1011. https://doi.org/10.2516/ogst:2005070.spa
dc.relation.referencesGao, R., Sang, N., 2020. Quasi-ultrafine particles promote cell metastasis via HMGB1-mediated cancer cell adhesion. Environ. Pollut. 256, 113390. https://doi.org/10.1016/j.envpol.2019.113390.spa
dc.relation.referencesGao, D., Ripley, S., Weichenthal, S., Godri Pollitt, K.J., 2020. Ambient particulate matter oxidative potential: Chemical determinants, associated health effects, and strategies for risk management. Free Radic. Biol. Med. 151, 7–25. https://doi.org/10.1016/j.freeradbiomed.2020.04.028.spa
dc.relation.referencesGarcia, K.O., Teixeira, E.C., Agudelo-Castañeda, D.M., Braga, M., Alabarse, P.G., Wiegand, F., Kautzmann, R.M., Silva, L.F., 2014. Assessment of nitro-polycyclic aromatic hydrocarbons in pm1 near an area of heavy-duty traffic. Sci. Total Environ. 479-480, 57–65. https://doi.org/10.1016/j.scitotenv.2014.01.126.spa
dc.relation.referencesGasparotto, J., Chaves, P.R., Da Boit, M.K., Da Rosa-Siva, H., Bortolin, R., Silva, L.F.O., Rabelo, T., Da Silva, J., Da Silva, F., Nordin, A., Soares, K., Borges, M., Gelain, D., Moreira, J., 2018. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotoxicol. Environ. Saf. 165, 44–51. https://doi.org/10.1016/j.ecoenv.2018.08.097.spa
dc.relation.referencesGasparotto, J., Da Boit, M.K., 2020. Coal as an energy source and its impacts on human health. Energy Geoscience https://doi.org/10.1016/j.engeos.2020.07.003 In press. Gasparotto, J., Rodrigues, C.P., Da Boit, M.K., Silva, O.L.F., Gelain, D.P., Fonseca, M.J.C., 2019. Obesity associated with coal ash inhalation triggers systemic inflammation and oxidative damage in the hippocampus of rats. Food Chem. Toxicol. 133, 110766. https://doi.org/10.1016/j.fct.2019.110766.spa
dc.relation.referencesGoel, A., Kumar, P., 2015. Characterisation of nanoparticle emissions and exposure at traffic intersections through fast-response mobile and sequential measurements. Atmos. Environ. 107, 374–390. https://doi.org/10.1016/j.atmosenv.2015.02.002.spa
dc.relation.referencesGómez-Ugalde, R., 2003. Efectos de la contaminación atmosférica en poblaciones de pequeños roedores silvestres (Microtus mexicanus, Peromyscus Melanotis y Peromiscus Difficilis) en México. D. F. Ph.D. Thesis. Universitat de Barcelona, p. 415. https://core.ac.uk/download/pdf/19919452.pdf.spa
dc.relation.referencesGonzález, L.T., Longoria Rodríguez, F.E., Sánchez-Domínguez, M., Cavazos, A., LeyvaPorras, C., Silva-Vidaurri, L.G., Acuña Askar, K., Kharissov, B.I., Villareal Chiu, J.F., Alfaro Barbosa, J.M., 2017. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 196, 8–22. https://doi.org/10.1016/j.atmosres.2017.05.009.spa
dc.relation.referencesGonzalez-Moragas, L., Roig, A., Laromaine, A., 2015. C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci. 219, 10–26. https://doi.org/10.1016/j.cis.2015.02.001.spa
dc.relation.referencesGrana, M., Toschi, N., Vicentini, L., Pietroiusti, A., Magrini, A., 2017. Exposure to ultrafine particles in different transport modes in the city of Rome. Environ. Pollut. 228, 201–210. https://doi.org/10.1016/j.envpol.2017.05.032.spa
dc.relation.referencesGuo, L., Johnson, G.R., Hofmann, W., Wang, H., Morawska, L., 2019. Deposition of ambient ultrafine particles in the respiratory tract of children: a novel experimental method and its application. J. Aerosol Sci. 139, 105465. https://doi.org/10.1016/j.jaerosci.2019.105465.spa
dc.relation.referencesHabre, R., Zhou, H., Eckel, S.P., Enebish, T., Fruin, S., Bastain, T., Rappatort, E., Gilliland, F., 2018. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. Environ. Int. 118, 48–59. https://doi.org/10.1016/j.envint.2018.05.031.spa
dc.relation.referencesHEI, 2013. Understanding the Health Effects of Ambient Ultrafine Particles. HEI Review Panel on Ultrafine Particles. HEI Perspectives 3. Health Effects Institute (HEI) https://www.healtheffects.org/system/files/Perspectives3.pdf.spa
dc.relation.referencesHeusinkveld, H.J., Wahle, T., Campbell, A., Westerink, R.H.S., Tran, L., Johnston, H., Stone, V., Cassee, F.R., Schins, R.P.F., 2016. Neurodegenerative and neurological disorders by small inhaled particles. NeuroToxicology 56, 94–106. https://doi.org/10.1016/j.neuro.2016.07.007.spa
dc.relation.referencesHofman, J., Samson, R., Joosen, S., Blust, R., Lenaerts, S., 2018. Cyclist exposure to black carbon, ultrafine particles and heavy metals: An experimental study along two commuting routes near Antwerp. Belgium. Environ. Res. 164, 530–538. https://doi.org/10.1016/j.envres.2018.03.004.spa
dc.relation.referencesIslam, N., Rabha, S., Silva, L.F.O., Saikia, B.K., 2019. Air quality and PM10-associated polyaromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environ. Geochem. Health 41, 2039–2053. https://doi.org/10.1007/s10653-019-00256-z.spa
