Mostrar el registro sencillo del ítem

dc.contributor.authorMorozova, Tatiana Victorovnaspa
dc.contributor.authorAlayi, Rezaspa
dc.contributor.authorGrimaldo Guerrero, John Williamspa
dc.contributor.authorSharifpur, Mohsenspa
dc.contributor.authorEbazadeh, Yaserspa
dc.date.accessioned2022-04-07T20:50:55Z
dc.date.available2022-04-07T20:50:55Z
dc.date.issued2022
dc.identifier.citation: Victorovna Morozova, T.; Alayi, R.; Grimaldo Guerrero, J.W.; Sharifpur, M.; Ebazadeh, Y. Investigation and Optimization of the Performance of Energy Systems in the Textile Industry by Using CHP Systems. Sustainability 2022, 14, 1551. https://doi.org/10.3390/su14031551spa
dc.identifier.issn2071-1050spa
dc.identifier.urihttps://hdl.handle.net/11323/9122spa
dc.description.abstractWith the general progression of small communities toward greater industrialization, energy consumption in this sector has increased. The continued growth of energy consumption seen in Iran, along with the low efficiency of production, transmission, and the distribution of energy, has led to the projection of an unfavorable future for this sector. The purpose of this study is to reduce fuel consumption and increase system efficiency by considering the optimal position of the turbine. In this regard, turbine modeling has been performed by considering different positioning scenarios. Afterward, the result from applying each scenario was compared with another scenario in terms of the parameters of electrical energy production, gas consumption, the final energy produced by the system, and the ratio of energy produced to overall gas consumption. After comparing different scenarios, considering all 4 parameters, Scenario 7 was selected as the most suitable positioning for gas turbine placement. Scenario 7 showed the highest gas consumption; of course, high power generation is the most desirable, the most reliable and, ultimately, the most profitable outcome of energy production. According to our results, the amount of electrical energy produced in the selected scenario is 4,991,160.3 kWh; the gas consumption in this case is 0.22972 kg/s.eng
dc.format.extent20 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherMDPI AGspa
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.titleInvestigation and optimization of the performance of energy systems in the textile industry by using chp systemseng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.3390/su14031551spa
dc.source.urlhttps://www.mdpi.com/2071-1050/14/3/1551spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.3390/su14031551spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeSwitzerlandspa
dc.relation.ispartofjournalSustainabilityspa
dc.relation.references1. Chu, X.; Yang, D.; Li, J. Sustainability assessment of combined cooling, heating, and power systems under carbon emission regulations. Sustainability 2019, 11, 5917. [Google Scholar] [CrossRef]spa
dc.relation.references2. Alayi, R.; Kasaeian, A.; Atabi, F. Thermal analysis of parabolic trough concentration pho-tovoltaic/thermal system for using in buildings. Environ. Prog. Sustain. Energy 2019, 38, 13220. [Google Scholar] [CrossRef]spa
dc.relation.references3. Ghorbani, B. Development of an Integrated Structure for the Tri-Generation of Power, Liquid Carbon Dioxide, and Medium Pressure team Using a Molten Carbonate Fuel Cell, a Dual Pressure Linde-Hampson Liquefaction Plant, and a Heat Recovery Steam Generator. Sustainability 2021, 13, 8347. [CrossRef]spa
dc.relation.references4. Argyrou, M.C.; Christodoulides, P.; Kalogirou, S.A. Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 2018, 94, 804–821. [CrossRef]spa
dc.relation.references5. Mirzaei, M.; Ahmadi, M.H.; Mobin, M.; Nazari, M.A.; Alayi, R. Energy, exergy and eco-nomics analysis of an ORC working with several fluids and utilizes smelting furnace gases as heat source. Therm. Sci. Eng. Prog. 2018, 5, 230–237. [CrossRef]spa
