Mostrar el registro sencillo del ítem

dc.contributor.authorAlanazi, Abdullahspa
dc.contributor.authorAlizadeh, Seyed Mehdispa
dc.contributor.authorNurgalieva, Karinaspa
dc.contributor.authorNesic, Slavkospa
dc.contributor.authorGrimaldo Guerrero, John Williamspa
dc.contributor.authorAbo-Dief, Hala M.spa
dc.contributor.authorEftekhari-Zadeh, Ehsanspa
dc.contributor.authornazemi, ehsanspa
dc.contributor.authorIgor, Narozhnyyspa
dc.date.accessioned2022-04-07T20:50:29Z
dc.date.available2022-04-07T20:50:29Z
dc.date.issued2022-01-27
dc.identifier.citationAlanazi, A.K.; Alizadeh, S.M.; Nurgalieva, K.S.; Nesic, S.; Grimaldo Guerrero, J.W.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Nazemi, E.; Narozhnyy, I.M. Application of Neural Network and Time-Domain Feature Extraction Techniques for Determining Volumetric Percentages and the Type of Two Phase Flow Regimes Independent of Scale Layer Thickness. Appl. Sci. 2022, 12, 1336. https://doi.org/10.3390/ app12031336spa
dc.identifier.issn2076-3417spa
dc.identifier.urihttps://hdl.handle.net/11323/9121spa
dc.description.abstractOne of the factors that significantly affects the efficiency of oil and gas industry equipment is the scales formed in the pipelines. In this innovative, non-invasive system, the inclusion of a dual-energy gamma source and two sodium iodide detectors was investigated with the help of artificial intelligence to determine the flow pattern and volume percentage in a two-phase flow by considering the thickness of the scale in the tested pipeline. In the proposed structure, a dual-energy gamma source consisting of barium-133 and cesium-137 isotopes emit photons, one detector recorded transmitted photons and a second detector recorded the scattered photons. After simulating the mentioned structure using Monte Carlo N-Particle (MCNP) code, time characteristics named 4th order moment, kurtosis and skewness were extracted from the recorded data of both the transmission detector (TD) and scattering detector (SD). These characteristics were considered as inputs of the multilayer perceptron (MLP) neural network. Two neural networks that were able to determine volume percentages with high accuracy, as well as classify all flow regimes correctly, were trained.eng
dc.format.extent13 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherMDPI Multidisciplinary Digital Publishing Institutespa
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.titleApplication of neural network and time-domain feature extraction techniques for determining volumetric percentages and the type of two phase flow regimes independent of scale layer thicknesseng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.3390/app12031336spa
dc.source.urlhttps://www.mdpi.com/2076-3417/12/3/1336spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.3390/app12031336spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeSwitzerlandspa
dc.relation.ispartofjournalApplied Sciencesspa
dc.relation.references1. Åbro, E.; Khoryakov, V.A.; Johansen, G.A.; Kocbach, L. Determination of Void Fraction and Flow Regime Using a Neural Network Trained on Simulated Data Based on Gamma-Ray Densitometry. Meas. Sci. Technol. 1999, 10, 619.spa
dc.relation.references2. Sattari, M.A.; Roshani, G.H.; Hanus, R. Improving the Structure of Two-Phase Flow Meter Using Feature Extraction and GMDH Neural Network. Radiat. Phys. Chem. 2020, 171, 108725. [CrossRef]spa
dc.relation.references3. Oliveira, D.F.; Nascimento, J.R.; Marinho, C.A.; Lopes, R.T. Gamma Transmission System for Detection of Scale in Oil Exploration Pipelines. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 784, 616–620. [CrossRef]spa