dc.relation.referencesJantzen, K., Møller, P., Karottki, D.G., Olsen, Y., Bekö, G., Clausen, G., Hersoug, L.G., Loft, S., 2016. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells. Toxicology 359-360, 11–18. https://doi.org/10.1016/j.tox.2016.06.007.spa
dc.relation.referencesJeong, C.H., Traub, A., Evans, G.J., 2017. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos. Environ. 155, 46–52. https://doi.org/10.1016/j.atmosenv.2017.02.015.spa
dc.relation.referencesDe Jesus, A.L., Rahman, M.M., Mazaheri, M., Thompson, H., Knibbs, L.D., Jeong, C., Evans, G., Nei, W., Ding, A., Liping, Q., Li, L., Portin, H., Niemi, J.V., Timonen, H., Luoma, K., Petäjä, T., Kulmala, M., Kowalski, M., Peters, A., Cyrys, J., Ferrero, L., Manigrasso, M., Avino, P., Buonano, G., Reche, C., Querol, X., Beddows, D., Harrison, R.M., Sowlat, M.H., Sioutas, C., Morawska, L., 2019. Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other? Environ. Int. 129, 118–135. https://doi.org/10.1016/j.envint.2019.05.021.spa
dc.relation.referencesJones, A.M., Harrison, R.M., 2016. Emission of ultrafine particles from the incineration of municipal solid waste: A review. Atmos. Environ. 140, 519–528. https://doi.org/10.1016/j.atmosenv.2016.06.005.spa
dc.relation.referencesKecorius, S., Kivekäs, N., Kristensson, A., Tuch, T., Covert, D.S., Birmili, W., Lihavainen, H., Hyvärinen, A.P., Martinsson, J., Sporre, M.K., Swietlicki, E., Wiedensohler, A., Ulevicius, V., 2016. Significant increase of aerosol number concentrations in air masses crossing a densely trafficked sea area. Oceanologia 58 (1), 1–12. https://doi.org/10.1016/j.oceano.2015.08.001.spa
dc.relation.referencesKelly, F.J., Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60, 504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039.spa
dc.relation.referencesKeuken, M.P., Moerman, M., Zandveld, P., Henzing, J.S., 2015. Total and size-resolved particle number and black carbon concentrations near an industrial area. Atmos. Environ. 122, 196–205. https://doi.org/10.1016/j.atmosenv.2015.09.047.spa
dc.relation.referencesKim, K.H.H., Jahan, S.A., Kabir, E., Brown, R.J.C.C., 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71–80. https://doi.org/10.1016/j.envint.2013.07.019.spa
dc.relation.referencesKim, H.L., Han, J., Lee, S.M., Kwon, H.B., Hwang, J., Kim, Y.J., 2018. MEMS-based particle detection system for measuring airborne ultrafine particles. Sens. Actuator A. Phys. 283, 235–244. https://doi.org/10.1016/j.sna.2018.09.060.spa
dc.relation.referencesKlaassen, C.D., 2013. Casarett and Doull’s: Toxicology, The basic science of poison (English Editon). Mc Graw Hill Education – Medical, USA, pp. 525–907 ISBN: 978-0-07-176922-8.spa
dc.relation.referencesKoçak, M., Mihalopoulos, N., Kubilay, N., 2007. Contributions of natural sources to high PM10 and PM2.5 events in the eastern Mediterranean. Atmos. Environ. 41 (18), 3806–3818. https://doi.org/10.1016/j.atmosenv.2007.01.009.spa
dc.relation.referencesKumar, P., Robins, A., Vardoulakis, S., Britter, R., 2010. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos. Environ. 44 (39), 5035–5052. https://doi.org/10.1016/j.atmosenv.2010.08.016.spa
dc.relation.referencesKronbauer, M.A., Izquierdo, M., Dai, S., Wannders, F.B., Wagner, N.J., Mastalerz, M., Hower, J.C., Oliverira, M.L.S., Taffarel, S.R., Bizani, D., Silva, L.F.O., 2013. Geochemistry of ultrafine and nano-compounds in coal gasification ashes: A synoptic view. Sci. Total Environ. 456-457, 95–103. https://doi.org/10.1016/j.scitotenv.2013.02.066.spa
dc.relation.referencesKumar, P., Ketzel, M., Vardoulakis, S., Pirjola, L., Britter, R., 2011. Dynamics and dispersión modelling of nanoparticles from road traffic in the urban atmospheric environment-A review. J. Aerosol Sci. 42 (9), 580–603. https://doi.org/10.1016/j.jaerosci.2011.06.001.spa
dc.relation.referencesKumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R.M., Norford, L., Britter, R., 2014. Ultrafine particles in cities. Environ. Int. 66, 1–10. https://doi.org/10.1016/j.envint.2014.01.013.spa
dc.relation.referencesKumar, P., Wiedensohler, A., Birmili, W., Quincey, P., Hallquist, M., 2016. Ultrafine Particles Pollution and Measurements. Compr. Anal. Chem. 73, 369–390. https://doi.org/10.1016/bs.coac.2016.04.004.spa
dc.relation.referencesKumar, P., Patton, A.P., Durant, J.L., Frey, H.C., 2018. A review of factors impacting exposure to PM2.5, ultrafine particles and black carbon in Asian transport microenvironments. Atmos. Environ. 187, 301–316. https://doi.org/10.1016/j.atmosenv.2018.05.046.spa
dc.relation.referencesKwon, H.S., Ryu, M.H., Carlsten, C., 2020. Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 52 (3), 318–328. https://doi.org/10.1038/s12276-020-0405-1.spa
