Mostrar el registro sencillo del ítem

dc.contributor.authorEscorcia-Gutierrez, Josespa
dc.contributor.authorBELEÑO SAENZ, KELVINspa
dc.contributor.authorJiménez-Cabas, Javierspa
dc.contributor.authorElhoseny, Mohamedspa
dc.contributor.authorAlshehri, Dr. Mohammad Dahmanspa
dc.contributor.authorSelim, Mahmoud M.spa
dc.date.accessioned2022-05-03T17:33:43Z
dc.date.available2024
dc.date.available2022-05-03T17:33:43Z
dc.date.issued2022
dc.identifier.issn0263-2241spa
dc.identifier.urihttps://hdl.handle.net/11323/9144spa
dc.description.abstractRecent advancements in machine learning and deep learning models find them helpful in designing effective complex measurement systems. At the same time, examining the brain’s activities using Electroencephalography (EEG) is essential to determine the mental state or thought of a person. It is essential in several application areas, such as Brain-Computer Interface (BCI), emotion recognition, and mental disease diagnosis. The proper brain signal classification using EEG finds helpful diagnose epileptic seizures. Since the traditional seizure detection process is a lengthy and challenging task, the automated identification of epilepsy is a significant problem. In order to resolve the issues that exist in the traditional brain signal classification models, this study designs Automated Deep Learning-Enabled Brain Signal Classification for Epileptic Seizure Detection (ADLBSC-ESD). The proposed ADLBSC-ESD technique aims to classify the brain signals to determine the existence of seizures or not. In addition, the presented model involves the design of the Improved Teaching and Learning-Enabled Optimization (ITLBO) technique for selecting features from EEG signals. Moreover, the Deep Belief Network (DBN) model is used for an effectual classification of EEG signals, and the hyperparameters of the DBN model are optimally tuned using the Swallow Swarm Optimization Algorithm (SSA). In order to ensure the improved brain signal classification performance of the ADLBSC-ESD technique, a series of simulations take place, and the outcomes are investigated concerning different measures. The experimental values highlighted the better performance of the ADLBSC-ESD technique over the current state of art techniques with maximum accuracy of 0.8316 and 0.8609 under binary and multiple classes, respectively.eng
dc.format.extent9 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherElsevierspa
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights© 2022 Elsevier Ltd. All rights reserved.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleAn automated deep learning enabled brain signal classification for epileptic seizure detection on complex measurement systemseng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.1016/j.measurement.2022.111226spa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S0263224122004766#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doi10.1016/j.measurement.2022.111226spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeNetherlandsspa
dc.relation.ispartofjournalMeasurement: Journal of the International Measurement Confederationspa
dc.relation.references[1] S. Taran, V. Bajaj, D. Sharma, S. Siuly, A. Sengur, Features based on analytic IMF for classifying motor imagery EEG signals in BCI applications, Measurement 116 (2018) 68–76.spa
dc.relation.references[2] M. Diykh, F.S. Miften, S. Abdulla, R.C. Deo, S. Siuly, J.H. Green, A.Y. Oudahb, Texture analysis based graph approach for automatic detection of neonatal seizure from multi-channel EEG signals, Measurement 190 (2022) 110731, https://doi.org/10.1016/j.measurement.2022.110731.spa
dc.relation.references[3] J.R. Wolpaw, D.J. McFarland, Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans, In: Proceedings of the National Academy of Sciences of the United States of America 101.51 (2004), pp. 17849–54.spa
dc.relation.references[4] C. Lyu, Y. Chen, Z. Chen, Y. Liu, Z. Wang, Automatic epilepsy detection based on generalized convolutional prototype learning, Measurement 184 (2021) 109954, https://doi.org/10.1016/j.measurement.2021.109954.spa
dc.relation.references[5] H. Berger. Uber das Elektrenkephalogramm des Menschen, in:¨Archiv fur¨ Psychiatrie und Nervenkrankheiten 99.1, 1933, pp. 555–574. doi: 10.1007/BF01814320 (cit. on p. 3).spa
dc.relation.references[6] J. Sekar, P. Aruchamy, H. Sulaima Lebbe Abdul, A.S. Mohammed, S. Khamuruddeen, An efficient clinical support system for heart disease prediction using TANFIS classifier, Comput. Intell. (2021).spa