dc.relation.references4. Roshani, M.; Phan, G.T.; AliP, J.M.; Roshani, G.H.; Hanus, R.; Duong, T.; Corniani, E.; Nazemi, E.; KalmounE, M. Evaluation of Flow Pattern Recognition and Void Fraction Measurement in Two Phase Flow Independent of Oil Pipeline’s Scale Layer Thickness. Alex. Eng. J. 2021, 60, 1955–1966. [CrossRef]spa
dc.relation.references5. Alamoudi, M.; Sattari, M.; Balubaid, M.; Eftekhari-Zadeh, E.; Nazemi, E.; Taylan, O.; Kalmoun, E. Application of Gamma Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different Flow Regimes and Void Fractions Exist. Symmetry 2021, 13, 1198. [CrossRef]spa
dc.relation.references6. Roshani, G.H.; Nazemi, E.; Feghhi, S.A.; Setayeshi, S. Flow Regime Identification and Void Fraction Prediction in Two-Phase Flows Based on Gamma Ray Attenuation. Measurment 2015, 62, 25–32. [CrossRef]spa
dc.relation.references7. Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.; Peyvandi, R.G.; Setayeshi, S. Precise Void Fraction Measurement in Two-Phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation. Nucl. Eng. Technol. 2016, 48, 64–71. [CrossRef]spa
dc.relation.references8. Karami, A.; Roshani, G.H.; Salehizadeh, A.; Nazemi, E. The Fuzzy Logic Application in Volume Fractions Prediction of the Annular Three-Phase Flows. J. Nondestruct. Evaluation 2017, 36, 35. [CrossRef]spa
dc.relation.references9. Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH Neural Network Technique to Improve Measuring Precision of a Simplified Photon Attenuation Based Two-Phase Flowmeter. Flow Meas. Instrum. 2020, 75, 101804. [CrossRef]spa
dc.relation.references10. Sætre, C.; Tjugum, S.-A.; Johansen, G.A. Tomographic Segmentation in Multiphase Flow Measurement. Radiat. Phys. Chem. 2014, 95, 420–423. [CrossRef]spa
dc.relation.references11. Karami, A.; Roshani, G.H.; Khazaei, A.; Nazemi, E.; Fallahi, M. Investigation of Different Sources in Order to Optimize the Nuclear Metering System of Gas–Oil–Water Annular Flows. Neural Comput. Appl. 2018, 32, 3619–3631. [CrossRef]spa
dc.relation.references12. Mosorov, V.; Zych, M.; Hanus, R.; Sankowski, D.; Saoud, A. Improvement of Flow Velocity Measurement Algorithms Based on Correlation Function and Twin Plane Electrical Capacitance Tomography. Sensors 2020, 20, 306. [CrossRef] [PubMed]spa
dc.relation.references13. Salgado, C.; Brandão, L.; Conti, C.; Salgado, W. Density Prediction for Petroleum and Derivatives by Gamma-Ray Attenuation and Artificial Neural Networks. Appl. Radiat. Isot. 2016, 116, 143–149. [CrossRef]spa
dc.relation.references14. 14. Roshani, M.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Phan, N.H.; Tran, H.-N.; Nazemi, E. X-Ray Tube with Artificial Neural Network Model as a Promising Alternative for Radioi-Sotope Source in Radiation Based Two Phase Flowmeters. Appl. Radiat. Isot. 2020, 164, 109255.spa
dc.relation.references15. Biswal, J.; Pant, H.; Goswami, S.; Samantray, J.; Sharma, V.; Sarma, K. Measurement of Flow Rates of Water in Large Diameter Pipelines Using Radiotracer Dilution Method. Flow Meas. Instrum. 2018, 59, 194–200. [CrossRef]spa
dc.relation.references16. Candeias, J.; de Oliveira, D.; dos Anjos, M.; Lopes, R. Scale Analysis Using X-Ray Microfluorescence and Computed Radiography. Radiat. Phys. Chem. 2014, 95, 408–411. [CrossRef]spa
dc.relation.references17. Pelowitz, D.B. MCNP-X TM User’s Manual; Version 2.5.0. LA-CP-05e0369; Los Alamos National, Laboratory: Los Alamos, NM, USA, 2005.spa