dc.relation.referencesLandkocz, Y., Ledoux, F., André, V., Cazier, F., Genevray, P., Dewaele, D., Martin, P.J., Lepers, C., Verdin, A., Courcot, L., Boushina, S., Sichel, F., Gualtieri, M., Shirali, P., Courcot, D., Billet, S., 2017. Fine and ultrafine atmospheric particulate matter at a multiinfluenced urban site: Physicochemical characterization, mutagenicity and cytotoxicity. Environ. Pollut. 221, 130–140. https://doi.org/10.1016/j.envpol.2016.11.054.spa
dc.relation.referencesLanzinger, S., Schneider, A., Breitner, S., Stafoggia, M., Erzen, I., Dostal, M., Pastorkova, A., Bastian, S., Cyrys, J., Zscheppang, A., Kolodnitska, T., Peters, A., Mykhalchuk, B., 2016. Associations between ultrafine and fine particles and mortality in five central European cities - Results from the UFIREG study. Environ. Int. 88, 44–52. https://doi.org/10.1016/j.envint.2015.12.006.spa
dc.relation.referencesLavigne, E., Lima, I., Hatzopoulou, M., Van Ryswyk, K., Decou, M.L., Luo, W., van Donkelaar, A., Martin, R.V., Chen, H., Stieb, D.M., Crighton, E., Gasparrini, A., Elten, M., Yasseen III, A.S., Burnett, R.T., Walker, M., Weichenthal, S., 2019. Spatial variations in ambient ultrafine particle concentrations and risk of congenital heart defects. Environ. Int. 130, 104953. https://doi.org/10.1016/j.envint.2019.104953.spa
dc.relation.referencesLee, W., Bell, M.L., Gasparrini, A., Armstrong, B.G., Sera, F., Hwang, S., Lavigne, E., Zanobetti, A., Coelho, M.S.Z.S., Saldiva, P.H.N., Osorio, S., Tobias, A., Zeka, A., Goodman, P.G., Forsberg, B., Rocklöv, J., Hashizume, M., Honda, Y., Guo, Y.L.L., Seposo, X., Dung, D.V., Dang, T.N., Tong, S., Guo, Y., Kim, H., 2017. Mortality burden of diurnal temperatura range and its temporal changes : A multi-country study. Environ. Int. 110, 123–130. https://doi.org/10.1016/j.envint.2017.10.018.spa
dc.relation.referencesLeón-Mejía, G., Silva, L.F., Civeira, M.S., Oliveira, M.L.S., Machado, M., Villela, I.V., Hartmann, A., Premoli, S., Corrêa, D.S., Silva, L., Henriques, J.A.P., 2016. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ. Sci. Pollut. Res. 23, 24019–24031. https://ezproxy.cuc.edu.co:2067/10.1007/s11356-016-7623-z.spa
dc.relation.referencesLeón-Mejía, G., Machado, M.N., Okuro, R.T., Silva, L.F., Telles, C., Dias, J., Niekraszewicz, L., Da Silva, J., Henriques, J.A.P., Zin, W.A., 2018. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci. Total Environ. 625, 589–599. https://doi.org/10.1016/j.scitotenv.2017.12.283.spa
dc.relation.referencesLi, Y., Yang, M., Meng, T., Niu, Y., Dai, Y., Zhang, L., Zheng, X., Jalava, P., Dong, G., Gao, W., Zheng, Y., 2020. Oxidative stress induced by ultrafine carbon black particles can elicit apoptosis in vivo and vitro. Sci. Total Environ. 709, 135802. https://doi.org/10.1016/j.scitotenv.2019.135802.spa
dc.relation.referencesLiati, A., Schreiber, D., Arroyo Rojas Dasilva, Y., Dimopoulos Eggenschwiler, P., 2018. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective. Environ. Pollut. 239, 661–669. https://doi.org/10.1016/j.envpol.2018.04.081.spa
dc.relation.referencesLiu, J.Y., Hsiao, T.C., Lee, K.Y., Chuang, H.C., Cheng, T.J., Chuang, K.J., 2018. Association of ultrafine particles with cardiopulmonary health among adult subjects in the urban areas of northern Taiwan. Sci. Total Environ. 627, 211–215. https://doi.org/10.1016/j.scitotenv.2018.01.218.spa
dc.relation.referencesLopes, M., Russo, A., Monjardino, J., Gouveia, C., Ferreira, F., 2019. Monitoring of ultrafine particles in the surrounding urban area of a civilian airport. Atmos. Pollut. Res. 10 (5), 1454–1463. https://doi.org/10.1016/j.apr.2019.04.002.spa
dc.relation.referencesLouis, C., Liu, Y., Tassel, P., Perret, P., Chaumond, A., André, M., 2016. PAH, BTEX, carbonyl compound, black-carbon, NO2 and ultrafine particle dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline passenger cars. Atmos. Environ. 141, 80–95. https://doi.org/10.1016/j.atmosenv.2016.06.055.spa
dc.relation.referencesLü, S., Zhang, R., Yao, Z., Yi, F., Ren, J., Wu, M., Feng, M., Wang, Q., 2012. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere. J. Environ. Sci. 24 (5), 882–890. https://doi.org/10.1016/S1001-0742(11)60870-X.spa
dc.relation.referencesLü, S., Hao, X., Liu, D., Wang, Q.Q., Zhang, W., Liu, P., Zhang, R., Yu, S., Pan, R., Wu, M., Yonemochi, S., Wang, Q., 2016. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion. Atmos. Res. 169, 17–23. https://doi.org/10.1016/j.atmosres.2015.09.020.spa
dc.relation.referencesLuengo-Oroz, J., Reis, S., 2019. Assessment of cyclists’ exposure to ultrafine particles along alternative commuting routes in Edinburgh. Atmos. Pollut. Res. 10 (4), 1148–1158. https://doi.org/10.1016/j.apr.2019.01.020.spa
dc.relation.referencesLundborg, M., Johard, U., Låstbom, L., Gerde, P., Camner, P., 2001. Human alveolar macrophage phagocytic function is impaired by aggregates of ultrafine carbon particles. Environ. Res. 86 (3), 244–253. https://doi.org/10.1006/enrs.2001.4269.spa
