Mostrar el registro sencillo del ítem

dc.contributor.authorHernandes, Paola T.spa
dc.contributor.authorDison S.P., Francospa
dc.contributor.authorgeorgin, jordanaspa
dc.contributor.authorP. G. Salau, Ninaspa
dc.contributor.authorDotto, Guilherme Luizspa
dc.date.accessioned2022-05-23T12:55:14Z
dc.date.available2024
dc.date.available2022-05-23T12:55:14Z
dc.date.issued2022
dc.identifier.issn2213-3437spa
dc.identifier.urihttps://hdl.handle.net/11323/9184spa
dc.description.abstractBiochar was produced from the sawdust of the wood forest species Cedrella fissilis and later used as an adsorbent to remove atrazine herbicide from aqueous media. Biochar showed high thermal stability, an amorphous structure, and a highly irregular surface, mainly composed of carbon-containing bonds. The isothermal curves confirmed that the increase in temperature favored the adsorption of the herbicide. The Langmuir model best suited the experimental equilibrium data, with the maximum adsorption capacity of 7.68 mg g-1 at 328 K. The thermodynamic parameters confirmed a spontaneous process of an endothermic nature governed by physical interactions (interactions of van der Waals and hydrogen bonds). Kinetic studies showed that equilibrium was reached within 180 min. The linear driving force model (LDF) showed good statistical adjustment to the experimental data, where it was observed that the diffusion coefficient increased with the concentration of adsorbate. Biochar can be reused in up to three cycles. Finally, the adsorbent showed good efficiency in real water samples from rivers contaminated with atrazine, with 76.58% and 71.29% removal.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherElsevier BVspa
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights© 2022 Elsevier Ltd. All rights reserved.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous mediumeng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.1016/j.jece.2022.107408spa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S2213343722002810spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doi10.1016/j.jece.2022.107408spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeUnited Kingdomspa
dc.relation.ispartofjournalJournal of Environmental Chemical Engineeringspa
dc.relation.references[1] T.B. Hayes, A. Collins, M. Lee, M. Mendoza, N. Noriega, A.A. Stuart, A. Vonk, Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 5476–5480, https://doi.org/10.1073/pnas.082121499.spa
dc.relation.references[2] J.P. Lasserre, F. Fack, D. Revets, S. Planchon, J. Renaut, L. Hoffmann, A.C. Gutleb, C.P. Muller, T. Bohn, Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells, J. Proteome Res. 8 (2009) 5485–5496, https://doi.org/10.1021/pr900480f.spa
dc.relation.references[3] S. Rostami, S. Jafari, Z. Moeini, M. Jaskulak, L. Keshtgar, A. Badeenezhad, A. Azhdarpoor, M. Rostami, K. Zorena, M. Dehghani, Current methods and technologies for degradation of atrazine in contaminated soil and water: a review, Environ. Technol. Innov. 24 (2021), 102019, https://doi.org/10.1016/j.eti.2021.102019.spa
dc.relation.references[4] M. Shirmardi, N. Alavi, E.C. Lima, A. Takdastan, A.H. Mahvi, A.A. Babaei, Removal of atrazine as an organic micro-pollutant from aqueous solutions: a comparative study, Process Saf. Environ. Prot. 103 (2016) 23–35, https://doi.org/10.1016/j. psep.2016.06.014.spa
dc.relation.references[5] M. Graymore, F. Stagnitti, G. Allinson, Impacts of atrazine in aquatic ecosystems, Environ. Int. 26 (2001) 483–495, https://doi.org/10.1016/S0160-4120(01)00031-9.spa
dc.relation.references[6] G.W. Stratton, Effects of the herbicide atrazine and its degradation products, alone and in combination, on phototrophic microorganisms, Arch. Environ. Contam. Toxicol. 13 (1984) 35–42, https://doi.org/10.1007/BF01055644.spa