dc.relation.references18. Nazemi, E.; Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.; Zadeh, E.E.; Fatehi, A. Optimization of a Method for Identifying the Flow Regime and Measuring Void Fraction in a Broad Beam Gamma-Ray Attenuation Technique. Int. J. Hydrog. Energy 2016, 41, 7438–7444. [CrossRef]spa
dc.relation.references19. Meric, I.; Johansen, G.A.; Mattingly, J.; Gardner, R. On the Ill-Conditioning of the Multiphase Flow Measurement by Prompt Gamma-Ray Neutron Activation Analysis. Radiat. Phys. Chem. 2014, 95, 401–404. [CrossRef]spa
dc.relation.references20. Holstad, M.B.; Johansen, G.A. Produced Water Characterization by Dual Modality Gamma-Ray Measurements. Meas. Sci. Technol. 2005, 16, 1007–1013. [CrossRef]spa
dc.relation.references21. Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [CrossRef]spa
dc.relation.references22. Hosseini, S.; Roshani, G.; Setayeshi, S. Precise Gamma Based Two-Phase Flow Meter Using Frequency Feature Extraction and only One Detector. Flow Meas. Instrum. 2020, 72, 101693. [CrossRef]spa
dc.relation.references23. Siavash, H.; Taylan, O.; Abusurrah, M.; Akilan, T.; Nazemi, E.; Eftekhari-Zadeh, E.; Bano, F.; Roshani, G.H. Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries. Polymers 2021, 13, 3647.spa
dc.relation.references24. Balubaid, M.; Sattari, M.A.; Taylan, O.; Bakhsh, A.A.; Nazemi, E. Applications of Discrete Wavelet Transform for Feature Extraction to Increase the Accuracy of Monitoring Systems of Liquid Petroleum Products. Math. 2021, 9, 3215. [CrossRef]spa
dc.relation.references25. Abdulrahman, B.; Sattari, M.A.; Taylan, O.; Nazemi, E. Application of Feature Extraction and Artificial Intelligence Techniques for Increasing the Accuracy of X-Ray Radiation Based Two Phase Flow Meter. Mathematics 2021, 9, 1227.spa
dc.relation.references26. Roshani, G.H.; Feghhi, S.A.H.; Mahmoudi-Aznaveh, A.; Nazemi, E.; Adineh-Vand, A. Precise volume fraction prediction in oilwater-gas multiphase flows by means of gamma-ray attenuation and artificial neural networks using one detector. Measurement 2014, 51, 34–41. [CrossRef]spa
dc.relation.references27. Saberinejad, H.; Keshavarz, A.; Payandehdoost, M.; Azmoodeh, M.R.; Batooei, A. Numerical study of heat transfer performance in a pipe partially filled with non-uniform porous media under Ltne Condition. Int. J. Num. Methods Heat Fluid Flow 2018, 28, 1845–1865. [CrossRef]spa
dc.relation.references28. Nazemi, E.; Feghhi, S.; Roshani, G.; Setayeshi, S.A.; Peyvandi, R.G. A radiation-based hydrocarbon two-phase flow meter for estimating of phase fraction independent of liquid phase density in stratified regime. Flow Meas. Instrum. 2015, 46, 25–32. [CrossRef]spa
dc.relation.references29. Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H. Investigation of using 60Co source and one detector for determining the flow regime and void fraction in gas-liquid two-phase flows. Flow Meas. Instrum. 2016, 50, 73–79. [CrossRef]spa
dc.relation.references30. Rouhi, S.; Xiros, N.; Sadeqi, S.; Ioup, J.; Sultan, C.; VanZwieten, J. CFD validation of the thermodynamic model of a compressed gaseous hydrogen storage tank. Proceeding of 5-6th Thermal and Fluids Engineering Conference (TFEC), Virtual, 26–28 May 2021.spa
dc.relation.references31. Roshani, G.H.; Nazemi, E.; Roshani, M.M. Flow regime independent volume fraction estimation in three-phase flows using dual-energy broad beam technique and artificial neural network. Neural Comput. Appl. 2016, 28, 1265–1274. [CrossRef]spa
dc.relation.references32. Roshani, G.; Nazemi, E.; Roshani, M. Usage of two transmitted detectors with optimized orientation in order to three phase flow me-tering. Measurement 2017, 100, 122–130. [CrossRef]spa