dc.relation.referencesMa, N., Birmili, W., 2015. Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere. Sci Total Environ. 512-513, 154–166. https://doi.org/10.1016/j.scitotenv.2015.01.009.spa
dc.relation.referencesMagalhaes, S., Baumgartner, J., Weichenthal, S., 2018. Impacts of exposure to black carbon, elemental carbon, and ultrafine particles from indoor and outdoor sources on blood pressure in adults: A review of epidemiological evidence. Environ. Res. 161, 345–353. https://doi.org/10.1016/j.envres.2017.11.030.spa
dc.relation.referencesMaji, S., Ahmed, S., Siddiqui, W.A., Ghosh, S., 2017. Short term effects of criteria air pollutants on daily mortality in Delhi. India. Atmos. Environ. 150, 210–219. https://doi.org/10.1016/j.atmosenv.2016.11.044.spa
dc.relation.referencesMarabini, L., Ozgen, S., Turacchi, S., Aminti, S., Arnaboldi, F., Lonati, G., Fermo, P., Corbella, L., Valli, G., Bernardoni, V., Dell’Acqua, M., Vecchi, R., Becagli, S., Caruso, D., Corrado, G.L., Marinovich, M., 2017. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 820, 39–46. https://doi.org/10.1016/j.mrgentox.2017.06.001.spa
dc.relation.referencesMarimon-Bolívar, W., Tejeda-Benítez, L.P., Núñez-Avilés, C.A., De Léon-Pérez, D.D., 2019. Evaluation of the in vivo toxicity of green magnetic nanoparticles using Caenorhabditis elegans as a biological model. Environ. Nanotechnol. Monit. Manag. 12, 100253. https://doi.org/10.1016/j.enmm.2019.100253.spa
dc.relation.referencesMartinello, K., Oliveira, M., Molossi, F., Ramos, C., Teixeira, E., Kautzmann, R., Silva, L.F., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 470-471, 444–452. https://doi.org/10.1016/j.scitotenv.2013.10.007.spa
dc.relation.referencesMartins, V., Correia, C., Cunha-Lopes, I., Faria, T., Diapouli, E., Manousakas, M.I., Eleftheriadis, K., Almeida, S.M., 2021. Chemical characterisation of particulate matter in urban transport modes. J. Environ. Sci. 100, 51–61. https://doi.org/10.1016/j.jes.2020.07.008.spa
dc.relation.referencesMiller, B.G., 2011. 9 - Emissions Control Strategies for Power Plants. In: Miller, B.G. (Ed.), Clean Coal Engineering Technology. Elsevier, Amsterdam, pp. 375–481 https://doi.org/10.1016/b978-1-85617-710-8.00009-1.spa
dc.relation.referencesMiller, M.R., Shaw, C.A., Langrish, J.P., 2012. From particles to patients: Oxidative stress and the cardiovascular effects of air pollution. Future Cardiol. 8 (4), 577–602. https://doi.org/10.2217/fca.12.43.spa
dc.relation.referencesMishra, R.K., Shukla, A., Parida, M., Pandey, G., 2016. Urban roadside monitoring and prediction of CO, NO2 and SO2 dispersion from on-road vehicles in megacity Delhi. Transp. Res. D Transp. Environ. 46, 157–165. https://doi.org/10.1016/j.trd.2016.03.019.spa
dc.relation.referencesMøller, K.L., Brauer, C., Mikkelsen, S., Bonde, J.P., Loft, S., Helweg-Larsen, K., Thygesen, L.C., 2020. Cardiovascular disease and long-term occupational exposure to ultrafine particles: A cohort study of airport workers. Int. J. Hyg. Environ. Health 223 (1), 214–219. https://doi.org/10.1016/j.ijheh.2019.08.010.spa
dc.relation.referencesMorawska, L., Ristovski, Z., Jayaratne, E.R., Keogh, D.U., Ling, X., 2008. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 42 (35), 8113–8138. https://doi.org/10.1016/j.atmosenv.2008.07.050.spa
dc.relation.referencesMorris-Schaffer, K., Sobolewski, M., Welle, K., Conrad, K., Yee, M., O’Reilly, M.A., CorySlechta, D.A., 2018. Cognitive flexibility deficits in male mice exposed to neonatal hyperoxia followed by concentrated ambient ultrafine particles. Neurotoxicol. Teratol. 70, 51–59. https://doi.org/10.1016/j.ntt.2018.10.003.spa
dc.relation.referencesMuñoz-Salazar, J.I., Raga, G.B., Yakobi-Hancock, J., Kim, J.S., Rosas, D., Caudillo, L., AlvarezOspina, H., Ladino, L.A., 2020. Ultrafine aerosol particles in the western Caribbean: A first case study in Merida. Atmos. Pollut. Res. 11 (10), 1767–1775. https://doi.org/10.1016/j.apr.2020.07.008.spa
dc.relation.referencesNho, R., 2020. Pathological effects of nano-sized particles on the respiratory system. Nanomedicine : N. B.M. 29, 102242. https://doi.org/10.1016/j.nano.2020.102242.spa
dc.relation.referencesNyarku, M., Buonanno, G., Ofosu, F., Jayaratne, R., Mazaheri, M., Morawska, L., 2019. Schoolchildren’s personal exposure to ultrafine particles in and near Accra. Ghana. Environ. Int. 133. https://doi.org/10.1016/j.envint.2019.105223.spa
dc.relation.referencesOberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W., Cox, C., 2002. Extrapulmonary translocation of ultrafine carbon particles following wholebody inhalation exposure of rats. J. Toxicol. Environ. Health Part A. 65 (20), 1531–1543. https://doi.org/10.1080/00984100290071658.spa
dc.relation.referencesOhlwein, S., Kappeler, R., Kutlar Joss, M., Künzli, N., Hoffmann, B., 2019. Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int. J. Public Health 64, 447–449. https://doi.org/10.1007/s00038-019-01202-7.spa