dc.relation.references[7] Z. Shamsollahi, A. Partovinia, Recent advances on pollutants removal by rice husk as a bio-based adsorbent: a critical review, J. Environ. Manag. 246 (2019) 314–323, https://doi.org/10.1016/j.jenvman.2019.05.145.spa
dc.relation.references[8] S. Sun, J. Zhu, Z. Zheng, J. Li, M. Gan, Biosynthesis of β-cyclodextrin modified Schwertmannite and the application in heavy metals adsorption, Powder Technol. 342 (2019) 181–192, https://doi.org/10.1016/j.powtec.2018.09.072.spa
dc.relation.references[9] H. Pang, Z. Diao, X. Wang, Y. Ma, S. Yu, H. Zhu, Z. Chen, B. Hu, J. Chen, X. Wang, Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater, Chem. Eng. J. 366 (2019) 368–377, https://doi.org/10.1016/j.cej.2019.02.098.spa
dc.relation.references[10] J. Qu, Y. Yuan, Q. Meng, G. Zhang, F. Deng, L. Wang, Y. Tao, Z. Jiang, Y. Zhang, Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β–cyclodextrin functionalized cellulose: characterization, adsorptive performance and mechanism exploration, J. Hazard. Mater. 400 (2020), 123142, https://doi.org/10.1016/j.jhazmat.2020.123142.spa
dc.relation.references[11] L. Wu, B. Li, M. Liu, Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars, Chemosphere 210 (2018) 239–246, https://doi.org/10.1016/j.chemosphere.2018.07.003.spa
dc.relation.references[12] Y. Dai, N. Zhang, C. Xing, Q. Cui, Q. Sun, The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review, Chemosphere 223 (2019) 12–27, https://doi.org/10.1016/j.chemosphere.2019.01.161.spa
dc.relation.references[13] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G. A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide, J. Environ. Chem. Eng. 9 (2021), https://doi.org/10.1016/j.jece.2021.106843.spa
dc.relation.references[14] Y.L. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, D. Pinto, M.L.S. Oliveira, G.L. Dotto, Adsorption of atrazine herbicide from wáter by Diospyros kaki fruit waste activated carbon, J. Mol. Liq. (2021), https://doi.org/10.1016/j.molliq.2021.117990.spa
dc.relation.references[15] H.M. Mohd Noor Hazrin, A. Lim, C. Li, J.J. Chew, J. Sunarso, Adsorption of 2,4- dichlorophenoxyacetic acid onto oil palm trunk-derived activated carbon: isotherm and kinetic studies at acidic, ambient condition, Mater. Today Proc. (2021) 1–6, https://doi.org/10.1016/j.matpr.2021.09.461.spa
dc.relation.references[16] K. Rambabu, J. Alyammahi, G. Bharath, A. Thanigaivelan, N. Sivarajasekar, F. Banat, Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide, Chemosphere 282 (2021), 131103, https://doi.org/10.1016/j.chemosphere.2021.131103.spa
dc.relation.references[17] A. Pandiarajan, R. Kamaraj, S.S.S. Vasudevan, S.S.S. Vasudevan, OPAC (Orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies, Bioresour. Technol. 261 (2018) 329–341, https://doi.org/10.1016/j.biortech.2018.04.005.spa
dc.relation.references[18] X. Wei, Z. Wu, Z. Wu, B.C. Ye, Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems, Powder Technol. 329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060.spa
dc.relation.references[20] L. Sellaoui, L.F.O. Silva, M. Badawi, J. Ali, N. Favarin, G.L. Dotto, A. Erto, Z. Chen, Adsorption of ketoprofen and 2- nitrophenol on activated carbon prepared from winery wastes: a combined experimental and theoretical study, J. Mol. Liq. 333 (2021), https://doi.org/10.1016/j.molliq.2021.115906.spa
dc.relation.references[21] L. Sellaoui, F. Dhaouadi, Z. Li, T.R.S. Cadaval, A.V. Igansi, L.A.A. Pinto, G.L. Dotto, A. Bonilla-Petriciolet, D. Pinto, Z. Chen, Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film, J. Environ. Chem. Eng. 9 (2021), 105516, https://doi.org/10.1016/j.jece.2021.105516.spa
dc.relation.references[22] H. Xue, X. Wang, Q. Xu, F. Dhaouadi, L. Sellaoui, M.K. Seliem, A. Ben Lamine, H. Belmabrouk, A. Bajahzar, A. Bonilla-Petriciolet, Z. Li, Q. Li, Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: a comparative study by experimental and advanced modeling analysis, Chem. Eng. J. 430 (2022), https://doi.org/10.1016/j.cej.2021.132801.spa