dc.relation.references33. Roshani, G.; Nazemi, E. Intelligent densitometry of petroleum products in stratified regime of two phase flows using gamma ray and neural network. Flow Meas. Instrum. 2017, 58, 6–11. [CrossRef]spa
dc.relation.references34. Roshani, G.; Nazemi, E.; Roshani, M. Intelligent recognition of gas-oil-water three-phase flow regime and determination of volume fraction using radial basis function. Flow Meas. Instrum. 2017, 54, 39–45. [CrossRef]spa
dc.relation.references35. Du, X.; Tian, W.; Pan, J.; Hui, B.; Sun, J.; Zhang, K.; Xia, Y. Piezo-phototronic effect promoted carrier separation in coaxial P-N junctions for self-powered photodetector. Nano Energy 2022, 92, 106694. [CrossRef]spa
dc.relation.references36. Karami, A.; Roshani, G.H.; Nazemi, E.; Roshani, S. Enhancing the performance of a dual-energy gamma ray based three-phase flow meter with the help of grey wolf optimization algorithm. Flow Meas. Instrum. 2018, 64, 164–172. [CrossRef]spa
dc.relation.references37. Roshani, G.H.; Roshani, S.; Nazemi, E.; Roshani, S. Online measuring density of oil products in annular regime of gas-liquid two phase flows. Measurement 2018, 129, 296–301. [CrossRef]spa
dc.relation.references38. Cai, T.; Dong, M.; Liu, H.; Nojavan, S. Integration of hydrogen storage system and wind generation in power systems under demand response program: A novel P-robust stochastic programming. Int. J. Hydrogen Energy 2022, 47, 443–458. [CrossRef]spa
dc.relation.references39. Roshani, G.; Hanus, R.; Khazaei, A.; Zych, M.; Nazemi, E.; Mosorov, V. Density and velocity determination for single-phase flow based on radiotracer technique and neural networks. Flow Meas. Instrum. 2018, 61, 9–14. [CrossRef]spa
dc.relation.references40. Charchi, N.; Li, Y.; Huber, M.; Kwizera, E.A.; Huang, X.; Argyropoulos, C.; Hoang, T. Small mode volume plasmonic film-coupled nanostar resonators. Nanoscale Adv. 2020, 2, 2397–2403. [CrossRef] [PubMed]spa
dc.relation.references41. Roshani, G.; Nazemi, E.; Roshani, M. Identification of flow regime and estimation of volume fraction independent of liquid phase density in gas-liquid two-phase flow. Prog. Nucl. Energy 2017, 98, 29–37. [CrossRef]spa
dc.relation.references42. Roshani, S.; Roshani, S. Two-Section Impedance Transformer Design and Modeling for Power Amplifier Applications. Appl. Comput. Electromagn. Soc. J. 2017, 32, 1042–1047.spa
dc.relation.references43. Lalbakhsh, A.; Alizadeh, S.M.; Ghaderi, A.; Golestanifar, A.; Mohamadzade, B.; Jamshidi, M.B.; Mandal, K.; Mohyuddin, W. A design of a dual-band bandpass ?lter based on modal analysis for modern communication systems. Electronics 2020, 9, 1770. [CrossRef]spa
dc.relation.references44. Liu, X.; Zheng, W.; Mou, Y.; Li, Y.; Yin, L. Microscopic 3D reconstruction based on point cloud data generated using defocused images. Measurement and Control 2021, 54, 1309–1318. [CrossRef]spa
dc.relation.references45. Pirasteh, A.; Roshani, S.; Roshani, S. Compact microstrip lowpass filter with ultrasharp response using a square-loaded mod-ified T-shaped resonator. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 1736–1746. [CrossRef]spa
dc.relation.references46. Ramtin, A.R.; Nain, P.; Menasche, D.S.; Towsley, D.; de Souza e Silva, E. Fundamental scaling laws of covert ddos attacks. Performance Evaluation 2021, 151, 102236. [CrossRef]spa
dc.relation.references47. Roshani, S.; Roshani, S. A compact coupler design using meandered line compact microstrip resonant cell (MLCMRC) and bended lines. Wireless Networks 2021, 27, 677–684. [CrossRef]spa
