Mostrar el registro sencillo del ítem

dc.contributor.authorPreigschadt, Isadora A.spa
dc.contributor.authorBevilacqua, Raíssa C.spa
dc.contributor.authorNetto, Matias S.spa
dc.contributor.authorgeorgin, jordanaspa
dc.contributor.authorFranco, Dison S. P.spa
dc.contributor.authorMallmann, Evandro S.spa
dc.contributor.authorPinto, Dianaspa
dc.contributor.authorFoletto, Edsonspa
dc.contributor.authorDotto, Guilherme Luizspa
dc.date.accessioned2022-04-29T13:03:45Z
dc.date.available2023
dc.date.available2022-04-29T13:03:45Z
dc.date.issued2021
dc.identifier.citationPreigschadt, .A., Bevilacqua, R.C., Netto, M.S. et al. Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark. Environ Sci Pollut Res 29, 2122–2135 (2022). https://doi.org/10.1007/s11356-021-15668-7spa
dc.identifier.issn0944-1344spa
dc.identifier.urihttps://hdl.handle.net/11323/9137spa
dc.description.abstractThis study used the bark of the forest species Campomanesia guazumifolia modified with H2SO4 to absorb the anti-inflammatory ketoprofen from aqueous solutions. FTIR spectra confirmed that the main bands remained after the chemical treatment, with the appearance of two new bands related to the elongation of the carbonyl group present in hemicellulose. Micrographs confirmed that the surface started to contain a new textural shape after acid activation, having new pores and cavities. The drug adsorption’s optimum conditions were obtained by response surface methodology (RSM). The adsorption was favored at acidic pH (2). The dosage of 1 g L−1 was considered ideal, obtaining good indications of removal and capacity. The Elovich model very well represented the kinetic curves. The isotherm studies indicated that the increase in temperature negatively affected the adsorption of ketoprofen. A maximum adsorption capacity of 158.3 mg g−1 was obtained at the lower temperature of 298 K. Langmuir was the best-fit isotherm. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = −8.78 kJ mol−1). In treating a simulated effluent containing different drugs and salts, the removal values were 35, 50, and 80% at 15, 30, and 180 min, respectively. Therefore, the development of adsorbent from the bark of Campomanesia guazumifolia treated with H2SO4 represents a remarkable alternative for use in effluent treatment containing ketoprofen.eng
dc.format.extent1 páginaspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherSpringer Science + Business Mediaspa
dc.rights© 2022 Springer Nature Switzerland AG. Part of Springer Nature.spa
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleOptimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia barkeng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.1007/s11356-021-15668-7spa
dc.source.urlhttps://link.springer.com/article/10.1007/s11356-021-15668-7spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doi10.1007/s11356-021-15668-7spa
dc.identifier.eissn1614-7499spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeGermanyspa
dc.relation.ispartofjournalEnvironmental Science and Pollution Researchspa
dc.relation.referencesAbdulhameed AS, Firdaus Hum NNM, Rangabhashiyam S et al (2021) Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3activator. J Environ Chem Eng 9:105530. https://doi.org/10.1016/j.jece.2021.105530spa
dc.relation.referencesAdel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydr Polym 83:676–687. https://doi.org/10.1016/j.carbpol.2010.08.039spa
dc.relation.referencesAhmed MJ (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manag 190:274–282. https://doi.org/10.1016/j.jenvman.2016.12.073spa
dc.relation.referencesAlkimin GD, Soares AMVM, Barata C, Nunes B (2020) Evaluation of ketoprofen toxicity in two freshwater species: effects on biochemical, physiological and population endpoints. Environ Pollut 265:114993. https://doi.org/10.1016/j.envpol.2020.114993spa
dc.relation.referencesBaccar R, Sarrà M, Bouzid J, Feki M, Blánquez P (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317. https://doi.org/10.1016/j.cej.2012.09.099spa