dc.relation.referencesOliveira, M.L.S., Navarro, O.G., Crissien, T.J., Tutikian, B.F., Da Boit, K., Texeira, E.C., Cabello, J.J., Agudelo-Castañeda, D.M., Silva, L.F.O., 2017. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls. Environ. Res. 158, 450–455. https://doi.org/10.1016/j.envres.2017.07.002.spa
dc.relation.referencesOliveira, M.L.S., Izquierdo, M., Querol, X., Lieberman, R.N., Saikia, B.K., Silva, L.F.O., 2019a. Nanoparticles from Construction Wastes: A Problem to Health and the Environment. J. Clean. Prod. 219, 236–243. https://doi.org/10.1016/j.jclepro.2019.02.096.spa
dc.relation.referencesOliveira, M.L.S., Pinto, D., Tutikian, B.F., Da Boit, K., Saikia, B.K., Silva, L.F.O., 2019b. Pollution from uncontrolled coal fires: Continuous gaseous emissions and nanoparticles from coal mining industry. J. Clean. Prod. 215, 1140–1148. https://doi.org/10.1016/j.jclepro.2019.01.169.spa
dc.relation.referencesPaunescu, A.C., Casas, M., Ferrero, A., Pañella, P., Bougas, N., Beydon, N., Just, J., Lezmi, J., Ballester, F., Momas, I., 2019. Associations of black carbon with lung function and airway inflammation in schoolchildren. Environ. Int. 131, 104984. https://doi.org/10.1016/j.envint.2019.104984.spa
dc.relation.referencesPeralta, O., Ortínez-Alvarez, A., Basaldud, R., Santiago, N., Alvarez-Ospina, H., de la Cruz, K., Barrera, V., Espinosa, M.D.L.C., Saavedra, I., Castro, T., Martínez-Arroyo, A., Páramo, V.H., Ruíz-Suárez, L.G., Vazquez-Galvez, F.A., Gavilán, A., 2019. Atmospheric black carbon concentrations in Mexico. Atmos. Res. 230, 104626. https://doi.org/10.1016/j.atmosres.2019.104626.spa
dc.relation.referencesPétursdóttir, U., Kirkelund, G.M., Press-Kristensen, K., Hertel, O., Mikkelsen, T.N., 2018. Ultrafine particles in inhabited areas in the Arctic - From very low to high concentrations. Atmos. Pollut. Res. 9 (2), 299–308. https://doi.org/10.1016/j.apr.2017.10.008.spa
dc.relation.referencesPlatel, A., Privat, K., Talahari, S., Delobel, A., Dourdin, G., Gateau, E., Simar, S., Saleh, Y., Sotty, J., Antherieu, S., Canivet, L., Alleman, L.Y., Perdrix, E., Garçon, G., Denayer, F.O., Lo Guidice, J.M., Nesslany, F., 2020. Study of in vitro and in vivo genotoxic effects of air pollution fine (PM2.5-0.18) and quasi-ultrafine (PM0.18) particles on lung models. Sci. Total Environ 711, 134666. https://doi.org/10.1016/j.scitotenv.2019.134666.spa
dc.relation.referencesPourret, O., Hursthouse, A., 2019. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int. J. Environ. Res. Public Health 16 (22), 4446. https://doi.org/10.3390/ijerph16224446.spa
dc.relation.referencesPyo, J., Ock, Y., Jeong, D., Park, K., Lee, D., 2017. Development of filter-free particle filtration unit utilizing condensational growth: With special emphasis on high-concentration of ultrafine particles. Build. Environ. 112, 200–208. https://doi.org/10.1016/j.buildenv.2016.11.011.spa
dc.relation.referencesRamírez, O., de la Sánchez, C.A.M., Amato, F., Moreno, T., Silva, L.F.O., de la Rosa, J., 2019. Physicochemical Characterization and Sources of the Thoracic Fraction of Road Dust in a Latin American Megacity. Sci. Total Environ. 652, 434–446. https://doi.org/10.1016/j.scitotenv.2018.10.214.spa
dc.relation.referencesRamírez, O., Da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655. https://doi.org/10.1016/j.uclim.2020.100655.spa
dc.relation.referencesRengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., Nishigaki, I., 2015. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 5, 182–189. https://doi.org/10.1016/S2221-1691(15)30003-4.spa
dc.relation.referencesRibeiro, J., Flores, D., 2020. Occurrence, leaching and mobility of trace elements in a coal mining waste dump: the case of Douro Coalfield (Portugal). Energy Geoscience https://doi.org/10.1016/j.engeos.2020.09.005 In press.spa
dc.relation.referencesRibeiro, J., Daboit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013a. Extensive FE-SEM/ EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 452-453, 98–107. https://doi.org/10.1016/j.scitotenv.2013.02.010.spa
dc.relation.referencesRibeiro, J., Taffarel, S.R., Sampaio, C.H., Flores, D., Silva, L.F.O., 2013b. Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal. Int. J. Coal Geol. 109-110, 15–23. https://doi.org/10.1016/j.coal.2013.01.007.spa
dc.relation.referencesRizza, V., Stabile, L., Vistocco, D., Russi, A., Pardi, S., Buonanno, G., 2019. Effects of the exposure to ultrafine particles on heart rate in a healthy population. Sci. Total Environ. 650, 2403–2410. https://doi.org/10.1016/j.scitotenv.2018.09.385.spa
dc.relation.referencesRojas, J.C., Sánchez, N.E., Schneider, I., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419. https://doi.org/10.1016/j.uclim.2018.12.011.spa