dc.relation.references48. Ma, Z.; Zheng, W.; Chen, X.; Yin, L. Joint embedding VQA model based on Dynamic Word Vector. PeerJ Comput. Sci. 2021, 7, e353. [CrossRef] [PubMed]spa
dc.relation.references49. Lalbakhsh, A.; Lotfi Neyestanak, A.A.; Naser-Moghaddasi, M. Microstrip hairpin bandpass filter using modified Minkowski fractal-shape for suppression of second harmonic. IEICE Trans. Electron. 2012, E95-C, 378–381. [CrossRef]spa
dc.relation.references50. Pourghebleh, B.; Aghaei Anvigh, A.; Ramtin, A.R.; Mohammadi, B. The importance of nature-inspired meta-heuristic algorithms for solving virtual machine consolidation problem in Cloud Environments. Cluster Comput. 2021, 24, 2673–2696. [CrossRef]spa
dc.relation.references51. Seyedi, M.; Taher, S.A.; Ganji, B.; Guerrero, J. A hybrid islanding detection method based on the rates of changes in voltage and active power for the Multi-Inverter Systems. IEEE Trans. Smart Grid 2021, 12, 2800–2811. [CrossRef]spa
dc.relation.references52. Roshani, S.; Roshani, S. Design of a very compact and sharp bandpass diplexer with bended lines for GSM and LTE applica-tions. AEU. Int. J. Electron. Commun. 2019, 99, 354–360. [CrossRef]spa
dc.relation.references53. Wang, K.; Wang, H.; Li, S. Renewable quantile regression for streaming datasets. Knowledge-Based Systems 2022, 235, 107675. [CrossRef]spa
dc.relation.references54. Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.M.; Alibakhshikenari, M.; Koziel, S. Design of a compact planar transmission line for miniaturized rat-race coupler with harmonics suppression. IEEE Access 2021, 9, 129207–129217. [CrossRef]spa
dc.relation.references55. Roshani, S.; Roshani, S.; Zarinitabar, A. A modified Wilkinson power divider with ultra harmonic suppression using open stubs and lowpass filters. Analog. Integr. Circuits Signal Process. 2019, 98, 395–399. [CrossRef]spa
dc.relation.references56. Wang, K.; Li, S. Robust distributed modal regression for massive data. Comput. Stat. Data Anal. 2021, 160, 107225. [CrossRef]spa
dc.relation.references57. Jamshidi, M.B.; Siahkamari, H.; Roshani, S.; Roshani, S. A compact Gysel power divider design using U-shaped and T-shaped reso-nators with harmonics suppression. Electromagnetics 2019, 39, 491–504. [CrossRef]spa
dc.relation.references58. Jamshidi, M.B.; Roshani, S.; Talla, J.; Roshani, S.; Peroutka, Z. Size reduction and performance improvement of a microstrip Wilkinson power divider using a hybrid design technique. Sci. Rep. 2021, 11, 7773. [CrossRef] [PubMed]spa
dc.relation.references59. Liu, K.; Ke, F.; Huang, X.; Yu, R.; Lin, F.; Wu, Y.; Ng, D.W. Deepban: A temporal convolution-based communication framework for dynamic WBANS. IEEE Trans. Commun. 2021, 69, 6675–6690. [CrossRef]spa
dc.relation.references60. Pirasteh, A.; Roshani, S.; Roshani, S. A modified class-F power amplifier with miniaturized harmonic control circuit. AEU Int. J. Electron. Commun. 2018, 97, 202–209. [CrossRef]spa
dc.relation.references61. Roshani, S.; Roshani, S. Design of a high efficiency class-F power amplifier with large signal and small signal measure-ments. Measurement 2020, 149, 106991. [CrossRef]spa
dc.relation.references62. Lalbakhsh, A.; Jamshidi, M.; Siahkamari, H.; Ghaderi, A.; Golestanifar, A.; Linhart, R.; Talla, J.; Simorangkir, R.B.; Mandal, K. A compact lowpass ?lter for satellite communication systems based on transfer function analysis. AEU-Int. J. Electron. Commun. 2020, 124, 153318. [CrossRef]spa
dc.relation.references63. Nazemi, B.; Rafiean, M. Forecasting House Prices in Iran Using GMDH. Int. J. Hous. Mark. Anal. 2021, 14, 555–568. [CrossRef]spa