dc.relation.references[7] S. Lavanya, A. Prasanth, S. Jayachitra, A. Shenbagarajan, A Tuned classification approach for efficient heterogeneous fault diagnosis in IoT-enabled WSN applications, Measurement 183 (2021) 109771, https://doi.org/10.1016/j.measurement.2021.109771.spa
dc.relation.references[8] S. Jayachitra, A. Prasanth, Multi-feature analysis for automated brain stroke classification using weighted Gaussian naïve Bayes classifier, J. Circuits Syst. Comput. 30 (10) (2021) 2150178, https://doi.org/10.1142/S0218126621501784.spa
dc.relation.references[9] S. Jang, S.E. Moon, J.S. Lee, Brain signal classification via learning connectivity structure, 2019. arXiv preprint arXiv:1905.11678.spa
dc.relation.references[10] L. Zhu, Q. Hu, J. Yang, J. Zhang, P. Xu, N. Ying, F. Schwenker, EEG signal classification using manifold learning and matrix-variate Gaussian model, Computat. Intell. Neurosci. 2021 (2021) 1–12.spa
dc.relation.references[11] P. Fergus, D. Hignett, A. Hussain, D. Al-Jumeily, K. Abdel-Aziz, Automatic epileptic seizure detection using scalp EEG and advanced artificial intelligence techniques, Biomed Res. Int. 2015 (2015) 1–17.spa
dc.relation.references[12] W. Zhao, W. Zhao, W. Wang, X. Jiang, X. Zhang, Y. Peng, B. Zhang, G. Zhang, A novel deep neural network for robust detection of seizures using EEG signals, Comput. Math. Methods Med. 2020 (2020) 1–9.spa
dc.relation.references[13] D. Zhou, X. Li, Epilepsy EEG signal classification algorithm based on improved RBF, Front. Neurosci. 14 (2020) 606.spa
dc.relation.references[14] BSuguna Nanthini, B. Santhi, Electroencephalogram signal classification for automated epileptic seizure detection using genetic algorithm, J. Nat. Sci. Biol. Med. 8 (2) (2017) 159, https://doi.org/10.4103/jnsbm.JNSBM_285_16.spa
dc.relation.references[15] M. Radman, M. Moradi, A. Chaibakhsh, M. Kordestani, M. Saif, Multi-feature fusion approach for epileptic seizure detection from EEG signals, IEEE Sens. J. 21 (3) (2021) 3533–3543.spa
dc.relation.references[16] Aayesha, M.B. Qureshi, M. Afzaal, M.S. Qureshi, M. Fayaz, Machine learning-based EEG signals classification model for epileptic seizure detection, Multimedia Tools Appl. 80 (12) (2021) 17849–17877.spa
dc.relation.references[17] H. Al-Hadeethi, S. Abdulla, M. Diykh, R.C. Deo, J.H. Green, Adaptive boost LS-SVM classification approach for time-series signal classification in epileptic seizure diagnosis applications, Expert Syst. Appl. 161 (2020) 113676, https://doi.org/10.1016/j.eswa.2020.113676.spa
dc.relation.references[18] G. Manocha, H. Rustagi, S.P. Singh, R. Jain, P. Nagrath, Epilepsy Seizure Classification Using One-Dimensional Convolutional Neural Networks, in: Data Management, Analytics and Innovation, Springer, Singapore, 2022, pp. 155–168.spa
dc.relation.references[19] M. Sameer, B. Gupta, CNN based framework for detection of epileptic seizures, Multimedia Tools Appl. (2022) 1–14.spa
dc.relation.references[20] S. Pattnaik, N. Rout, S. Sabut, Machine learning approach for epileptic seizure detection using the tunable-Q wavelet transform based time–frequency features, Int. J. Inform. Technol. (2022) 1–11.spa
dc.relation.references[21] M. Allam, M. Nandhini, Optimal feature selection using binary teaching learning based optimization algorithm, J. King Saud Univ.-Comput. Inform. Sci., 2018.spa
dc.relation.references[22] J. Yu, G. Liu, Knowledge-based deep belief network for machining roughness prediction and knowledge discovery, Comput. Ind. 121 (2020), 103262.spa
dc.relation.references[23] Y. Jia, J. Wu, M. Xu, Traffic flow prediction with rainfall impact using a deep learning method, J. Adv. Transport. 2017 (2017) 1–10.spa
dc.relation.references[24] M. Neshat, G. Sepidname, A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO), Egypt. Inform. J. 16 (3) (2015) 339–350.spa
dc.relation.references[25] https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition.spa
dc.relation.references[26] P. Suguna, B. Kirubagari, R. Umamaheswari, Epileptic seizure detection using simulated annealing based optimal feature subset selection with kernel extreme learning machine classification model, IJATCSE 9 (4) (2020) 6464–6470, https://doi.org/10.30534/ijatcse/2020/331942020.spa
dc.subject.proposalBrain signalseng
dc.subject.proposalClassificationeng
dc.subject.proposalComplex measurementeng
dc.subject.proposalDeep learningeng
dc.subject.proposalEpileptic seizureeng
dc.subject.proposalEEG signalseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage9spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume196spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)