dc.relation.referencesBenvenuti J, Fisch A, Dos Santos JHZ, Gutterres M (2019) Silica-based adsorbent material with grape bagasse encapsulated by the sol-gel method for the adsorption of Basic Blue 41 dye. J Environ Chem Eng 7:103342. https://doi.org/10.1016/j.jece.2019.103342spa
dc.relation.referencesBiswal AK, Samal AK, Tripathy M, Misra PK (2019) Identification of the secondary structure of protein isolated from deoiled cake flour of Mahua (Madhuca Latifolia). Mater Today Proc 9:605–614. https://doi.org/10.1016/j.matpr.2018.10.382spa
dc.relation.referencesBonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Avila HE (2017) Adsorption processes for water treatment and purification. Springer International Publishing, Chamspa
dc.relation.referencesCatelan TBS, Santos Radai JA, Leitão MM, Branquinho LS, Vasconcelos PCP, Heredia-Vieira SC, Kassuya CAL, Cardoso CAL (2018) Evaluation of the toxicity and anti-inflammatory activities of the infusion of leaves of Campomanesia guazumifolia (Cambess.) O. Berg. J Ethnopharmacol 226:132–142. https://doi.org/10.1016/j.jep.2018.08.015spa
dc.relation.referencesCesca K, Netto MS, Ely VL et al (2020) Synthesis of spherical bacterial nanocellulose as a potential silver adsorption agent for antimicrobial purposes. Cellul Chem Technol 54:285–290. https://doi.org/10.35812/CELLULOSECHEMTECHNOL.2020.54.30spa
dc.relation.referencesCesca K, Schadeck Netto M, Lunkes Ely V, Luiz Dotto G, Luiz Foletto E, Hotza D (2020) Synthesis of spherical bacterial nanocelluloseas a potential silver adsorption agent for antimicrobial purposes. Cellulose Chem Technol 54(3–4):285–290spa
dc.relation.referencesChandrashekar Kollarahithlu S, Balakrishnan RM (2021) Adsorption of pharmaceuticals pollutants, Ibuprofen, Acetaminophen, and Streptomycin from the aqueous phase using amine functionalized superparamagnetic silica nanocomposite. J Clean Prod 294:126155. https://doi.org/10.1016/j.jclepro.2021.126155spa
dc.relation.referencesChen M, Ren L, Qi K, Li Q, Lai M, Li Y, Li X, Wang Z (2020) Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor. Bioresour Technol 311:123579. https://doi.org/10.1016/j.biortech.2020.123579spa
dc.relation.referencesDubinin MM, Astakhov VA (1971) Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bull Acad Sci USSR Div Chem Sci 20:3–7. https://doi.org/10.1007/BF00849307spa
dc.relation.referencesElovich SY, Larionov OG (1962) Theory of adsorption from nonelectrolyte solutions on solid adsorbents - 2. Experimental verification of the equation for the adsorption isotherm from solutions. Bull Acad Sci USSR Div Chem Sci 11:198–203. https://doi.org/10.1007/BF00908017spa
dc.relation.referencesFabbri E (2015) Pharmaceuticals in the environment: expected and unexpected effects on aquatic fauna. Ann N Y Acad Sci 1340:20–28. https://doi.org/10.1111/nyas.12605spa
dc.relation.referencesFeng Z, Odelius K, Rajarao GK, Hakkarainen M (2018) Microwave carbonized cellulose for trace pharmaceutical adsorption. Chem Eng J 346:557–566. https://doi.org/10.1016/j.cej.2018.04.014spa
dc.relation.referencesFranco DSP, Piccin JS, Lima EC, Dotto GL (2015) Interpretations about methylene blue adsorption by surface modified chitin using the statistical physics treatment. Adsorption 21:557–564. https://doi.org/10.1007/s10450-015-9699-zspa
dc.relation.referencesFranco DSP, Tanabe EH, Dotto GL (2017) Continuous adsorption of a cationic dye on surface modified rice husk: statistical optimization and dynamic models. Chem Eng Commun 204:625–634. https://doi.org/10.1080/00986445.2017.1300150spa
dc.relation.referencesFranco DSP, Georgin J, Drumm FC, Netto MS, Allasia D, Oliveira MLS, Dotto GL (2020) Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environ Sci Pollut Res 27:11184–11194. https://doi.org/10.1007/s11356-019-07490-zspa
dc.relation.referencesFreundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57U:385–470. https://doi.org/10.1515/zpch-1907-5723spa