dc.relation.references64. Roshani, S.; Roshani, S. Design of a compact LPF and a miniaturized Wilkinson power divider using aperiodic stubs with harmonic suppression for wireless applications. Wireless Networks 2019, 26, 1493–1501. [CrossRef]spa
dc.relation.references65. Lalbakhsh, A.; Afzal, M.U.; Esselle, K. Simulation-driven particle swarm optimization of spatial phase shifters. In Proceedings of the 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cairns, QLD, Australia, 19–23 September 2016.spa
dc.relation.references66. Hookari, M.; Roshani, S.; Roshani, S. High?efficiency balanced power amplifier using miniaturized harmonics suppressed coupler. Int. J. RF Microwave Comput.-Aided Eng. 2020, 30, e22252. [CrossRef]spa
dc.relation.references67. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S.L. Low-cost nonuniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas. IEEE Trans. Antennas Propagation 2020, 68, 3328–3335. [CrossRef]spa
dc.relation.references68. Pirasteh, A.; Roshani, S.; Roshani, S. Design of a miniaturized class F power amplifier using capacitor loaded transmission lines. Frequenz 2020, 74, 145–152. [CrossRef]spa
dc.relation.references69. Lalbakhsh, A.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Manda, K. All-metal wideband metasurface for near-?eld transformation of medium-to-high gain electromagnetic sources. Sci. Rep. 2021, 11, 1–9.spa
dc.relation.references70. Lotfi, S.; Roshani, S.; Roshani, S.; Gilan, M.S. Wilkinson power divider with band-pass filtering response and harmonics suppression using open and short stubs. Frequenz 2020, 74, 169–176. [CrossRef]spa
dc.relation.references71. Lalbakhsh, A.; Ghaderi, A.; Mohyuddin, W.; Simorangkir, R.B.V.B.; Bayat-Makou, N.; Ahmad, M.S.; Lee, G.H.; Kim, K.W. A Compact C-Band Bandpass Filter with an Adjustable Dual-Band Suitable for Satellite Communication Systems. Electronics 2020, 9, 1088. [CrossRef]spa
dc.relation.references72. Hookari, M.; Roshani, S.; Roshani, S. Design of a low pass filter using rhombus-shaped resonators with an analyticallc equivalent circuit. Turkish J. Electr. Eng. Comput. Sci. 2020, 28, 865–874. [CrossRef]spa
dc.relation.references73. Yadollahi, A.; Nazemi, E.; Zolfaghari, A.; Ajorloo, A.M. Application of artificial neural network for predicting the optimal mixture of radiation shielding concrete. Progress Nuclear Energy 2016, 89, 69–77. [CrossRef]spa
dc.relation.references74. Roshani, M.; Phan, G.; Faraj, R.H.; Phan, N.H.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Proposing a gamma radiation based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products. Neural Eng. Technol. 2021, 53, 1277–1283. [CrossRef]spa
dc.relation.references75. Wang, Y.; Cheng, H.; Hu, Q.; Liu, L.; Jia, L.; Gao, S.; Wang, Y. Pore structure heterogeneity of Wufeng-Longmaxi Shale, Sichuan Basin, China: Evidence from gas physisorption and multifractal geometries. J. Petroleum Sci. Eng. 2022, 208, 109313. [CrossRef]spa
dc.relation.references76. Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil-water three phase flows. Measurement 2021, 168, 108427. [CrossRef]spa
dc.relation.references77. Xu, G.F. Numerical simulation and factor analysis of petrochemical pipe erosion-corrosion failure. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 129, p. 012033.spa
dc.relation.references78. Dolgii, I.E. Methods to enhance oil recovery in the process of complex field development of the Yarega oil and titanium deposit. J. Min. Inst. 2017, 231, 263–297.spa