dc.relation.references[23] X. Wei, Z.Z.Z.Z. Wu, Z.Z.Z.Z. Wu, B.C. Ye, Adsorption behaviors of atrazine and Cr (III) onto different activated carbons in single and co-solute systems, Powder Technol. 329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060.spa
dc.relation.references[24] J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, G.L. Dotto, Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins, Environ. Sci. Pollut. Res. 28 (2021) 36453–36463, https://doi.org/10.1007/s11356-021-12813-0.spa
dc.relation.references[25] J. Georgin, D.S.P.P.D.S.P.D.S.P. Franco, P. Grassi, D. Tonato, D.G.A.A.D.G. A. Piccilli, L. Meili, G.L.G.L.G.L.G.L.G.L. Dotto, Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents, Environ. Sci. Pollut. Res. 26 (2019) 19207–19219, https://doi.org/10.1007/s11356-019-05321-9.spa
dc.relation.references[26] H. Freundlich, Über die adsorption in losungen, ¨ Z. Phys. Chem. 57U (1907), https://doi.org/10.1515/zpch-1907-5723.spa
dc.relation.references[27] M.M. Dubinin, V.A. Astakhov, B.P. Bering, V.A. Gordeeva, M.M. Dubinin, L. I. Efimova, V.V. Serpinskii, Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents - communication 4. Differential heats and entropies of adsorption, Bull. Acad. Sci. USSR Div. Chem. Sci. 20 (1971) 17–22, https://doi.org/10.1007/BF00849310.spa
dc.relation.references[28] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004.spa
dc.relation.references[29] E.C. ´ Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran, Adsorption: fundamental aspects and applications of adsorption for effluent treatment, in: M. Hadi Dehghani, R. Karri, E. Lima (Eds.), Green Technol. Defluoridation Water, Elsevier, 2021, pp. 41–88, https://doi.org/10.1016/b978-0-323-85768-0.00004-x.spa
dc.relation.references[30] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Pirajan, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.spa
dc.relation.references[31] E. Glueckauf, Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography, Trans. Faraday Soc. 51 (1955) 1540–1551, https://doi.org/10.1039/TF9555101540.spa
dc.relation.references[32] D. Rehrah, R.R. Bansode, O. Hassan, M. Ahmedna, Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment, J. Anal. Appl. Pyrolysis 118 (2016) 42–53, https://doi.org/10.1016/j.jaap.2015.12.022.spa
dc.relation.references[33] M. Sbizzaro, S. C´esar Sampaio, R. Rinaldo dos Reis, F. de Assis Beraldi, D. Medina Rosa, C. Maria Branco de Freitas Maia, C. Saramago de Carvalho Marques dos Santos Cordovil, C. Tillvitz do Nascimento, E. Antonio da Silva, C. Eduardo Borba, Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems, J. Mol. Liq. 343 (2021), 117667, https://doi.org/10.1016/j.molliq.2021.117667.spa
dc.relation.references[34] R. Goswami, J. Shim, S. Deka, D. Kumari, R. Kataki, M. Kumar, Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures, Ecol. Eng. 97 (2016) 444–451, https://doi.org/10.1016/j.ecoleng.2016.10.007.spa
dc.relation.references[35] D. Xia, F. Tan, C. Zhang, X. Jiang, Z. Chen, H. Li, Y. Zheng, Q. Li, Y. Wang, ZnCl 2 -activated biochar from biogas residue facilitates aqueous As(III) removal, Appl. Surf. Sci. 377 (2016) 361–369, https://doi.org/10.1016/j.apsusc.2016.03.109.spa
dc.relation.references[36] A. Cougnaud, C. Faur, P. Le Cloirec, Removal of pesticides from aqueous solution: quantitative relationship between activated carbon characteristics and adsorption properties, Environ. Technol. 26 (2005) 857–866, https://doi.org/10.1080/09593332608618497.spa
dc.relation.references[37] C. Zhao, J. Ma, Z. Li, H. Xia, H. Liu, Y. Yang, Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants, RSC Adv. 10 (2020) 5066–5076, https://doi.org/10.1039/c9ra09208k.spa
dc.relation.references[38] M. Luo, H. Lin, Y. He, Y. Zhang, The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil, Sci. Total Environ. 717 (2020), 137014, https://doi.org/10.1016/j.scitotenv.2020.137014.spa