dc.relation.referencesFröhlich AC, dos Reis GS, Pavan FA, Lima ÉC, Foletto EL, Dotto GL (2018) Improvement of activated carbon characteristics by sonication and its application for pharmaceutical contaminant adsorption. Environ Sci Pollut Res 25:24713–24725. https://doi.org/10.1007/s11356-018-2525-xspa
dc.relation.referencesFröhlich AC, Foletto EL, Dotto GL (2019) Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J Clean Prod 229:828–837. https://doi.org/10.1016/j.jclepro.2019.05.037spa
dc.relation.referencesGanesan S, Karthick K, Namasivayam C, Arul Pragasan L, Kirankumar VS, Devaraj S, Ponnusamy VK (2020) Discarded biodiesel waste–derived lignocellulosic biomass as effective biosorbent for removal of sulfamethoxazole drug. Environ Sci Pollut Res 27:17619–17630. https://doi.org/10.1007/s11356-019-07022-9spa
dc.relation.referencesGanzenko O, Oturan N, Sirés I, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2018) Fast and complete removal of the 5-fluorouracil drug from water by electro-Fenton oxidation. Environ Chem Lett 16:281–286. https://doi.org/10.1007/s10311-017-0659-6spa
dc.relation.referencesGao Y, Deshusses MA (2011) Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter. Environ Technol 32:1719–1727. https://doi.org/10.1080/09593330.2011.554888spa
dc.relation.referencesGeorgin J, Franco D, Drumm FC, Grassi P, Netto MS, Allasia D, Dotto GL (2020) Powdered biosorbent from the mandacaru cactus (cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions. Powder Technol 364:584–592. https://doi.org/10.1016/j.powtec.2020.01.064spa
dc.relation.referencesGeorgin J, de O Salomón YL, Franco DSP et al (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J Environ Chem Eng 9:105676. https://doi.org/10.1016/j.jece.2021.105676spa
dc.relation.referencesGiles CH, Smith D (1974) A general treatment and classification of the solute adsorption isotherm part I. Theoretical. J Colloid Interface Sci 47:755–765. https://doi.org/10.1016/0021-9797(74)90252-5spa
dc.relation.referencesGrisales-Cifuentes CM, Serna Galvis EA, Porras J, Flórez E, Torres-Palma RA, Acelas N (2021) Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber. Bioresour Technol 326:124753. https://doi.org/10.1016/j.biortech.2021.124753spa
dc.relation.referencesHo YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5spa
dc.relation.referencesHounfodji JW, Kanhounnon WG, Kpotin G, Atohoun GS, Lainé J, Foucaud Y, Badawi M (2021) Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces. Chem Eng J 407:127176. https://doi.org/10.1016/j.cej.2020.127176spa
dc.relation.referencesHumelnicu D, Dragan ES (2021) Evaluation of phosphate adsorption by porous strong base anion exchangers having hydroxyethyl substituents: kinetics, equilibrium, and thermodynamics. Environ Sci Pollut Res 28:7105–7115. https://doi.org/10.1007/s11356-020-10976-wspa
dc.relation.referencesIvanković K, Kern M, Rožman M (2021) Modelling of the adsorption of pharmaceutically active compounds on carbon-based nanomaterials. J Hazard Mater 414. https://doi.org/10.1016/j.jhazmat.2021.125554spa
dc.relation.referencesJawad AH (2018) Carbonization of rubber (Hevea brasiliensis) seed shell by one-step liquid phase activation with H2SO4 for methylene blue adsorption. Desalin Water Treat 129:279–288. https://doi.org/10.5004/dwt.2018.23090spa
dc.relation.referencesJawad AH, Rashid RA, Ishak MAM, Wilson LD (2016) Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat 57:25194–25206. https://doi.org/10.1080/19443994.2016.1144534spa
dc.relation.referencesJawad AH, Mamat NFH, Abdullah MF, Ismail K (2017) Adsorption of methylene blue onto acid-treated mango peels: kinetic, equilibrium and thermodynamic study. Desalin Water Treat 59:210–219. https://doi.org/10.5004/dwt.2017.0097spa
dc.relation.referencesJawad AH, Mohammed SA, Mastuli MS, Abdullah MF (2018a) Carbonization of corn (Zea mays) cob agricultural residue by one-step activation with sulfuric acid for methylene blue adsorption. Desalin Water Treat 118:342–351. https://doi.org/10.5004/dwt.2018.22680spa
dc.relation.referencesJawad AH, Rashid RA, Ishak MAM, Ismail K (2018b) Adsorptive removal of methylene blue by chemically treated cellulosic waste banana ( Musa sapientum ) peels. J Taibah Univ Sci 12:809–819. https://doi.org/10.1080/16583655.2018.1519893spa