dc.relation.references79. Aleksandrov, A.N.; Kishchenko, M.A.; Van, T.N. Simulating the formation of wax deposits in wells using electric submersible pumps. In Advances in Raw Material Industries for Sustainable Development Goals; CRC Press: London, UK, 2021; pp. 283–295.spa
dc.relation.references80. Nguyen, V.T.; Rogachev, M.K.; Aleksandrov, A.N. A new approach to improving efficiency of gas-lift wells in the conditions of the formation of organic wax deposits in the dragon field. J. Pet. Explor. Prod. Technol. 2020, 10, 3663–3672. [CrossRef]spa
dc.relation.references81. Sandyga, M.S.; Struchkov, I.A.; Rogachev, M.K. Formation damage induced by wax deposition: Laboratory investigations and modeling. J. Pet. Explor. Prod. Technol. 2020, 10, 2541–2558. [CrossRef]spa
dc.relation.references82. Sultanbekov, R.; Islamov, S.; Mardashov, D.; Beloglazov, I.; Hemmingsen, T. Research of the influence of marine residual fuel composition on sedimentation due to incompatibility. J. Mar. Sci. Eng. 2021, 9, 1067. [CrossRef]spa
dc.relation.references83. Kashnikov, Y.A.; Ashikhmin, S.G.; Kukhtinskii, A.E.; Shustov, D.V. The relationship of fracture toughness coefficients and geophysical characteristics of rocks of hydrocarbon deposits. J. Min. Inst. 2020, 1, 241. [CrossRef]spa
dc.relation.references84. Karpikov, A.V.; Aliev, R.I.; Babyr, N.V. An analysis of the effectiveness of hydraulic fracturing at YS1 of the Northern field. In IOP Conference Series: Materials, Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 952, p. 012036.spa
dc.relation.references85. Belonogov, E.V.; Korovin, A.Y.; Yakovlev, A.A. Increase of the injectivity coefficient by dynamic development of injection wells. J. Min. Inst. 2019, 1, 238.spa
dc.relation.references86. Grigorev, M.B.; Tananykhin, D.S.; Poroshin, M.A. Sand management approach for a field with high viscosity oil. J. Appl. Eng. Sci. 2020, 18, 64–69. [CrossRef]spa
dc.relation.references87. Shagiakhmetov, A.M.; Podoprigora, D.G.; Terleev, A.V. The study of the dependence of the rheological properties of gelforming compositions on the crack opening when modeling their flow on a rotational viscometer. Period. Tche Quimica 2020, 17, 933–939. [CrossRef]spa
dc.relation.references88. Galkin, S.V.; Kochnev, A.A.; Zotikov, V.I. Predictive assessment of the effectiveness of radial drilling technology for the Bashkir production facilities of the Perm Territory fields. J. Min. Inst. 2019, 1, 238.spa
dc.relation.references89. Molchanov, A.A.; Ageev, P.G. Implementation of new technologies is a reliable way of extracting residual reserves of hydrocarbon deposits. J. Min. Inst. 2017, 1, 227.spa
dc.relation.references90. Prischepa, O.M.; Nefedov, Y.V.; Kochneva, O.E. Raw material base of hard-to-extract oil reserves of Russia (Matéria-prima base de reservas de óleo de difícil extração da Rússia). Periodico TCHE Quimica 2020, 17, 915–924.spa
dc.relation.references91. Morenov, V.; Leusheva, E.; Martel, A. Investigation of the fractional composition effect of the carbonate weighting agents on the rheology of the clayless drilling mud. Int. J. Eng. 2018, 31, 1152–1158.spa
dc.relation.references92. Nikitin, M.N.; Saychenko, L.A. The rheological properties of abnormally viscous oil. Pet. Sci. Technol. 2018, 36, 136–140. [CrossRef]spa
dc.relation.references93. Ghanbari, B. Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative. Math. Methods Appl. Sci. 2021, 44, 8759–8774. [CrossRef]spa
dc.relation.references94. Kharazmi, O.; Jahangard, S. A new family of lifetime distributions in terms of cumulative hazard rate function. Commun. Fac. Sci. Univ. Ankara Series A1Math. Stat. 2020, 69, 1–22. [CrossRef]spa