dc.relation.referencesSade, M.Y., Novack, V., Ifergane, G., Horev, A., Kloog, I., 2015. Air pollution and ischemic stroke among young adults. Stroke 46 (12), 3348–3353. https://doi.org/10.1161/STROKEAHA.115.010992.spa
dc.relation.referencesSaha, P.K., Zimmerman, N., Malings, C., Hauryliuk, A., Li, Z., Snell, L., Subramanian, R., Lipsky, E., Apte, J.S., Robinson, A.L., Presto, A.A., 2019. Quantifying high-resolution spatial variations and local source impacts of urban ultrafine particle concentrations. Sci. Total Environ. 655, 473–481. https://doi.org/10.1016/j.scitotenv.2018.11.197.spa
dc.relation.referencesSaikia, B.K., Saikia, J., Rabha, S., Silva, L.F.O., Finkelman, R., 2018. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 9 (3), 863–875. https://doi.org/10.1016/j.gsf.2017.11.013.spa
dc.relation.referencesSanderson, P., Delgado-Saborit, J.M., Harrison, R.M., 2014. A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmos. Environ. 94, 353–365. https://doi.org/10.1016/j.atmosenv.2014.05.023.spa
dc.relation.referencesSantibáñez-Andrade, M., Quezada-Maldonado, E.M., Osornio-Vargas, Á., Sánchez-Pérez, Y., García-Cuellar, C.M., 2017. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis. Environ. Pollut. 229, 412–422. https://doi.org/10.1016/j.envpol.2017.06.019.spa
dc.relation.referencesSchneider, I.L., Teixeira, E.C., Silva, L.F., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic-impacted area. Atmos. Pollut. Res. 6, 877–885. https://doi.org/10.5094/APR.2015.097.spa
dc.relation.referencesSchneider, I.L., Teixeira, E.C., Agudelo-Castañeda, D., Silva, G., Balzaretti, N., Braga, M., Silva, L.F.O., 2016. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Sci. Total Environ. 541, 1151–1160. https://doi.org/10.1016/j.scitotenv.2015.09.142.spa
dc.relation.referencesSeigneur, C., 2019. Atmospheric Dispersion. Air Pollution: Concepts, Theory, and Applications. Cambridge University Press, pp. 95–124 https://doi.org/10.1017/9781108674614.006.spa
dc.relation.referencesSharma, S., Kumar, M.S., Parmar, A., Sachar, S., 2018. Chapter 18 – Understanding toxicity of nanomaterials in the environment: crucial tread for controlling the production, processing, and assessing the risk. Nanomater. Chromatogr., 467–500 https://doi.org/10.1016/B978-0-12-812792-6.00018-2.spa
dc.relation.referencesShukla, A., Bunkar, N., Kumar, R., Bhargava, A., Tiwari, R., Chaudhury, K., Goryacheva, I.Y., Mishra, P.K., 2019. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. Sci. Total Environ. 656, 760–777. https://doi.org/10.1016/j.scitotenv.2018.11.381.spa
dc.relation.referencesSilva, L.F.O., Da Boit, K., Sampaio, C.H., Jasper, A., Andrade, M.L., Kostova, I.J., Waanders, F.B., Henke, K.R., Hower, J.C., 2012a. The occurrence of hazardous volatile elements and nanoparticles in Bulgarian coal fly ashes and the effect on human health exposure. Sci. Total Environ. 416, 513–526. https://doi.org/10.1016/j.scitotenv.2011.11.012.spa
dc.relation.referencesSilva, L.F.O., Jasper, A., Andrade, M.L., Sampaio, C.H., Dai, S., Li, X., Li, T., Chen, W., Wang, X., Liu, H., Zhao, L., Hopps, S.G., Jewell, R.F., Hower, J.C., 2012b. Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. Sci. Total Environ. 419, 250–264. https://doi.org/10.1016/j.scitotenv.2011.12.069.spa
dc.relation.referencesSilva, L.F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020a. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776. https://doi.org/10.1016/j.chemosphere.2019.124776.spa
dc.relation.referencesSilva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C.H., 2020b. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822. https://doi.org/10.1016/j.chemosphere.2020.126822.spa
dc.relation.referencesSimkhovich, B.Z., Kleinman, M.T., Kloner, R.A., 2008. Air Pollution and Cardiovascular Injury: Epidemiology, Toxicology, and Mechanisms. J. Am. Coll. Cardiol. 52 (9), 719–726. https://doi.org/10.1016/j.jacc.2008.05.029.spa
dc.relation.referencesSinis, S.I., Gourgoulianis, K.I., Hatzoglou, C., Zarogiannis, S.G., 2019. Mechanisms of engineered nanoparticle induced neurotoxicity in Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 67, 29–34. https://doi.org/10.1016/j.etap.2019.01.010.spa
dc.relation.referencesSlezakova, K., de Oliveira Fernandes, E., Pereira, M.D.C., 2019. Assessment of ultrafine particles in primary schools: Emphasis on different indoor microenvironments. Environ. Pollut. 246, 885–895. https://doi.org/10.1016/j.envpol.2018.12.073.spa
dc.relation.referencesSong, H., Zhang, Y., Luo, M., Gu, J., Wu, M., Xu, D., Xu, G., Ma, L., 2019. Seasonal variation, sources and health risk assessment of polycyclic aromatic hydrocarbons in different particle fractions of PM2.5 in Beijing, China. Atmos. Pollut. Res. 10 (1), 105–114. https://doi.org/10.1016/j.apr.2018.06.012.spa