dc.relation.referencesJawad AH, Razuan R, Appaturi JN, Wilson LD (2019) Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation. Surfaces Interfaces 16:76–84. https://doi.org/10.1016/j.surfin.2019.04.012spa
dc.relation.referencesJawad AH, Abdulhameed AS, Mastuli MS (2020a) Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. J Taibah Univ Sci 14:305–313. https://doi.org/10.1080/16583655.2020.1736767spa
dc.relation.referencesJawad AH, Mohd Firdaus Hum NN, Abdulhameed AS, Mohd Ishak MA (2020b) Mesoporous activated carbon from grass waste via H3PO4-activation for methylene blue dye removal: modelling, optimisation, and mechanism study. Int J Environ Anal Chem 00:1–17. https://doi.org/10.1080/03067319.2020.1807529spa
dc.relation.referencesKanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12:27–47. https://doi.org/10.1007/s10311-013-0428-0spa
dc.relation.referencesKebede TG, Dube S, Nindi MM (2018) Removal of non-steroidal anti-inflammatory drugs (NSAIDs) and carbamazepine from wastewater using water-soluble protein extracted from Moringa stenopetala seeds. J Environ Chem Eng 6(2):3095–3103. https://doi.org/10.1016/j.jece.2018.04.066spa
dc.relation.referencesKebede TG, Dube S, Nindi MM (2019) Biopolymer electrospun nanofibres for the adsorption of pharmaceuticals from water systems. J Environ Chem Eng 7:103330. https://doi.org/10.1016/j.jece.2019.103330spa
dc.relation.referencesKong L, Gong L, Wang J (2015) Removal of methylene blue from wastewater using fallen leaves as an adsorbent. Desalin Water Treat 53:2489–2500. https://doi.org/10.1080/19443994.2013.863738spa
dc.relation.referencesKumar J, Balomajumder C, Mondal P (2011) Application of agro-based biomasses for zinc removal from wastewater - a review. Clean Soil Air Water 39:641–652. https://doi.org/10.1002/clen.201000100spa
dc.relation.referencesLagergren SY (1898) Zur Theorie der sogenannten Adsorption geloster stoffe. Kung Svenska Vetenskap Handl 24:1–39spa
dc.relation.referencesLam SS, Azwar E, Peng W, Tsang YF, Ma NL, Liu Z, Park YK, Kwon EE (2019) Cleaner conversion of bamboo into carbon fibre with favourable physicochemical and capacitive properties via microwave pyrolysis combining with solvent extraction and chemical impregnation. J Clean Prod 236:1–11. https://doi.org/10.1016/j.jclepro.2019.117692spa
dc.relation.referencesLangmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004spa
dc.relation.referencesLawal IA, Moodley B (2017) Sorption mechansim of pharmaceuticals from aqueous medium on ionic liquid modified biomass. J Chem Technol Biotechnol 92:808–818. https://doi.org/10.1002/jctb.5063spa
dc.relation.referencesLawal IA, Lawal MM, Akpotu SO, Okoro HK, Klink M, Ndungu P (2020) Noncovalent graphene oxide functionalized with ionic liquid: theoretical, isotherm, kinetics, and regeneration studies on the adsorption of pharmaceuticals. Ind Eng Chem Res 59:4945–4957. https://doi.org/10.1021/acs.iecr.9b06634spa
dc.relation.referencesLi Z, Hanafy H, Zhang L, Sellaoui L, Schadeck Netto M, Oliveira MLS, Seliem MK, Luiz Dotto G, Bonilla-Petriciolet A, Li Q (2020a) Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: experiments, characterization and physical interpretations. Chem Eng J 388:124263. https://doi.org/10.1016/j.cej.2020.124263spa
dc.relation.referencesLi Z, Sellaoui L, Franco D, Netto MS, Georgin J, Dotto GL, Bajahzar A, Belmabrouk H, Bonilla-Petriciolet A, Li Q (2020b) Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: experimental study and physicochemical interpretation of the adsorption mechanism. Chem Eng J 389:124467. https://doi.org/10.1016/j.cej.2020.124467spa
dc.relation.referencesLima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048spa
dc.relation.referencesLin AYC, Yu TH, Lin CF (2008) Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere 74:131–141. https://doi.org/10.1016/j.chemosphere.2008.08.027spa