dc.relation.references95. Ghanbari, B. Chaotic behaviors of the prevalence of an infectious disease in a prey and predator system using fractional derivatives. Math. Methods Appl. Sci. 2021, 44, 9998–10013. [CrossRef]spa
dc.relation.references96. Kharazmi, O.; Saadatinik, A.; Jahangard, S. Odd hyperbolic cosine exponential-exponential (OHC-ee) distribution. Annals Data Sci. 2019, 6, 765–785. [CrossRef]spa
dc.relation.references97. Ghanbari, B. On novel nondifferentiable exact solutions to local fractional Gardner’s equation using an effective technique. Math. Method Appl. Sci. 2020, 44, 4673–4685. [CrossRef]spa
dc.relation.references98. Rashidisabet, H.; Thomas, P.J.; Ajilore, O.; Zulueta, J.; Moore, R.C.; Leow, A. A systems biology approach to the Digital behaviorome. Curr. Opin. Syst. Biol. 2020, 20, 8–16. [CrossRef]spa
dc.relation.references99. Nabti, A.; Ghanbari, B. Global Stability Analysis of a fractional SVEIR epidemic model. Math. Methods Appl. Sci. 2021, 44, 8577–8597. [CrossRef]spa
dc.relation.references100. Rezaei, T.; Aslmarand, S.M.; Snyder, R.; Khajavi, B.; Alsing, P.M.; Fanto, M.; Ahn, D.; Miller, W.A. Experimental realization of Schumacher’s information geometric Bell inequality. Physics Lett. A 2021, 405, 127444. [CrossRef]spa
dc.relation.references101. Ghanbari, B. A fractional system of delay differential equation with nonsingular kernels in modeling hand-foot-mouth disease. Adv. Diff. Eq. 2020, 2020. [CrossRef]spa
dc.relation.references102. Ghanbari, B. On approximate solutions for a fractional prey-predator model involving the Atangana-Baleanu derivative. Adv. Diff. Eq. 2020, 2020, 1–20. [CrossRef]spa
dc.relation.references103. Tian, J.; Liu, Y.; Zheng, W.; Yin, L. Smog prediction based on the deep belief - BP neural network model (DBN-BP). Urban Climate 2022, 41, 101078. [CrossRef]spa
dc.relation.references104. Daryayehsalameh, B.; Nabavi, M.; Vaferi, B. Modeling of CO2 capture ability of [bmim][bf4] ionic liquid using connectionist smart paradigms. Environ. Technol. Innov. 2021, 22, 101484. [CrossRef]spa
dc.relation.references105. Zhao, X.; Xia, H.; Pan, L.; Song, H.; Niu, W.; Wang, R.; Li, R.; Bian, X.; Guo, Y.; Qin, Y. Drought Monitoring over Yellow River Basin from 2003-2019 Using Reconstructed MODIS Land Surface Temperature in Google Earth Engine. Remote Sens. 2021, 13, 3748. [CrossRef]spa
dc.relation.references106. Etimita, O.O.; Beka, F.T. Heavy mineral analysis of Eocene Sands and sandstones of Nanka Formation, Cenozoic Niger delta petroleum province. Geol. Ecol. Landsc. 2019, 4, 251–256. [CrossRef]spa
dc.relation.references107. Singh, B.; Sihag, P.; Parsaie, A.; Angelaki, A. Comparative analysis of artificial intelligence techniques for the prediction of infiltration process. Geol. Ecol. Landsc. 2020, 5, 109–118. [CrossRef]spa
dc.relation.references108. Taylor, J.G. Neural Networks and Their Applications; John Wiley & Sons Ltd.: Brighton, UK, 1996.spa
dc.relation.references109. Gallant, A.R.; White, H. On Learning the Derivatives of an Unknown Mapping with Multilayer Feedforward Networks. Neural Networks 1992, 5, 129–138. [CrossRef]spa
dc.subject.proposalArtificial intelligenceeng
dc.subject.proposalFeature extractioneng
dc.subject.proposalScale thicknesseng
dc.subject.proposalTwo-phase floweng
dc.subject.proposalMLP neural networkeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage13spa
dc.relation.citationstartpage1spa
dc.relation.citationissue3spa
dc.relation.citationvolume12spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional (CC BY 4.0)