dc.relation.references6. Zhao, Y.; Liu, G.; Li, L.; Yang, Q.; Tang, B.; Liu, Y. Expansion devices for organic Rankine cycle (ORC) using in low temperature heat recovery: A review. Energy Convers. Manag. 2019, 199, 111944. [CrossRef]spa
dc.relation.references7. Chen, L.; Wang, Y.; Xie, M.; Ye, K.; Mohtaram, S. Energy and exergy analysis of two modified adiabatic compressed air energy storage (A-CAES) system for cogeneration of power and cooling on the base of volatile fluid. J. Energy Storage 2021, 42, 103009. [CrossRef]spa
dc.relation.references8. Li, B.; Wang, S.S. Thermo-economic analysis and optimization of a novel carbon dioxide based combined cooling and power system. Energy Convers. Manag. 2019, 199, 112048. [CrossRef]spa
dc.relation.references9. Yuan, J.; Wu, C.; Xu, X.; Liu, C. Multi-mode analysis and comparison of four different carbon dioxide-based combined cooling and power cycles for the distributed energy system. Energy Convers. Manag. 2021, 244, 114476. [CrossRef]spa
dc.relation.references10. Alayi, R.; Mohkam, M.; Seyednouri, S.R.; Ahmadi, M.H.; Sharifpur, M. Energy/economic analysis and optimization of on-grid photovoltaic system using CPSO algorithm. Sustainability 2021, 13, 12420. [CrossRef]spa
dc.relation.references11. Anvari, S.; Desideri, U.; Taghavifar, H. Design of a combined power, heating and cooling system at sized and undersized configurations for a reference building: Technoeconomic and topological considerations in Iran and Italy. Appl. Energy 2020, 258, 114105. [CrossRef]spa
dc.relation.references12. Adebayo, T.S.; Rjoub, H. A new perspective into the impact of renewable and nonrenewable energy consumption on environmental degradation in Argentina: A time–frequency analysis. Environ. Sci. Pollut. Res. 2021, 1–17. [CrossRef] [PubMed]spa
dc.relation.references13. Wang, Z.; Zhang, C.; Li, H.; Zhao, Y. A multi agent-based optimal control method for combined cooling and power systems with thermal energy storage. In Building Simulation; Tsinghua University Press: Beijing, China, 2021; Volume 14, pp. 1709–1723.spa
dc.relation.references14. Mughal, N.; Arif, A.; Jain, V.; Chupradit, S.; Shabbir, M.S.; Ramos-Meza, C.S.; Zhanbayev, R. The role of technological innovation in environmental pollution, energy consumption and sustainable economic growth: Evidence from South Asian economies. Energy Strategy Rev. 2022, 39, 100745. [CrossRef]spa
dc.relation.references15. Chong, C.T.; Van Fan, Y.; Lee, C.T.; Klemeš, J.J. Post COVID-19 ENERGY sustainability and carbon emissions neutrality. Energy 2021, 241, 122801. [CrossRef]spa
dc.relation.references16. Hoang, A.T. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Appl. Energy 2018, 231, 138–166. [CrossRef]spa
dc.relation.references17. Adebayo, T.S.; Rjoub, H. Assessment of the role of trade and renewable energy consumption on consumption-based carbon emissions: Evidence from the MINT economies. Environ. Sci. Pollut. Res. 2021, 28, 58271–58283. [CrossRef]spa
dc.relation.references18. Krishna, K.S.; Kumar, K.S. A review on hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2015, 52, 907–916. [CrossRef]spa
dc.relation.references19. Onar, O.C.; Khaligh, A. Chapter 2—Energy Sources. In Alternative Energy in Power Electronics; Rashid, M.H., Ed.; utterworthHeinemann: Boston, MA, USA, 2015; pp. 81–154.spa
dc.relation.references20. Adebayo, T.S.; Rjoub, H.; Akinsola, G.D.; Oladipupo, S.D. The asymmetric effects of renewable energy consumption and trade openness on carbon emissions in Sweden: New evidence from quantile-on-quantile regression approach. Environ. Sci. Pollut. Res. 2021, 29, 1875–1886. [CrossRef]spa
dc.relation.references21. Lu, H.; Huang, K.; Azimi, M.; Guo, L. Blockchain technology in the oil and gas industry: A review of applications, opportunities, challenges, and risks. IEEE Access 2019, 7, 41426–41444. [CrossRef]spa
dc.relation.references22. Fuel Shares of Total Primary Energy Supply. Available online: https://www.iea.org/publications/freepublications/publication/key-world-energy-statistics-2014.html (accessed on 20 September 2014).spa