dc.relation.referencesLiu Y, Shen L (2008) A general rate law equation for biosorption. Biochem 38:390–394. https://doi.org/10.1016/j.bej.2007.08.003spa
dc.relation.referencesLiu FF, Zhao J, Wang S, du P, Xing B (2014) Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ Sci Technol 48:13197–13206. https://doi.org/10.1021/es5034684spa
dc.relation.referencesLiu H, Xu G, Li G (2021) Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline. J Colloid Interface Sci 587:271–278. https://doi.org/10.1016/j.jcis.2020.12.014spa
dc.relation.referencesLotfi R, Hayati B, Rahimi S, Shekarchi AA, Mahmoodi NM, Bagheri A (2019) Synthesis and characterization of PAMAM/SiO 2 nanohybrid as a new promising adsorbent for pharmaceuticals. Microchem J 146:1150–1159. https://doi.org/10.1016/j.microc.2019.02.048spa
dc.relation.referencesLow LW, Teng TT, Ahmad A, Morad N, Wong YS (2011) A novel pretreatment method of lignocellulosic material as adsorbent and kinetic study of dye waste adsorption. Water Air Soil Pollut 218:293–306. https://doi.org/10.1007/s11270-010-0642-3spa
dc.relation.referencesMachado FM, Bergmann CP, Fernandes THM, Lima EC, Royer B, Calvete T, Fagan SB (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131. https://doi.org/10.1016/j.jhazmat.2011.06.020spa
dc.relation.referencesMadikizela LM, Zunngu SS, Mlunguza NY, Tavengwa NT, Mdluli PS, Chimuka L (2018) Application of molecularly imprinted polymer designed for the selective extraction of ketoprofen from wastewater. Water SA 44:406–418. https://doi.org/10.4314/wsa.v44i3.08spa
dc.relation.referencesMalesic-Eleftheriadou N, Evgenidou E, Lazaridou M, Bikiaris DN, Yang X, Kyzas GZ, Lambropoulou DA (2021) Simultaneous removal of anti-inflammatory pharmaceutical compounds from an aqueous mixture with adsorption onto chitosan zwitterionic derivative. Colloids Surf A Physicochem Eng Asp 619:126498. https://doi.org/10.1016/j.colsurfa.2021.126498spa
dc.relation.referencesMallek M, Chtourou M, Portillo M, Monclús H, Walha K, Salah A, Salvadó V (2018) Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants. J Environ Manag 223:576–585. https://doi.org/10.1016/j.jenvman.2018.06.069spa
dc.relation.referencesMelo LLA, Ide AH, Duarte JLS, Zanta CLPS, Oliveira LMTM, Pimentel WRO, Meili L (2020) Caffeine removal using Elaeis guineensis activated carbon: adsorption and RSM studies. Environ Sci Pollut Res 27:27048–27060. https://doi.org/10.1007/s11356-020-09053-zspa
dc.relation.referencesMirzaei A, Chen Z, Haghighat F, Yerushalmi L (2017) Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes – a review. Chemosphere 174:665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019spa
dc.relation.referencesMontes-Grajales D, Fennix-Agudelo M, Miranda-Castro W (2017) Occurrence of personal care products as emerging chemicals of concern in water resources: a review. Sci Total Environ 595:601–614. https://doi.org/10.1016/j.scitotenv.2017.03.286spa
dc.relation.referencesOikonomopoulos I, Perraki T, Tougiannidis N (2017) Ftir study of two different lignite lithotypes from Neocene Achlada lignite deposits in NW Greece. Bull Geol Soc Greece 43:2284. https://doi.org/10.12681/bgsg.14312spa
dc.relation.referencesOuasfi N, Zbair M, Bouzikri S, Anfar Z, Bensitel M, Ait Ahsaine H, Sabbar E, Khamliche L (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 9:9792–9808. https://doi.org/10.1039/C9RA01086Fspa
dc.relation.referencesÖzkaya B (2006) Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J Hazard Mater 129:158–163. https://doi.org/10.1016/j.jhazmat.2005.08.025spa
dc.relation.referencesPatel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299spa
dc.relation.referencesPejić BM, Kramar AD, Obradović BM, Kuraica MM, Žekić AA, Kostić MM (2020) Effect of plasma treatment on chemical composition, structure and sorption properties of lignocellulosic hemp fibers (Cannabis sativa L.). Carbohydr Polym 236:116000. https://doi.org/10.1016/j.carbpol.2020.116000spa
dc.relation.referencesPinto BP, de Santa Maria LC, Sena ME (2007) Sulfonated poly(ether imide): a versatile route to prepare functionalized polymers by homogenous sulfonation. Mater Lett 61:2540–2543. https://doi.org/10.1016/j.matlet.2006.09.060spa