dc.relation.references[39] C. Lammirato, A. Miltner, M. Kaestner, Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger, Soil Biol. Biochem. 43 (2011) 1936–1942, https://doi.org/10.1016/j.soilbio.2011.05.021.spa
dc.relation.references[40] Z. Li, Y. Jin, T. Chen, F. Tang, J. Cai, J. Ma, Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity, Sep. Purif. Technol. 272 (2021), 118659, https://doi.org/10.1016/j.seppur.2021.118659.spa
dc.relation.references[41] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117.spa
dc.relation.references[42] C.C. Hollister, J.J. Bisogni, J. Lehmann, Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover ( Zea mays L.) and oak wood ( Quercus spp.), J. Environ. Qual. 42 (2013) 137–144, https://doi.org/10.2134/jeq2012.0033.spa
dc.relation.references[43] M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.K. Sung, J.E. Yang, Y.S. Ok, Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol. 118 (2012) 536–544, https://doi.org/10.1016/j.biortech.2012.05.042.spa
dc.relation.references[44] P. Peng, Y.H. Lang, X.M. Wang, Adsorption behavior and mechanism of pentachlorophenol on reed biochars: PH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms, Ecol. Eng. 90 (2016) 225–233, https://doi.org/10.1016/j.ecoleng.2016.01.039.spa
dc.relation.references[45] Z. Mahdi, A. El Hanandeh, Q. Yu, Influence of pyrolysis conditions on Surface characteristics and methylene blue adsorption of biochar derived from date seed biomass, Waste Biomass Valoriz. 8 (2017) 2061–2073, https://doi.org/10.1007/s12649-016-9714-y.spa
dc.relation.references[46] B. Zhao, D. O’Connor, J. Zhang, T. Peng, Z. Shen, D.C.W.W. Tsang, D. Hou, Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar, J. Clean. Prod. 174 (2018) 977–987, https://doi.org/10.1016/j.jclepro.2017.11.013.spa
dc.relation.references[47] M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon(Biochar), Environ. Sci. Technol. 44 (2010) 1247–1253, https://doi.org/10.1021/es9031419.spa
dc.relation.references[48] L. Meili, P.V.S. Lins, M.T. Costa, R.L. Almeida, A.K.S. Abud, J.I. Soletti, G.L. Dotto, E.H. Tanabe, L. Sellaoui, S.H.V. Carvalho, A. Erto, Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling, Prog. Biophys. Mol. Biol. 141 (2019) 60–71, https://doi.org/10.1016/j.pbiomolbio.2018.07.011.spa
dc.relation.references[49] J. Zhou, W. Zhu, J. Yu, H. Zhang, Y. Zhang, X. Lin, X. Luo, Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide, Appl. Surf. Sci. 435 (2018) 920–927, https://doi.org/10.1016/j.apsusc.2017.11.108.spa
dc.relation.references[51] S. Salvestrini, P. Sagliano, P. Iovino, S. Capasso, C. Colella, Atrazine adsorption by acid-activated zeolite-rich tuffs, Appl. Clay Sci. 49 (2010) 330–335, https://doi.org/10.1016/j.clay.2010.04.008.spa
dc.relation.references[52] J. Llado, ´ C. Lao-Luque, B. Ruiz, E. Fuente, M. Sol´e-Sardans, A.D. Dorado, Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics, Process Saf. Environ. Prot. 95 (2015) 51–59, https://doi.org/10.1016/j.psep.2015.02.013.spa
dc.relation.references[53] E.M. Cuerda-Correa, J.R. Domínguez-Vargas, F.J. Olivares-Marín, J.B. de Heredia, On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water, J. Hazard. Mater. 177 (2010) 1046–1053, https://doi.org/10.1016/j.jhazmat.2010.01.026.spa
dc.relation.references[54] A. Alahabadi, G. Moussavi, Preparation, characterization and atrazine adsorption potential of mesoporous carbonate-induced activated biochar (CAB) from Calligonum Comosum biomass: parametric experiments and kinetics, equilibrium and thermodynamic modeling, J. Mol. Liq. 242 (2017) 40–52, https://doi.org/10.1016/j.molliq.2017.06.116.spa
dc.relation.references[55] M.B. Chabalala, M.Z. Al-Abri, B.B. Mamba, E.N. Nxumalo, Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes, Chem. Eng. Res. Des. 169 (2021) 19–32, https://doi.org/10.1016/j.cherd.2021.02.010.spa