dc.relation.references23. Odugbesan, J.A.; Rjoub, H. Relationship among economic growth, energy consumption, CO2 emission, and urbanization: Evidence from MINT countries. Sage Open 2020, 10, 2158244020914648. [CrossRef]spa
dc.relation.references24. Alayi, R.; Kumar, R.; Seydnouri, S.R.; Ahmadi, M.H.; Issakhov, A. Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system. Int. J. Low-Carbon Technol. 2021, 16, 570–576. [CrossRef]spa
dc.relation.references25. Wang, J.; Han, Z.; Guan, Z. Hybrid solar-assisted combined cooling, heating, and power systems: A review. Renew. Sustain. Energy Rev. 2020, 133, 110256. [CrossRef]spa
dc.relation.references26. Mokhatab, S.; Poe, W.A.; Mak, J.Y. Chapter 1—Natural Gas Fundamentals. In Handbook of Natural Gas Transmission and Processing, 3rd ed.; Gulf Professional Publishing: Boston, MA, USA, 2015; pp. 1–36.spa
dc.relation.references27. Alayi, R.; Ahmadi, M.H.; Visei, A.R.; Sharma, S.; Najafi, A. Technical and environmental analysis of photovoltaic and solar water heater cogeneration system: A case study of Saveh City. Int. J. Low-Carbon Technol. 2021, 16, 447–453. [CrossRef]spa
dc.relation.references28. Global Temperature. Available online: http://data.giss.nasa.gov/gistemp/graphs_v3/ (accessed on 7 April 2021).spa
dc.relation.references29. Han, Z.; Guo, S. Investigation of operation strategy of combined cooling, heating and power (CCHP) system based on advanced adiabatic compressed air energy storage. Energy 2018, 160, 290–308. [CrossRef]spa
dc.relation.references30. Farahbakhsh, M.T.; Chahartaghi, M. Performance analysis and economic assessment of a combined cooling heating and power (CCHP) system in wastewater treatment plants (WWTPs). Energy Convers. Manag. 2020, 224, 113351. [CrossRef]spa
dc.relation.references31. Cogeneration. Available online: https://en.wikipedia.org/wiki/Cogeneration (accessed on 19 December 2021).spa
dc.relation.references32. Mollenhauer, E.; Christidis, A.; Tsatsaronis, G. Increasing the flexibility of combined heat and power plants with heat pumps and thermal energy storage. J. Energy Resour. Technol. 2018, 140, 020907. [CrossRef]spa
dc.relation.references33. Nouri, M.; Namar, M.M.; Jahanian, O. Analysis of a developed Brayton cycled CHP system using ORC and CAES based on first and second law of thermodynamics. J. Therm. Anal. Calorim. 2019, 135, 1743–1752. [CrossRef]spa
dc.relation.references34. Fotouhi, R.; Movludiazar, A.; Khayyati, M.S.; Pourgholi, M. Optimization of an Industrial Township Costs from an Industrial Service Company View (Case Study: A Distributed Gas-Fired CHP). In Proceedings of the 7th Iran Wind Energy Conference (IWEC2021), Shahrood, Iran, 17–18 May 2021; pp. 1–5.spa
dc.relation.references35. Branchini, L.; Bignozzi, M.C.; Ferrari, B.; Mazzanti, B.; Ottaviano, S.; Salvio, M.; Toro, C.; Martini, F.; Canetti, A. Cogeneration Supporting the Energy Transition in the Italian Ceramic Tile Industry. Sustainability 2021, 13, 4006. [CrossRef]spa
dc.relation.references36. Gambini, M.; Vellini, M.; Stilo, T.; Manno, M.; Bellocchi, S. High-Efficiency cogeneration systems: The case of the paper Industry in Italy. Energies 2019, 12, 335. [CrossRef]spa
dc.relation.references37. Morato, M.M.; da Costa Mendes, P.R.; Cani, A.A.; Normey-Rico, J.E.; Bordons, C. Future hybrid local energy generation paradigm for the brazilian sugarcane industry scenario. Int. J. Electr. Power Energy Syst. 2018, 101, 139–150. [CrossRef]spa
dc.relation.references38. Alshammari, F.; Karvountzis-Kontakiotis, A.; Pesyridis, A.; Alatawi, I. Design and study of back-swept high pressure ratio radial turbo-expander in automotive organic Rankine cycles. Appl. Therm. Eng. 2020, 164, 114549. [CrossRef]spa
dc.subject.proposalCHPeng
dc.subject.proposalTextile industryeng
dc.subject.proposalGas turbineeng
dc.subject.proposalOptimizationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage20spa
dc.relation.citationstartpage1spa
dc.relation.citationissue3spa
dc.relation.citationvolume14spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors. Licensee MDPI, Basel, Switzerland.