dc.relation.referencesSoppa, V.J., Shinnawi, S., Hennig, F., Sasse, B., Hellack, B., Kaminski, H., Quass, U., Schins, R.P.F., Kuhlbusch, T.A.J., Hoffmann, B., 2019. Effects of short-term exposure to fine and ultrafine particles from indoor sources on arterial stiffness – A randomized sham-controlled exposure study. Int. J. Hyg. Environ. Health 222 (8), 1115–1132. https://doi.org/10.1016/j.ijheh.2019.08.002.spa
dc.relation.referencesSrimuruganandam, B., Shiva Nagendra, S.M., 2011. Chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic. Sci. Total Environ. 409 (17), 3144–3157. https://doi.org/10.1016/j.scitotenv.2011.04.042.spa
dc.relation.referencesStacey, B., 2019. Measurement of ultrafine particles at airports: A review. Atmos. Environ. 198, 463–477. https://doi.org/10.1016/j.atmosenv.2018.10.041.spa
dc.relation.referencesStacey, B., Harrison, R.M., Pope, F., 2020. Evaluation of ultrafine particle concentrations and size distributions at London Heathrow Airport. Atmos. Environ. 222, 117148. https://doi.org/10.1016/j.atmosenv.2019.117148.spa
dc.relation.referencesStafoggia, M., Schneider, A., Cyrys, J., Samoli, E., Andersen, Z.J., Bedada, G.B., Bellander, T., Cattani, G., Eleftheriadis, K., Faustini, A., Hoffmann, B., Jacquemin, B., Katsouyanni, K., Massling, A., Pekkanen, J., Perez, N., Peters, A., Quass, U., Yli-Tuomi, T., Forastiere, F., 2017. Association Between Short-term Exposure to Ultrafine Particles and Mortality in Eight European Urban Areas. Epidemiology 28 (2), 172–180. https://doi.org/10.1097/EDE.0000000000000599.spa
dc.relation.referencesSun, J., Birmili, W., Hermann, M., Tuch, T., Weinhold, K., Spindler, G., Schladitz, A., Bastian, S., Löschau, G., Cyrys, J., Gu, J., Flentje, H., Briel, B., Asbach, C., Kaminski, H., Ries, L., Sohmer, R., Gerwig, H., Wirtz, K., Meinhardt, F., Schwerin, A., Bath, O., Ma, N., Wiedensohler, A., 2019. Variability of black carbon mass concentrations, submicrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations. Atmos. Environ. 202, 256–268. https://doi.org/10.1016/j.atmosenv.2018.12.029.spa
dc.relation.referencesSydbom, A., Blomberg, A., Parnia, S., Stenfors, N., Sandström, T., Dahle, S.E., 2001. Health effects of diesel exhaust emissions. Eur. Respir. J. 17, 733–746. https://doi.org/10.1183/09031936.01.17407330.spa
dc.relation.referencesThurston, G.D., Ito, K., Lall, R., 2011. A source apportionment of U.S. fine particulate matter air pollution. Atmos. Environ. 45 (24), 3924–3936. https://doi.org/10.1016/j.atmosenv.2011.04.070.spa
dc.relation.referencesTimbrell, J.A., 2009. Principles of Biochemical Toxicology. Fourth edition. Informa Healthcare USA, New York.spa
dc.relation.referencesTopinka, J., Milcova, A., Schmuczerova, J., Krouzek, J., Hovorka, J., 2013. Ultrafine particles are not major carriers of carcinogenic PAHs and their genotoxicity in size-segregated aerosols. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 754 (1-2), 1–6. https://doi.org/10.1016/j.mrgentox.2012.12.016.spa
dc.relation.referencesTran, P.T.M., Ngoh, J.R., Balasubramanian, R., 2020. Assessment of the integrated personal exposure to particulate emissions in urban micro-environments: A pilot study. Aerosol Air Qual Res. 20 (2), 341–357. https://10.4209/aaqr.2019.04.0201.spa
dc.relation.referencesVallero, D.A., 2011. 18 - Air Pollution: Atmospheric Wastes. In: Letcher, T.M., Vallero, D.A. (Eds.), Waste: A Handbook for Management. Elsevier, Amsterdam, pp. 243–264 https://doi.org/10.1016/B978-0-12-381475-3.10018-X.spa
dc.relation.referencesVan den Bossche, J., Peters, J., Verwaeren, J., Botteldooren, D., Theunis, J., De Baets, B., 2015. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmos. Environ. 105, 148–161. https://10.1016/j.atmosenv.2015.01.017.spa
dc.relation.referencesWahlang, B., Jin, J., Bier, J.I., Hardesty, J.E., Daly, E.F., Schnegelberger, R.D., Falkner, C.K., Prough, R.A., Kirpich, I.A., Cave, M.C., 2019. Mechanisms of environmental contributions to fatty liver disease. Curr. Environ. Health Rep. 6, 80–94. https://doi.org/10.1007/s40572-019-00232-w.spa
dc.relation.referencesWardoyo, A.Y.P., Juswono, U.P., Noor, J.A.E., 2018. Varied dose exposures to ultrafine particles in the motorcycle smoke cause kidney cell damages in male mice. Toxicol. Rep. 5, 383–389. https://doi.org/10.1016/j.toxrep.2018.02.014.spa
dc.relation.referencesWei, H., Feng, Y., Liang, F., Cheng, W., Wu, X., Zhou, R., Wang, Y., 2017. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter. Toxicology 380, 94–103. https://doi.org/10.1016/j.tox.2017.01.017.spa
dc.relation.referencesWeichenthal, S., Van Ryswyk, K., Goldstein, A., Shekarrizfard, M., Hatzopoulou, M., 2016. Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: A land use regression model. Environ. Pollut. 208, 241–248. https://10.1016/j.envpol.2015.04.011.spa
dc.relation.referencesWHO, 2006. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. World Health Organization (WHO) https://apps.who.int/iris/handle/10665/69477. (Accessed 30 September 2020).spa