dc.relation.references[56] Y. Cao, S. Jiang, Y. Zhang, J. Xu, L. Qiu, L. Wang, Investigation into adsorption characteristics and mechanism of atrazine on nano-MgO modified fallen leaf biochar, J. Environ. Chem. Eng. 9 (2021), 105727, https://doi.org/10.1016/j.jece.2021.105727.spa
dc.relation.references[57] E.A. Allam, A.S.M. Ali, R.M. Elsharkawy, M.E. Mahmoud, Framework of nano metal oxides N-NiO@N-Fe3O4@N-ZnO for adsorptive removal of atrazine and bisphenol-A from wastewater: kinetic and adsorption studies, Environ. Nanotechnol. Monit. Manag. 16 (2021), 100481, https://doi.org/10.1016/j.enmm.2021.100481.spa
dc.relation.references[58] M. Bayati, M. Numaan, A. Kadhem, Z. Salahshoor, S. Qasim, H. Deng, J. Lin, Z. Yan, C.H. Lin, M. Fidalgo De Cortalezzi, Adsorption of atrazine by laser induced graphitic material: an efficient, scalable and green alternative for pollution abatement, J. Environ. Chem. Eng. 8 (2020), 104407, https://doi.org/10.1016/j.jece.2020.104407.spa
dc.relation.references[59] L. Yue, C.J. Ge, D. Feng, H. Yu, H. Deng, B. Fu, Adsorption–desorption behavior of atrazine on agricultural soils in China, J. Environ. Sci. 57 (2017) 180–189, https://doi.org/10.1016/j.jes.2016.11.002.spa
dc.relation.references[60] X. Wei, Z. Wu, C. Du, Z. Wu, B.C. Ye, G. Cravotto, Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating, J. Taiwan Inst. Chem. Eng. 77 (2017) 257–262, https://doi.org/10.1016/j.jtice.2017.04.004.spa
dc.relation.references[61] H.P. Toledo-Jaldin, A. Blanco-Flores, V. Sanchez-Mendieta, O. Martín-Hernandez, Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions, Environ. Technol. 39 (2018) 2679–2690, https://doi.org/10.1080/09593330.2017.1365097.spa
dc.relation.references[62] F.M. Machado, C.P. Bergmann, T.H.M. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, Adsorption of Reactive Red M-2BE dye from water solutions by multiwalled carbon nanotubes and activated carbon, J. Hazard. Mater. 192 (2011) 1122–1131, https://doi.org/10.1016/j.jhazmat.2011.06.020.spa
dc.relation.references[63] J. Georgin, D.S.P. Franco, M. Schadeck Netto, D. Allasia, E.L. Foletto, L.F. S. Oliveira, G.L. Dotto, Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4- dichlorophenoxyacetic acid herbicide, J. Environ. Chem. Eng. 9 (2021), 104574, https://doi.org/10.1016/j.jece.2020.104574.spa
dc.relation.references[64] J. Georgin, D.S.P. Franco, M.S. Netto, Y.L.O. de Salomon, ´ D.G.A. Piccilli, E. L. Foletto, G.L. Dotto, Adsorption and mass transfer studies of methylene blue onto comminuted seedpods from Luehea divaricata and Inga laurina, Environ. Sci. Pollut. Res. (2021), https://doi.org/10.1007/s11356-020-11957-9.spa
dc.relation.references[65] D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G. L. Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (2021), 105927, https://doi.org/10.1016/j.jece.2021.105927.spa
dc.relation.references[66] P.S. Thue, C.S. Umpierres, E.C. Lima, D.R. Lima, F.M. Machado, G.S. dos Reis, R. S. da Silva, F.A. Pavan, H.N. Tran, Single-step pyrolysis for producing magnetic activated carbon from tucum˜ a (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol, J. Hazard. Mater. 398 (2020), 122903, https://doi.org/10.1016/j.jhazmat.2020.122903.spa
dc.relation.references[67] C.R. Kennedy, S. Lin, E.N. Jacobsen, The cation–π interaction in small-molecule, Catal. Angew. Chem. Int. Ed. 55 (2016) 12596–12624, https://doi.org/10.1002/anie.201600547.spa
dc.subject.proposalAdsorptioneng
dc.subject.proposalAtrazineeng
dc.subject.proposalBiochareng
dc.subject.proposalPesticideseng
dc.subject.proposalRiver watereng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage10spa
dc.relation.citationstartpage1spa
dc.relation.citationissue3spa
dc.relation.citationvolume10spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)