dc.relation.referencesRanjbari S, Tanhaei B, Ayati A, Khadempir S, Sillanpää M (2020) Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: mechanism, kinetic, isotherms and thermodynamic study. Int J Biol Macromol 155:421–429. https://doi.org/10.1016/j.ijbiomac.2020.03.188spa
dc.relation.referencesSanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172. https://doi.org/10.1016/j.biortech.2012.01.001spa
dc.relation.referencesSarker M, Song JY, Jhung SH (2018) Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem Eng J 335:74–81. https://doi.org/10.1016/j.cej.2017.10.138spa
dc.relation.referencesSchadeck Netto M, da Silva NF, Mallmann ES et al (2019) Effect of Salinity on the Adsorption Behavior of Methylene Blue onto Comminuted Raw Avocado Residue: CCD-RSM Design. Water Air Soil Pollut 230:187. https://doi.org/10.1007/s11270-019-4230-xspa
dc.relation.referencesSellaoui L, Guedidi H, Sarrawjihi et al (2016) Experimental and theoretical studies of adsorption of ibuprofen on raw and two chemically modified activated carbons: New physicochemical interpretations. RSC Adv 6:12363–12373. https://doi.org/10.1039/c5ra22302dspa
dc.relation.referencesSouza MT, Souza MT, Panobianco M (2018) Morphological characterization of fruit, seed and seedling, and seed germination test of campomanesia guazumifolia. J Seed Sci 40:75–81. https://doi.org/10.1590/2317-1545v40n1186143spa
dc.relation.referencesSurip SN, Abdulhameed AS, Garba ZN, Syed-Hassan SSA, Ismail K, Jawad AH (2020) H2SO4-treated Malaysian low rank coal for methylene blue dye decolourization and cod reduction: optimization of adsorption and mechanism study. Surfaces Interfaces 21:100641. https://doi.org/10.1016/j.surfin.2020.100641spa
dc.relation.referencesTóth J (2002) Adsorption: Theory, modeling, and analysis. Marcel Dekker, New Yorkspa
dc.relation.referencesTran HN, Tomul F, Thi Hoang Ha N, Nguyen DT, Lima EC, le GT, Chang CT, Masindi V, Woo SH (2020) Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism. J Hazard Mater 394:122255. https://doi.org/10.1016/j.jhazmat.2020.122255spa
dc.relation.referencesVannini C, Domingo G, Marsoni M, de Mattia F, Labra M, Castiglioni S, Bracale M (2011) Effects of a complex mixture of therapeutic drugs on unicellular algae Pseudokirchneriella subcapitata. Aquat Toxicol 101:459–465. https://doi.org/10.1016/j.aquatox.2010.10.011spa
dc.relation.referencesWang L, Albasi C, Faucet-Marquis V, Pfohl-Leszkowicz A, Dorandeu C, Marion B, Causserand C (2009) Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Water Res 43:4115–4122. https://doi.org/10.1016/j.watres.2009.06.007spa
dc.relation.referencesWang W, Qi M, Jia X, Jin J, Zhou Q, Zhang M, Zhou W, Li A (2020) Differential adsorption of zwitterionic PPCPs by multifunctional resins: the influence of the hydrophobicity and electrostatic potential of PPCPs. Chemosphere 241:125023. https://doi.org/10.1016/j.chemosphere.2019.125023spa
dc.relation.referencesYakaboylu GA, Jiang C, Yumak T, Zondlo JW, Wang J, Sabolsky EM (2021) Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renew Energy 163:276–287. https://doi.org/10.1016/j.renene.2020.08.092spa
dc.relation.referencesZhao X, Chen J, Chen F, Wang X, Zhu Q, Ao Q (2013) Surface characterization of corn stalk superfine powder studied by FTIR and XRD. Colloids Surf B: Biointerfaces 104:207–212. https://doi.org/10.1016/j.colsurfb.2012.12.00spa
dc.subject.proposalCampomanesia guazumifoliaeng
dc.subject.proposalAcid treatmenteng
dc.subject.proposalAdsorptioneng
dc.subject.proposalBarkeng
dc.subject.proposalKetoprofeneng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/draftspa
dc.relation.citationendpage1spa
dc.relation.citationstartpage1spa
dc.relation.citationissue2spa
dc.relation.citationvolume29spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

© 2022 Springer Nature Switzerland AG. Part of Springer Nature.
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 Springer Nature Switzerland AG. Part of Springer Nature.