dc.relation.referencesWong, B.S.E., Hu, Q., Baeg, G.H., 2017. Epigenetic modulations in nanoparticle-mediated toxicity. Food Chem. Toxicol. 109, 746–752. https://doi.org/10.1016/j.fct.2017.07.006.spa
dc.relation.referencesWu, T., Xu, H., Liang, X., Tang, M., 2019. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. Chemosphere 221, 708–726. https://doi.org/10.1016/j.chemosphere.2019.01.021.spa
dc.relation.referencesXia, M., Harb, H., Saffari, A., Sioutas, C., Chatila, T.A., 2018. A Jagged 1–Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles. J. Allergy Clin. Immunol. 142 (4), 1243–1256. https://doi.org/10.1016/j.jaci.2018.03.009.spa
dc.relation.referencesXiao, X., Cao, L., Wang, R., Shen, Z.X., Cao, Y.X., 2016. Airborne fine particulate matter alters the expression of endothelin receptors in rat coronary arteries. Environ. Pollut. 218, 487–496. https://doi.org/10.1016/j.envpol.2016.07.028.spa
dc.relation.referencesYadav, I.C., Linthoingambi, N.D., Kumar, V.S., Li, J., Zhang, G., 2018. Concentrations, sources and health risk of nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal. Sci. Total Environ. 643, 1013–1023. https://doi.org/10.1016/j.scitotenv.2018.06.265.spa
dc.relation.referencesYang, B., Li, X., Chen, D., Xiao, C., 2017a. Effects of fine air particulates on gene expresión in non-small-cell lung cancer. Adv. Med. Sci. 62 (2), 295–301. https://doi.org/10.1016/j.advms.2016.12.003.spa
dc.relation.referencesYang, L., Hou, X.Y.Y., Wei, Y., Thai, P., Chai, F., 2017b. Biomarkers of the health outcomes associated with ambient particulate matter exposure. Sci. Total Environ. 579, 1446–1459. https://doi.org/10.1016/j.scitotenv.2016.11.146.spa
dc.relation.referencesZamberland, D.C., Halmenschelager, P.T., Silva, L.F.O., Da Rocha, A., Rocha, J.B.T., 2020. Copper decreases associative learning and memory in Drosophila melanogaster. Sci. Total Environ 710, 135306. https://doi.org/10.1016/j.scitotenv.2019.135306.spa
dc.relation.referencesZhang, W., Lei, T., Lin, Z.Q., Zhang, H.S., Yang, D.F., Xi, Z.G., Chen, J.H., Wang, W., 2011. Pulmonary toxicity study in rats with PM10 and PM2.5: Differential responses related to scale and composition. Atmos. Environ. 45 (4), 1034–1041. https://doi.org/10.1016/j.atmosenv.2010.10.043.spa
dc.relation.referencesZhang, L., Guo, C., Jia, X., Xu, H., Pan, M., Xu, D., Shen, X., Zhang, J., Tan, J., Qian, H., Dong, C., Shi, Y., Zhou, X., Wu, C., 2018b. Personal exposure measurements of school- children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China. PLoS ONE 13 (4), e0193586. https://doi.org/10.1371/journal.pone.0193586.spa
dc.relation.referencesZhang, Y., Dong, S., Wang, H., Tao, S., Kiyama, R., 2016. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ. Pollut. 213, 809–824. https://doi.org/10.1016/j.envpol.2016.03.050.spa
dc.relation.referencesZhang, H.H., Li, Z., Liu, Y., Xinag, P., Cui, X.Y., Ye, H., Hu, B.L., Lou, L.P., 2018. Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. J. Zhejiang Univ. Sci B 19 (4), 317–326. https://doi.org/10.1631/jzus.B1700123.spa
dc.relation.referencesZhang, Y., Tu, B., Jiang, X., Xu, G., Liu, X., Tang, Q., Bai, L., Meng, P., Zhang, L., Qin, X., Zou, Z., Chen, C., 2019. Exposure to carbon black nanoparticles during pregnancy persistently damages the cerebrovascular function in female mice. Toxicology 422, 44–52. https://doi.org/10.1016/j.tox.2019.04.014.spa
dc.relation.referencesZhang, L., Yang, L., Zhou, Q., Zhang, X., Xing, W., Wei, Y., Hu, M., Zhao, L., Toriba, A., Hayakawa, K., Tang, N., 2020. Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. J. Environ. Sci. 88, 370–384. https://doi.org/10.1016/j.jes.2019.09.007.spa
dc.relation.referencesZhao, Y., Lin, Z., Jia, R., Li, G., Xi, Z., Wang, D., 2014. Transgenerational effects of trafficrelated fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. J. Hazardous Mater. 274, 106–114. https://doi.org/10.1016/j.jhazmat.2014.03.064.spa
dc.relation.referencesZhao, Y., Wang, F., Zhao, J., 2015. Size-resolved ultrafine particle deposition and Brownian coagulation from gasoline vehicle exhaust in an environmental test chamber. Environ. Technol. 49, 12153–12160. https://doi.org/10.1021/acs.est.5b02455.spa
dc.relation.referencesZhou, S., Yuan, Q., Li, W., Lu, Y., Zhang, Y., Wang, W., 2014. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. J. Environ. Sci. 26 (1), 205–213. https://doi.org/10.1016/S1001-0742(13) 60399-X.spa
dc.subject.proposalParticulate mattereng
dc.subject.proposalUltrafine particleseng
dc.subject.proposalAir pollutioneng
dc.subject.proposalToxicityeng
dc.subject.proposalMeasurement methodologieseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage15spa
dc.relation.citationstartpage1spa
dc.relation.citationissue1spa
dc.relation.citationvolume13spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

© 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.